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Simple Summary: Genome-based cancer medicine is becoming the standard of care: the patient’s
tumor DNA is first analyzed to identify driver mutations, and this permits later selection of the
most effective drugs. Treatment of lung cancer offers many examples. Activating mutations in the
epidermal growth factor receptor (EGFR) gene, as well as in other receptor tyrosine kinases (e.g., ALK),
are considered actionable candidates, and the respective drugs, called tyrosine kinase inhibitors, are
relatively effective. Unfortunately, despite initial activity, the emergence of new, on-target mutations,
along with adaptive processes, preempt the anti-cancer effects and necessitate switching to next-
generation drugs. This review highlights recent progress in resolving the mechanisms that underlie
acquisition of resistance. Specifically, we focus on the endogenous mutators that initiate emergence of
new mutations and the potential clinical benefits that may be derived from this new understanding.

Abstract: Epidermal growth factor receptor (EGFR)-specific tyrosine kinase inhibitors (TKIs) have
changed the landscape of lung cancer therapy. For patients who are treated with the new TKIs, the
current median survival exceeds 3 years, substantially better than the average 20 month survival
rate only a decade ago. Unfortunately, despite initial efficacy, nearly all treated patients evolve drug
resistance due to the emergence of either new mutations or rewired signaling pathways that engage
other receptor tyrosine kinases (RTKs), such as MET, HER3 and AXL. Apparently, the emergence of
mutations is preceded by a phase of epigenetic alterations that finely regulate the cell cycle, bias a
mesenchymal phenotype and activate antioxidants. Concomitantly, cells that evade TKI-induced
apoptosis (i.e., drug-tolerant persister cells) activate an intrinsic mutagenic program reminiscent
of the SOS system deployed when bacteria are exposed to antibiotics. This mammalian system
imbalances the purine-to-pyrimidine ratio, inhibits DNA repair and boosts expression of mutation-
prone DNA polymerases. Thus, the net outcome of the SOS response is a greater probability to evolve
new mutations. Deeper understanding of the persister-to-resister transformation, along with the
development of next-generation TKIs, EGFR-specific proteolysis targeting chimeras (PROTACs), as
well as bispecific antibodies, will permit delaying the onset of relapses and prolonging survival of
patients with EGFR+ lung cancer.

Keywords: adaptive mutagenesis; EGFR; kinase inhibitor; lung cancer; mutation; receptor tyrosine
kinase; resistance to drugs

1. Introduction

Along with the well-characterized roles for growth factors and their receptor tyrosine
kinases (RTKs) in development, physiology and regeneration, these cell-surface molecules
have important roles to play in tumorigenesis. Two major modes underlie the ability of
growth factors and RTKs to initiate or promote cancer progression. The first involves
genetic aberrations of specific RTKs. For example, 10–30% of patients with lung cancer
present activating mutations in the epidermal growth factor receptor (EGFR) gene [1–5].
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Importantly, the presence of EGFR mutations predicts response to specific tyrosine kinase
inhibitors (TKIs), likely due to addiction of the respective tumor cells to an active EGFR
pathway [6]. The most frequent gene aberration of HER2/ERBB2, the closest homologue
of EGFR, is gene amplification, which occurs in breast, gastric and other tumors, but rare
missense mutations have also been reported [7,8]. Importantly, very high expression levels
of HER2 predict response to chemotherapy combined with HER2-targeting monoclonal
antibodies (mAbs), such as trastuzumab/Herceptin. Similarly, overexpression of EGFR
occurs in approximately 50% of brain tumors of glial origin due to gene amplification [9],
and a large fraction of these tumors also present internal deletions within the extracellular
domain [10]. However, these observations have not been translated to EGFR-targeted treat-
ments of brain malignancies. The other oncogenic roles of growth factors and RTKs involve
autocrine or paracrine loops that engage a growth factor and a specific RTK. For example,
high expression of EGFR ligands, especially amphiregulin, supports proliferation of colorec-
tal cancer (CRC) cells and might predict response to a combination of chemotherapy plus
an anti-EGFR mAb, such as cetuximab [11]. However, the abundance of amphiregulin in
CRC specimens has not been translated to a predictive biomarker of response to anti-EGFR
antibodies. Yet another clinically approved combination of chemotherapy and an antibody
blocking a ligand of RTKs is the combination of bevacizumab/Avastin and chemotherapy,
which is used to treat patients with recurrent ovarian cancer. Similar combinations of
bevacizumab were approved for breast cancer, non-small-cell lung cancer, glioblastoma,
renal cell carcinoma and cervical cancer [12]. Notably, aside from its mitogenic activities,
VEGF plays a major role in controlling blood vessel formation (angiogenesis) as well as
modulating tumor-induced immunosuppression.

2. Major Classes of Oncogene-Targeted Drugs and Resistance to the Respective
Therapeutic Strategies

Only two major classes of molecular targeted treatments currently dominate the
field of RTK-centered cancer treatment. These are antibodies targeting either growth
factors or RTKs [13], and small-molecule kinase inhibitors, which block tyrosine-specific
and other kinases [14]. A third class of inhibitors, which can selectively sort specific
proteins for intracellular degradation, is already on the horizon. The key for this strategy
is the development of proteolysis-targeting chimeras (PROTACs). While some of the
RTK-targeting drugs have greatly changed the landscape of the respective diseases, for
example trastuzumab in breast cancer and osimertinib/Tagrisso in lung cancer, drug
resistance is considered a major issue. Indeed, overcoming resistance to the latest anti-
cancer drugs has been recognized by the Cancer Moonshot Initiative as one of the top ten
priorities of contemporary cancer research [15]. This is because the majority of patients with
advanced cancer die either because their cancers are inherently resistant to drugs, or their
tumors initially respond but they later develop drug resistance [16]. Resistance universally
limits applications of many different drugs, including not only chemotherapeutic agents
but also kinase inhibitors [16,17], anti-receptor antibodies [13] and immune checkpoint
blockers [18,19]. This review will focus on the emergence of resistance of lung cancer
to anti-EGFR kinase inhibitors, highlighting the underlying mechanisms and potential
strategies to prevent cancer relapses.

3. A Primer to Lung Cancer

Nearly 2 million deaths are expected annually due to lung cancer, the most common
cause of cancer-related deaths. Histologically, lung cancer can be divided into two groups:
(i) Small-cell lung cancer (SCLC) constitutes approximately 15% of all cases. This deadly
tumor is highly different from other lung cancers [20]. Its aggressive nature is attributable
to bi-allelic inactivation of TP53 and RB1, along with aberrantly active Notch signaling.
(ii) Non-small cell lung cancer (NSCLC) represents the remaining 85% of lung cancers
and includes three major histological subtypes: adenocarcinoma, the most common type,
squamous cell carcinoma and large cell carcinoma, the least frequent subtype. Unlike
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squamous NSCLC, which rarely harbors actionable mutations, several such mutations are
highly prevalent in adenocarcinomas and include mutant forms of the following oncogenes:
KRAS, EGFR, ALK, RET, ROS1, BRAF, HER2 and MET [21]. Although immunotherapy
combinations, for example the combination of antibodies targeting CTLA-4 and PD1, seem
to benefit some patients presenting with advanced or metastatic NSCLC, tumors with
EGFR mutations in general lack abundant infiltrating lymphocytes and have a relatively
low tumor mutational burden [22]. Hence these tumors tend not to respond to immune
checkpoint blockers. This contrasts with most KRAS- and BRAF-mutated NSCLCs, which
are associated with a higher mutational burden [23].

4. EGFR Mutations in Lung Cancer

EGFR and its family members, primarily HER2, are ubiquitously expressed in epithelia,
including the epithelium of the lung, and they have been found to be overexpressed or
mutated in several types of cancer [24]. Depending on age, gender and ethnicity, 10–30% of
all patients with NSCLC present somatic kinase-activating mutations in the gene encoding
EGFR [1–5]. Another factor that might increase incidence of EGFR-mutated lung cancer
appears to be air pollution. Hill et al. showed that exposure to particulate matter measuring
≤2.5 µm (PM2.5) promotes lung cancer development by recruiting macrophages into the
lungs, which in turn release IL-1β. Consequently, a progenitor-like cell state is induced in
lung alveolar type II epithelial cells harboring pre-existing EGFR activating mutations [25].

Various short deletions in exon 19 (Del19), along with L858R, a point mutation in
exon 21, represent 85–90% of all known EGFR mutations in lung cancer [26]. Rare mutations
account for 10–15% of all EGFR mutations in NSCLC and include G719A or G719S, Del18,
E709K, exon 19 insertions, S768I, L861Q and exon 20 insertions (Ins20). Two mutations,
T790M and C797S, typically emerge when patients are treated with the first/second or third
generation TKIs, respectively [27–30]. It is imperative to note that the mutant forms of EGFR
mimic the canonical mechanisms permitting activation of the kinase domain in response to
EGF binding. The mutant forms also engage the same signaling pathways, primarily JAK-to-
STAT, the RAS-to-mitogen-activated protein kinases (MAPK) pathway and the linear route
that enables activation of mTOR by the upstream kinases PI3K and AKT. Although normally
kinase activation targets EGFR to CBL-mediated receptor ubiquitination and subsequent
degradation in lysosomes, certain EGFR mutants escape this regulation and also display
enhanced heterodimerization with HER2, which further leads to persistent stimulation [31].
In addition, while wild-type EGFRs require dimerization for proper signaling [32,33], all
kinase-activating mutations, except for L858R, induce an active conformation of the enzyme
that is independent of ligand-induced dimerization [34].

5. First and Second Generations of EGFR-Specific Kinase Inhibitors (See Table 1)

It is interesting to draw analogies between TKIs targeting EGFR and TKIs specific to
BCR-ABL1, a fusion tyrosine kinase that acts as the driver of chronic myeloid leukemia
(CML). The development of imatinib, a BCR-ABL1 inhibitor, allows patients with CML to
experience near-normal life expectancy [35]. Although specific point mutations that de-
crease drug-binding affinity can produce imatinib resistance, second- and third-generation
TKIs can largely mitigate this issue. For patients with advanced NSCLC who are treated
with a third-generation EGFR inhibitor, the median survival is greater than 3 years [36],
significantly better than the <2 year survival rate just a decade ago. When compared to
standard chemotherapy, the reversible ATP-competitive first-generation EGFR inhibitors,
erlotinib and gefitinib, prolonged progression-free survival (PFS) and overall survival
of patients with NSCLC who harbor mutant forms of EGFR [37–39]. In comparison to
chemotherapy, EGFR TKIs are relatively safe drugs. Nevertheless, several side effects
have been reported. They frequently include skin effects and gastrointestinal tract toxicity,
such as skin rash and diarrhea, respectively. More severe adverse effects include intestinal
obstruction, hepatotoxicity and interstitial lung disease [40]. Unfortunately, despite initial
efficacy, treated patients eventually evolve drug resistance. Several mechanisms of acquired
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resistance have been described, including the gatekeeper T790M mutation within the EGFR
kinase domain [27]. Importantly, T790M occurs in >50% of patients who relapse after
treatment with the first-generation inhibitors. This mutation increases the affinity of the
mutant receptor for ATP, thus preventing drug binding and reducing the potency of ATP
competitive drugs. Less frequent routes of evasion have been identified, including amplifi-
cation of genes encoding compensatory RTKs, such as MET [41] and HER2 [42], as well as
overexpression of the hepatocyte growth factor (HGF) [43,44], or up-regulation of another
RTK, AXL [45]. The second-generation EGFR inhibitors, such as afatinib and dacomitinib,
both bind with EGFR in an irreversible manner, aimed at providing therapeutic answers
to T790M-mediated resistance [46,47]. However, although two second-generation TKIs
have been approved for clinical use, these drugs also inhibit HER2 and HER4, and they
frequently fail to prevent the emergence of T790M in patients [48].

Table 1. EGFR-specific agents, including clinically approved drugs, targeting mutant forms of EGFR
in NSCLC.

Drug Inhibitor Type Drug Target Status Relevant
Studies

Gefitinib 1st generation TKI
Competitive Reversible Del19/L858R-EGFR Approved by the FDA/EMA in

2003/2009

NEJ002 [49,50]
IPASS [51,52]

WJTOG3405 [37,53]

Erlotinib 1st generation TKI
Competitive Reversible Del19/L858R-EGFR Approved by the FDA/EMA in

2004/2005

OPTIMAL [39,54]
ENSURE [55]
EUTARC [38]

Icotinib 1st generation TKI
Competitive Reversible Del19/L858R-EGFR Approved in China in 2011 CONVINCE [56]

EVIDENCE [57]

Afatinib
2nd generation TKI

Covalent
Irreversible

Del19/L858R-EGFR Approved by the FDA/EMA in
2013

LUX-Lung3 [58,59]
LUX-Lung6 [59,60]

Dacomitinib
2nd generation TKI

Covalent
Irreversible

Del19/L858R-EGFR Approved by the FDA/EMA in
2018/2019 ARCHER1050 [61,62]

Osimertinib
3rd generation TKI

Covalent
Irreversible

Del19/L858R/T790M-EGFR Approved by the FDA/EMA in
2015/2016

AURA3 [63]
FLAURA [64]

Aumolertinib *
3rd generation TKI

Covalent
Irreversible

Del19/L858R/T790M-EGFR Approved in China in 2020 AENEAS [36,65]
APOLLO [66]

Furmonertinib $
3rd generation TKI

Covalent
Irreversible

Del19/L858R/T790M-EGFR Approved in China in 2021 FURLONG [67]

Lazertinib
3rd generation TKI

Covalent
Irreversible

Del19/L858R/T790M-EGFR Approved in South Korea in 2021 LASER201 [68,69]
LASER301 (NCT04248829)

Befotertinib
3rd generation TKI

Covalent
Irreversible

Del19/L858R/T790M-EGFR Clinical, Phase II/III (active) NCT03861156 [70]
NCT04206072 [71]

Abivertinib £
3rd generation TKI

Covalent
Irreversible

Del19/L858R/T790M-EGFR Clinical, Phase I/II (active) NCT02274337 [72]
AEGIS-1 (NCT02330367)

Nazartinib
3rd generation TKI

Covalent
Irreversible

Del19/L858R/T790M-EGFR Clinical, Phase I/II (active) NCT02108964 [73]

Mavelertinib
3rd generation TKI

Covalent
Irreversible

Del19/L858R/T790M-EGFR Clinical, Phase I/II (terminated) NCT02349633 [74]

Rociletinib
3rd generation TKI

Covalent
Irreversible

Del19/L858R/T790M-EGFR Rejected by the
FDA in 2016

NCT01526928
TIGER-1 (NCT02186301) TIGER-3

(NCT02322281) [75]

Olmutinib
3rd generation TKI

Covalent
Irreversible

Del19/L858R/T790M-EGFR Terminated ◦ NCT01588145 NCT02485652 [76]
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Table 1. Cont.

Drug Inhibitor Type Drug Target Status Relevant
Studies

Naquotinib
3rd generation TKI

Covalent
Irreversible

Del19/L858R/T790M-EGFR Clinical, Phase III (terminated) NCT02588261 [77]

EAI001
4th generation TKI

Allosteric
Reversible

L858R/T790M/C797S-EGFR Preclinical [78,79]

EAI045
4th generation TKI

Allosteric
Reversible

L858R/T790M/C797S-EGFR Preclinical [78,79]

JBJ-04-125-02
4th generation TKI

Allosteric
Reversible

L858R/T790M/C797S-EGFR Preclinical [80]

JBJ-09-063
4th generation TKI

Allosteric
Reversible

L858R/T790M/C797S-EGFR Preclinical [81]

CH7233163
4th generation TKI

Non covalent
Competitive

Del19/L858R/T790M/C797S-EGFR Preclinical [82]

BLU-945 4th generation TKI
Reversible Del19/L858R/T790M/C797S-EGFR Phase I/II

(Recruiting) SYMPHONY (NCT04862780)

BBT-176 4th generation TKI
Reversible Del19/L858R/T790M/C797S-EGFR Phase I/II

(Recruiting) NCT04820023 [83]

TQB3804 4th generation TKI Del19/L858R/T790M/C797S-EGFR Phase I (Unknown) NCT04128085

BPI-361175 4th generation TKI Del19/L858R/T790M/C797S-EGFR Phase I/II
(Recruiting) NCT05329298

HJM-561 PROTAC Del19/L858R/T790M/C797S-EGFR Preclinical [84]

DDC-01-163 PROTAC L858R/T790M/C797S-EGFR Preclinical [85]

Mobocertinib TKI Ins20-EGFR Approved by the FDA in 2021 EXCLAIM [86]

Amivantamab Bispecific Antibody Ins20-EGFR
MET

Approved by the FDA/EMA
in 2021

CHRYSALIS [87]
PAPILLON (NCT04538664)

The abbreviations used are: TKI, tyrosine kinase inhibitor; Del19, deletions in exon 19; FDA, Food and Drug
Administration of the United States of America; EMA, European Medicines Agency. *, previously known as
almonertinib; $, previously known as alflutinib; £, also known as avitinib; ◦, approved in South Korea in 2016
and subsequently terminated following two cases of toxic epidermal necrolisis (one fatal); PROTAC, proteolysis
targeting chimera; Ins20, insertions in exon 20.

6. Third-Generation TKIs (See Table 1)

The third-generation EGFR inhibitors were designed to specifically inhibit EGFR-
T790M, while sparing wild-type EGFR [88,89]. Similarly to the second-generation drugs,
the newer compounds irreversibly bind with the mutant receptor by covalently engaging
cysteine 797. Of the three compounds that initially entered pre-clinical tests, WZ4002,
rociletinib and osimertinib, only the latter has been approved, in 2015. Although rociletinib
demonstrated clinical activity in patients who had relapsed after treatment with the first
and second generation TKIs [90], it was eventually discarded due to adverse effects and
low efficacy. Two phase III studies established osimertinib as the current drug of choice for
patients who progressed under the first-generation TKIs, as well as the drug of choice in
the first line scenario. The first trial [63] compared the efficacy of osimertinib and platinum
plus pemetrexed-based therapy in patients who had disease progression after first-line
EGFR-TKI therapy. In all patients, the median duration of progression-free survival was
significantly longer with osimertinib than in the other arm and, likewise, the objective
response rate was significantly better with osimertinib. Additionally, the median duration
of progression-free survival was longer among patients who received osimertinib, and the
proportion of patients with moderate or severe adverse events was lower with osimertinib.
The other trial was similarly successful [64]. It compared osimertinib and standard EGFR-
TKIs in patients with previously untreated EGFR mutation-positive advanced NSCLC. The
patients received either osimertinib or a first-generation TKI. While both arms showed
similar safety profiles, the efficacy of osimertinib was superior to that of the standard (first-
generation) EGFR-TKIs in the first-line setting. These observations led to the approval of
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osimertinib not only for patients who progressed following treatment with first-generation
TKIs but also as a first-line drug for patients harboring EGFR-activating mutations.

7. Resistance to Osimertinib and Development of Fourth-Generation EGFR Inhibitors
(See Table 1)

Despite impressive therapeutic effects, emergence of resistance to osimertinib is nearly
inevitable. The most common mechanism of resistance to second-line osimertinib com-
prises MET amplification (18%), followed by a tertiary mutation within the ATP-binding
pocket of the receptor, namely C797S (14%) [91]. Other resistance mechanisms include
amplification of HER2, as well as mutations in downstream molecules (i.e., PIK3CA, KRAS
and BRAF) [91]. Additionally, approximately half of the patients who progressed following
osimertinib treatment within the AURA 3 trial revealed loss of T790M, and at least a third
of these patients displayed concurrent resistant mechanisms (e.g., MET, HER2 or PIK3CA
amplification) [91]. Moreover, histological transformation from NSCLC to SCLC has been
described as one of the mechanisms responsible for osimertinib resistance [92]. In a similar
way, the FLAURA 3 trial that tested osimertinib in a first-line setting detected the C797S
mutation but no T790M [93]. In addition, this trial identified several off-target mechanisms
that might lead to resistance, including amplification of MET and KRAS, HER2 exon 20
insertion and mutations in MEK1, JAK2, KRAS and PIK3CA [93,94]. Note that C797S-
EGFR was identified in circulating free DNA (cfDNA) prior to the availability of resistance
biopsy specimens [30]. In comparison to the >50% of patients who evolve resistance to the
first-generation TKIs due to T790M, the C797S mutation is typically detected in less than a
quarter of patients who progress under second-line osimertinib [95]. Fourth-generation
inhibitors have been developed with the goal of overcoming C797S-mediated secondary
resistance. EAI045 is an allosteric, non-ATP competitive inhibitor able to inhibit not only
C797S but also T790M [78]. This compound targets an allosteric site of EGFR but it re-
quires the co-administration of an anti-EGFR antibody. Interestingly, EAI045 is active on
L858R-expressing tumors, but not Del19-expressing tumors [78]. A similar compound,
JBJ-04-125-02, can inhibit cell proliferation and the triple mutant L858R/T790M/C797S
as a single agent [80]. Similarly, BLU-945, a fourth-generation ATP-competitive inhibitor,
showed promising in vitro results against C797S-positive tumors [96]. An initial clinical
trial is currently evaluating BLU-945 in the TKI resistance setting, as either monotherapy
or combined with osimertinib (NCT04862780). Yet another promising fourth-generation
TKI is UPR1444, a new sulfonyl fluoride derivative which potently and irreversibly inhibits
the triple EGFR mutant through the formation of a sulfonamide bond with the catalytic
residue Lys 745 [97]. In summary, several different fourth-generation inhibitors are already
in clinical trials.

8. PROTACs

In parallel to the development of fourth-generation EGFR TKIs, a major current effort
is directed towards clinical development of proteolysis-targeting chimeras (PROTACs),
representing an alternative strategy to directly target EGFR. PROTACs consist of two co-
valently linked protein ligands: one binds with the target protein (the protein intended
to be degraded), while the other molecular arm recruits an E3 ligase that promotes ubiq-
uitination and degradation of the target protein [98]. Notably, the numbers of PROTACs
that are currently being evaluated in vitro, in vivo and in clinical studies is increasing [99].
Several PROTACs targeting EGFR have been developed (reviewed in [100]). By using
EGFR TKIs as the target protein binder, it is possible to selectively target mutated forms
of the receptor, while sparing the wild-type form of EGFR. In this regard, two PROTACs
synthetized by using gefitinib as the EGFR binder were able to reduce proliferation of
Del19- and L858R-EGFR expressing NSCLC cells, along with the levels of EGFR and the
activation of downstream signaling pathways [101]. In a more recent study, Vartak et al.
developed a PROTAC containing cetuximab as the EGFR binder, thereby reducing viabil-
ity of EGFR-mutated NSCLC cells [102]. Despite the promising results showing in vivo
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efficacy of EGFR-specific PROTACs [103], additional preclinical data are needed prior to
translating these findings to clinical applications. For example, membrane permeability
and metabolic stability are crucial factors that need to be considered before attempting
clinical development of EGFR-specific PROTACs.

9. Darwinian Mechanisms Underlying Resistance to EGFR-Specific TKIs

In the context of anti-cancer therapies, Darwinian mechanisms of drug resistance
refer to a selection process that relies on pre-existing genetic variation that is present in
a cancer cell population before starting the treatment. The pressure applied by the drug
allows cells expressing a resistance-conferring mutation to survive the treatment (selection),
leading over time to the establishment of a drug-resistant cancer cell population. Darwinian
selection was observed, for instance, in patients with KRAS wild-type CRC that developed
resistance after treatment with the anti-EGFR monoclonal antibody panitumumab [104].
While KRAS mutations were undetectable prior to the treatment, they became detectable
5–6 months after treatment with the antibody.

To address the question how resistant clones evolve during TKI treatment, Hata et al.
exposed NSCLC cells to a TKI and monitored the development of several resistant clones.
This identified early emergence of clones, which represented pre-existing resistant T790M
clones, as well as slowly emerging clones that represented de novo acquisition of the
T790M mutation within initially T790-WT cells [105]. In a similar way, Turke et al. applied
high-throughput FISH analyses on both cell lines and lung cancer patients, and identified
subpopulations of cells with MET amplification prior to drug exposure [44]. It is worth
noting that emergence of pre-existing mutations post treatment with a TKI has been well-
characterized in imatinib-treated patients with Philadelphia chromosome positive acute
lymphoblastic leukemia (Ph+ ALL). For example, baseline mutations were identified in
21% of imatinib-naïve patients with newly diagnosed Ph+ ALL [106]. In conclusion, the
examples from lung cancer, CRC and leukemia exemplify the role played by pre-existing
mutations and intra-tumor heterogeneity in resistance to anti-cancer drugs.

10. Non-Darwinian Mechanisms of Resistance and Drug Tolerance Persistence

Non-Darwinian selection includes all mechanisms that do not involve genomic changes.
In this context, epigenetic alterations, factors from the microenvironments, cellular plas-
ticity and phenotypic adaptation are phenomena that might lead to drug resistance. In
analogy to antibiotics-tolerant sub-populations of bacteria [107], a small subpopulation of
drug-tolerant persister (DTP) cells has been identified in vitro [108]. DTPs are characterized
by slow proliferation, reversible phenotypic alterations and altered energy consumption
([109]; see Figure 1). The mechanisms that underlie persistence include diverse epigenetic
and transcriptional programs. We recently studied the stepwise transition from DTPs to
resisters and detected a host-dependent but non-mutational reversible resister state [110].
In the same vein, single-cell RNA sequencing identified in patient-derived xenografts
a rare population of DTP-like cells that converted the major preexisting population of
cancer-associated fibroblasts into a state that can promote DTP survival [111]. In analogy,
resistance of CRC to cetuximab has been attributed to a transcriptional switch from a
cetuximab-sensitive subtype to a fibroblast- and growth factor-rich subtype at progres-
sion [112]. These observations propose that DTPs can switch phenotypes or educate their
microenvironment. Consistent with this, using a combination of large-scale drug screening
and whole-exome sequencing, it was concluded that the DTP state might provide a latent
reservoir of cells for the emergence of diverse drug-resistance mechanisms [113]. Although
there is no consensus concerning markers of DTP phenotypes, they nevertheless seem to
share common features. For example, resistance to various EGFR inhibitors might share
aberrant activation of the RAS-to-ERK (extracellular signal-regulated kinase) signaling,
and this might be caused by either chromosomal amplification of the MAPK1 gene or by
down-regulation of a phosphatase that down-regulates ERK [114].
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Figure 1. Darwinian and non-Darwinian models of resistance to tyrosine kinase inhibitors (TKIs).
According to the Darwinian model (upper part), a few TKI-resistant cells preexist in tumors. Hence,
treatment with TKIs kills the sensitive cells and repopulates the whole tumor with drug-resistant cells
(shown in red). According to the alternative model, exposure to the drug induces the generation of
reactive oxygen species (ROS) and extensive cell death. Concurrently, the drug instigates epigenetic
changes, especially epithelial-mesenchymal transition (EMT), in a small population of cells called
drug tolerant persister cells (DTPs). Note that this transition is reversible and involves histone
demethylation, up-regulation of vimentin, AXL and additional RTKs. Continuous exposure to the
drug elevates antioxidants, along with the SOS-like system. This system comprises down-regulation
of both DNA repair and high-fidelity DNA polymerases, which are replaced by a group of low-fidelity
(error prone) polymerases. Thus, DTPs might irreversibly acquire resistance due to on-target or
off-target new mutations.

Another common feature was unraveled by employing barcode labeling, which re-
vealed that antioxidant profiles characterized by increased glutathione metabolism and
decreased reactive oxygen species (ROS) are hallmarks of cycling persisters [115]. Similarly,
it has been proposed that the epithelial to mesenchymal transition (EMT), a reversible
program of trans-differentiation, generates the drug-tolerant cell populations characterized
by activation of ABC transporters and AXL, as well as immune evasion and epigenetic re-
programming [116]. Yet another marker emerged from single-cell RNA-seq and single-cell
ATAC-seq analyses which confirmed the previously characterized genes AURKA, VIM and
AXL, but added CD74, a gene that undergoes up-regulation in the drug-tolerant state [117].
Yet another interesting marker of DTPs is the Wnt/β-catenin signaling pathway, which is
activated in response to TKI treatment in a notch3-dependent manner, thereby leading to
survival of a subpopulation of stem-like DTP cells [118]. The use of genetically engineered
mouse models confirmed that the notch pathway can activate proliferation of TKI-treated
cells, such that combined treatments using notch inhibitors plus TKIs could block tumor
relapses [119]. In summary, the non-Darwinian mechanisms of drug resistance, especially
the emerging common functional features of DTP cells, exemplify the robust and diversified
nature of drug tolerance. This offers a spectrum of molecular targets, such as notch and
AXL, for combination treatments able to nullify or significantly delay the onset of resistance
to drugs, including EGFR inhibitors.
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11. Endogenous Mutators Promote the Emergence of New Mutations While under
TKI Treatment

In vitro studies uncovered two routes of resistance to TKIs: (i) a Darwinian route that
selects specific clones, which are drug resistant due to a pre-existing secondary mutation,
and (ii) a less understood route that promotes de novo emergence of resistance-conferring
mutations [105]. Notably, the mechanisms underlying emergence of the secondary (e.g.,
T790M) and tertiary (e.g., C797S) EGFR mutations are distinct from the mode that generates
primary EGFR mutations. The primary mutations likely pre-exist in normal lung tissues
but they are later exposed due to the action of tumor promoters, such as air pollutants [25].
What mechanisms could underlie the apparent drug-induced accelerated evolution? In
1975, Radman reported an inducible bacterial DNA mutagenesis system, the SOS response
(see Figure 2), which might explain the link between genotoxic stress and adaptive mutage-
nesis [120]. Following genotoxic stress, bacteria release fragments of single-stranded DNA,
which act as sensors that initiate transcriptional programs and mutate the genome [121].
The major endogenous mechanism of mutagenesis (i.e., mutator) in Escherichia coli is DNA
polymerase V (polV), which instigates virtually all SOS mutagenesis [122]. PolV belongs to
the group called Y family DNA polymerases, which promote translesion synthesis (TLS) of
DNA. These polymerases exhibit low fidelity, thereby increasing mutagenesis rates when
they are engaged in DNA replication. We previously investigated whether the treatment
of lung cancer with TKIs similarly engages hypermutators [123]. Because GAS6 (growth
arrest-specific protein 6), AXL’s ligand, is up-regulated in cycling DTP cells and it binds
with newly externalized phosphatidylserine of apoptotic bodies, we assumed that the
GAS6-AXL module acts as an alarm that stimulates SOS-like reactions in response to TKIs.
In line with this prediction and previous reports that associated AXL and GAS6 with
intrinsic resistance to TKIs [110,124], we found that AXL overexpression can up-regulate
low-fidelity DNA polymerases and down-regulate DNA repair enzymes [123]. Moreover,
simultaneously inhibiting AXL and EGFR completely blocked relapses in animal models.
Metabolomic analysis uncovered yet another intrinsic mutator that relates to the depen-
dency of DNA replication on balanced pools of deoxyribonucleotides (dNTPs) [125]. By
activating MYC and purine synthesis, AXL disbalances the pools of dNTPs, which can in-
fluence polymerase proofreading [126] and mutator phenotypes [127,128]. It is worthwhile
noting that in similarity to NSCLC cells, human CRC cells exploit adaptive mutability to
evade the therapeutic pressure of a combined treatment that used a BRAF kinase inhibitor
and an anti-EGFR antibody [129]. This treatment down-regulated mismatch repair (MMR),
as well as homologous recombination genes and concomitantly up-regulated error-prone
DNA replication. In conclusion, pharmacological stress-induced mutagenesis (SIM) might
be shared by eukaryotes and unicellular organisms, arguing against prevailing assumptions
that mutations occur purely stochastically [130].
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Figure 2. The bacterial SOS system. The outlined error-prone DNA repair system contributes
significantly to DNA changes in bacteria. Normally, the dimeric LexA repressor binds with the SOS
boxes of 20 nucleotide pairs found in the operator region of SOS genes, thereby preventing their
action. Activation of the SOS genes occurs after genotoxic stress and DNA damage. Upon damage,
newly formed single-stranded DNA (ssDNA) fragments that accumulate at stalled replication forks
bind with RecA (the orthologue of RAD51 in mammals), an inducer. RecA forms a filament around
these ssDNA regions. The ssDNA/RecA complex promotes auto-cleavage of the LexA repressor
to permit recruitment of RNA polymerase and facilitate expression of genes under LexA control.
Collectively, the newly translated proteins inhibit DNA repair while increasing mutagenesis, which
confers resistance to antibiotics.
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12. A Biomarker Predicting Response of EGFR+ Tumors to Antibody Rather Than
TKI Treatment

Although genome-based, personalized cancer medicine is rapidly becoming the stan-
dard of medical oncology [131], and with the exception of exon 20 mutation carriers, all
patients with EGFR+ NSCLC are treated in the same way. Contrary to this practice, meta-
analyses of multiple randomized trials that compared TKIs and chemotherapy confirmed
superiority of TKIs and, unexpectedly, revealed that the hazard ratio of progression-free
survival for tumors with Del19 was 50% greater than the ratio calculated for tumors with
L858R [132]. Importantly, most kinase-activating mutations induce an active conformation
of the kinase domain that is independent of ligand-induced EGFR dimerization [133]. For
example, exon 19 deletions, exon 20 insertions and the dual L858R/T790M EGFR mutant
do not require receptor dimerization. This contrasts with the L858R mutant, which depends
on dimerization [34]. These observations raised the possibility that L858R might serve
as a biomarker able to predict responses of EGFR+ lung cancer to dimerization-blocking
antibodies like cetuximab. As predicted, our recent analyses showed that cetuximab
monotherapy completely inhibited relapses of L858R patient-derived xenograft models, but
tumors harboring other mutations rapidly relapsed post treatment with either cetuximab or
TKIs [134]. Interestingly, unlike TKIs, which elevated reactive oxygen species (ROS) and in-
duced robust cell death, antibody treatments only modestly associated with apoptosis, but
they accelerated the rate of EGFR degradation and down-regulated several RTKs that have
previously been implicated in drug resistance [134]. Taken together, these observations
warrant clinical tests aimed at different, mutation-based immunotherapeutic treatments
that would limit the use of TKIs and avoid emergence of secondary EGFR mutations.

13. Individual Bypass Mechanisms and the Respective Combination Therapies (See
Figure 3 and Table 2)
13.1. MET Activation

Resistance to the first-, second- and third-generation EGFR TKIs frequently involves
activation of compensatory pathways due to amplification and/or overexpression of by-
pass survival receptors (e.g., HER2, HER3, MET, AXL and IGF1R). As a result, resistant
tumors no longer depend on EGFR for survival and proliferation. The MET signaling path-
way is the most commonly engaged pathway following treatment with EGFR inhibitors,
regardless of TKI type and line of therapy [135]. It has been shown that amplification of the
MET gene causes resistance via the HER3/PI3K/AKT pathway [41]. Several MET kinase
inhibitors have been developed. Two inhibitors, capmatinib and tepotinib, have been
approved for NSCLC carrying the MET exon 14 skipping mutation [136,137]. Additionally,
antibodies targeting MET are currently being evaluated in both preclinical and clinical
studies. Of note, a bispecific antibody co-targeting MET and EGFR, amivantamab, has
been approved for the treatment of NSCLC patients expressing EGFR with exon 20 inser-
tions [138]. Considering the relatively high frequency of MET alterations in lung cancers
with EGFR mutations, co-targeting EGFR and MET with either a kinase inhibitor or an anti-
body appears to be a logical therapeutic strategy that is currently being evaluated. A phase
Ib/II trial testing a combination of capmatinib and gefitinib in patients with EGFR-mutated
NSCLC that developed resistance to EGFR TKIs showed encouraging results, particularly
in tumors with high MET gene copy number [139]. Promising results were also obtained
in a phase I trial that combined the MET small-molecule inhibitor savolitinib together
with osimertinib and recruited patients with EGFR+ NSCLC harboring MET amplification
post treatment with an EGFR inhibitor [140]. Yet another trial combined the EGFR/MET
bispecific antibody, amivantamab, and a third-generation EGFR inhibitor, lazertinib [141].
The same drug combination is also being evaluated in a first-line therapy by a phase 3
study, MARIPOSA [142].
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Table 2. Combinatorial approaches under clinical evaluation to overcome resistance to third-
generation EGFR-TKIs.

Mechanism of Resistance Strategy to Overcome
Resistance Drugs Status Relevant Studies

MET alterations

MET TKI

Osimertinib + savolitinib Phase Ib (active) NCT02143466

Osimertinib + savolitinib Phase II (recruiting) NCT03778229 (SAVANNAH)

Osimertinib + savolitinib Phase III (recruiting) NCT05015608 (SACHI)

Osimertinib + savolitinib Phase II (recruiting) NCT03944772
(ORCHARD)

Osimertinib + savolitinib Phase II (not yet recruiting) NCT05163249 (FLOWERS)

Osimertinib + savolitinib Phase III (recruiting) NCT05261399 (SAFFRON)

Osimertinib + savolitinib Phase II (active) NCT04606771

Osimertinib + tepotinib Phase II (active) NCT03940703 (INSIGHT)

Osimertinib + vebreltinib Phase I/II (recruiting) NCT04743505

Bispecific Antibody
(EGFR-MET)

Lazertinib + amivantamab Phase III (active) NCT04487080 (MARIPOSA)

Lazertinib ± amivantamab Phase I (recruiting) NCT04077463 (CHRYSALIS2)

Lazertinib + amivantamab Phase III (recruiting) NCT05388669 (PALOMA3)

Lazertinib ± amivantamab ±
carboplatin/pemetrexed Phase I (recruiting) NCT02609776

(CHRYSALIS)

Lazertinib + amivantamab +
pemetrexed Phase II (recruiting) NCT05299125

(AMIGO-1)

Lazertinib + amivantamab +
carboplatin/pemetrexed Phase III (recruiting) NCT04988295

(MARIPOSA-2)

Lazertinib + amivantamab +
bevacizumab Phase II (recruiting) NCT05601973

(AMAZE-Lung)

Osimertinib+ EMB-01 Phase I/II (not yet recruiting) NCT05498389

MET ADC Osimertinib or erlotinib +
telisotuzumab vedotin Phase I (active) NCT02099058

HER2 alterations
HER2 ADC Trastuzumab deruxtecan Phase II (active) NCT03505710

(DESTINY-Lung01)

HER2 mAb Osimertinib + necitumumab +
trastuzumab Phase I/II (recruiting) NCT04285671

HER3 alterations

HER3 ADC

Patritumab deruxtecan Phase II (recruiting) NCT04619004
(HERTHENA-Lung01)

Patritumab deruxtecan Phase III (recruiting) NCT05338970
(HERTHENA-Lung02)

Osimertinib + patritumab
deruxtecan Phase I (recruiting) NCT04676477

Bispecific Antibody
(EGFR-HER3) Osimertinib + izalontamab Phase II/III (recruiting) NCT05020769

EGFR-HER3 ADC (Bispecific
Antibody) Osimertinib + BL-B01D1 Phase II (not yet recruiting) NCT05880706

AXL alterations AXL TKI Osimertinib + bemcentinib Phase I/II (completed) NCT02424617

Alterations affecting
downstream molecules

BRAF inhibitor Dabrafenib + trametinib Phase II (recruiting) NCT04452877

mTOR inhibitor
Osimertinib + sapanisertib Phase I (recruiting) NCT02503722

Osimertinib + sapanisertib Phase I (not yet recruiting) NCT04479306

JAK inhibitor
Osimertinib + itacitinib Phase I/II (active) NCT02917993

Osimertinib + golidocitinib Phase I/II (completed) NCT03450330 (JACKPOT1)

MEK inhibitor
Osimertinib + selumetinib Phase I (active) NCT02143466 (TATTON)

Osimertinib + selumetinib Phase II (active) NCT03392246

PI3K inhibitor Osimertinib + TQ-B3525 Phase I/II (recruiting) NCT05284994

RET alterations RET TKI Osimertinib + selpercatinib Phase II (recruiting) NCT03944772
(ORCHARD)

ALK alterations ALK TKI Osimertinib + alectinib Phase II (recruiting) NCT03944772
(ORCHARD)

CDK4/6 amplification CDK 4/6 inhibitor
Osimertinib + G1738

(lerociclib) Phase I/II (completed) NCT03455829

Osimertinib + abemaciclib Phase II (unknown) NCT04545710



Cancers 2023, 15, 5009 13 of 23

Table 2. Cont.

Mechanism of Resistance Strategy to Overcome
Resistance Drugs Status Relevant Studies

Others

Bcl-2 inhbitor
Osimertinib + navitoclax Phase I (active) NCT02520778

Osimertinib + palcitoclax Phase I (recruiting) NCT04001777

VEGF mAb

Osimertinib + bevacizumab Phase II (active) NCT03133546
(BOOSTER)

Erlotinib + bevacizumab Approved by the EMA
in 2016

BELIEVE
JO25567

Osimertinib + bevacizumab Phase I/II (completed) NCT02803203

Osimertinib + bevacizumab Phase III (recruiting) NCT04181060

Osimertinib + bevacizumab Phase III (recruiting) NCT05104281

Osimertinib + bevacizumab Phase II (active) NCT02971501

VEGFR mAb

Osimertinib + ramucirumab Phase II (recruiting) NCT03909334

Osimertinib + ramucirumab
or necitumumab Phase I (completed) NCT02789345

Erlotinib + ramucirumab Approved by the FDA/EMA
in 2020 NCT02411448 (RELAY)

VEGFR-PDGFR-FGFR-cKIT
TKI Osimertinib + Anlotinib Phase I/II (recruiting) NCT04770688 (AUTOMAN)

Aurora Kinase A inhibitor

Osimertinib + VIC-1911 Phase I (recruiting) NCT05489731

Osimertinib + alisertib Phase I (not yet recruiting) NCT04479306

Osimertinib + LY3295668 Phase I/II (active) NCT05017025

MERTK and FLT3 TKI Osimertinib + MRX-2843 Phase I (recruiting) NCT04762199

ROS17TRK/ALK TKI Osimertinib + repotrectinib Phase I (recruiting) NCT04772235 (TOTEM)

The abbreviations used are: TKI, tyrosine kinase inhibitor; ADC, antibody-drug conjugate; mAb, monoclonal anti-
body; FDA, Food and Drug Administration of the United States of America; EMA, European Medicines Agency.
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EGFR dimerization is essential for EGF-induced activation of the wild-type kinase domain. Likewise,
EGFR dimerization is crucial for activation of the L858R mutant form of EGFR’s kinase domain.
However, all other mutant forms, including the different exon-19 deletion mutants (Del19), need no
dimer formation for kinase activation. Because EGFR-specific TKIs can inhibit all EGFR downstream
pathways, they usually confer sensitivity to the drugs. However, concomitant with blocking cell
proliferation and inducing cell death, the TKIs prompt emergence of drug-tolerant persister (DTP)
cells. Survival of the DTP cells is mediated by the insulin-like growth factor 1 (IGF1) pathway and
the downstream insulin receptor substrate (IRS). Similarly, adaptive mutagenesis can be promoted
by the GAS6-AXL pathway, which stimulates the SOS system (including inhibition of DNA repair
and enhancement of trans-lesion synthesis (TLS) of DNA by error prone polymerases). AXL is also
involved in another epigenetic program, the epithelial–mesenchymal transition (EMT). TLS and
inhibition of DNA repair contribute to drug resistance by means of de novo mutagenesis of EGFR or
downstream effectors like RAS and PI3K. Yet another therapy escape route is presented in the right
part of the scheme. This route indirectly engages HER3, a kinase-dead member of the EGFR family
that strongly activates the PI3K-AKT survival pathway. Constitutive activation of MET due to either
MET gene amplification or overexpression of MET’s ligand, the hepatocyte growth factor (HGF),
might occur in small populations of cancer cells, prior to treatment with TKIs. Similarly, constitutive
activation of HER2 due to either gene amplification, protein overexpression or the HER2 exon 20
mutation may serve as a resistance mechanism, probably due to the tendency of this receptor to form
heterodimers with HER3.

13.2. HER2 and HER3

EGFR family members, primarily HER2 and HER3, have repeatedly been implicated
in resistance to EGFR inhibitors. HER2 amplification is found in higher percentages in
resistant tumors treated with the first-generation TKIs, compared to those treated with osimer-
tinib [42,91,93,94]. We previously demonstrated that, when blocking EGFR, not only HER2
but also its kin, HER3, underwent up-regulation that resulted in hyperactivation of the ERK
pathway [143]. Accordingly, in animal models, triple combinations targeting EGFR (using
both a kinase inhibitor and a monoclonal antibody), as well as HER2 (using a monoclonal
antibody), showed efficacy in first- and in second-line treatment scenarios [144,145]. These
observations suggested that the combination approach may be a suitable way to overcome
resistance to EGFR inhibitors. In line with these findings, co-targeting EGFR and HER2 using
antibody-drug conjugates (ADCs) might represent an alternative strategy. Thus, the combina-
tion of osimertinib and the HER2-specific ADC trastuzumab emtansine showed efficacy in
overcoming resistance to osimertinib in EGFR-mutated lung cancer [146].

In similarity to HER2, HER3 expression is detected in a large fraction of NSCLC [147],
and in EGFR-mutated lung cancers the levels are higher when compared to EGFR-wild type
lung cancers [148]. In addition, HER3 overexpression has been observed in EGFR-mutated
lung cancer models treated with osimertinib [149,150]. Along this line, it has been reported
that resistance to EGFR TKIs can arise from HER3 via heterodimerization with other RTKs,
such as HER2 and MET [151]. In this context, the anti-HER3 antibody patritumab is able to
overcome TKI resistance mediated by neuregulin, the HER3 ligand, in EGFR-mutated lung
cancer models [152]. Moreover, the levels of soluble neuregulin in the serum of patients
with NSCLC appear to associate with better responses to patritumab [153]. In similarity to
therapies targeting HER2 in NSCLC, ADCs directed against HER3 were also developed.
Patritumab deruxtecan demonstrated both efficacy and safety in a phase I trial involving
patients with EGFR-mutated lung cancer that progressed after TKI treatment [154]. Based
on this encouraging result, the phase 3 trial, HERTHENA-Lung02, currently examines pa-
tritumab deruxtecan versus platinum-based chemotherapy in patients with EGFR-mutated
NSCLC after failure of EGFR TKIs (NCT05338970).
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13.3. Activation of AXL

AXL is overexpressed in several types of tumors, including lung cancer, and this feature
is correlated with poor prognosis [155]. Additionally, AXL-positive tumors are more frequent
among NSCLC tumors harboring mutant EGFR, compared to tumors expressing wild-type
EGFR [156]. Overexpression of AXL has been found in EGFR-mutated lung cancer models
that acquired resistance to the first-, second- or third-generation TKIs [45,110,124]. Of note,
this receptor seems to be involved in the generation of DTPs, following treatment with
EGFR TKIs [110,124]. Moreover, AXL is up-regulated in samples obtained from patients
with EGFR-mutated NSCLC, after they developed resistance to TKIs [45]. In this respect,
combination therapies involving EGFR TKIs and an inhibitor of AXL (either an antibody or
a small molecule) were able to prevent resistance to EGFR TKIs in EGFR-mutated NSCLC
models [123,157]. Consistent with these observations, several AXL inhibitors are being tested
in clinical studies, in combination with EGFR TKIs [158].

13.4. IGF1-Receptor (IGF1R)

EGFR inhibition often leads to compensatory activation of the IGF1R pathway [159,160],
with a potential benefit arising from the inhibition of this receptor [160]. In this regard, IGF1R
is crucial for the establishment of DTPs following treatment of EGFR-mutated lung cancer cells
with an EGFR-specific TKI [108,161]. Importantly, inhibition of IGF1R completely eliminates
the ability of EGFR-mutated cancer cells to generate DTPs [108]. Thus, combinations of EGFR
and IGF1R inhibitors might prevent the onset of resistance. Indeed, blocking both EGFR and
IGF1R was able to inhibit EGFR-mutated lung xenografts [161]. Moreover, the insulin receptor
substrate 1 (IRS1) has been shown to be crucial for the generation of DTPs, and combinations
of EGFR and IRS1 inhibitors were highly effective in models of EGFR-mutated lung cancer
that were examined in animals [162].

13.5. Fibroblast Growth Factor Receptors (FGFR)

Oncogenic fusions involving the fibroblast growth factor receptor (FGFR) have been
reported to confer resistance to osimertinib [91,95]. In line with this, whole-genome CRISPR
screening identified FGFR1 as the top target promoting survival of mesenchymal EGFR
mutant cancers. Subsequently, testing combinations of EGFR and FGFR inhibitors revealed
that the combination was able to overcome EMT-dependent resistance to EGFR-specific
TKIs in models of EGFR-mutated lung cancer [163].

14. Conclusions

Although the two major oncogenes that drive NSCLC, KRAS and EGFR, activate
largely overlapping biochemical pathways, their co-expression in tumors is very rare [164].
This mutual exclusivity is likely due to the toxic effects of their co-expression. In addition,
the main carcinogen driving KRAS mutations is tobacco smoke, but the identity of the
carcinogen(s) responsible for EGFR mutations is less characterized. Hence, it is predictable
that prevention efforts will eventually decrease the absolute incidence of KRAS mutations,
thereby increase the relative fraction of patients with EGFR-mutated NSCLC. Moreover,
because KRAS+ tumors, better than EGFR+ tumors, respond to immune checkpoint in-
hibitors [165], the issue of resistance to EGFR inhibitors will likely remain one of the major
challenges of medical oncology. Despite this gloomy scenario, the approval of osimertinib,
the pioneer third-generation inhibitor, and its later application in first-line settings, promise
that improved chemical designs, along with better understanding of the complex cascade
that precedes emergence of new mutations, will enhance the success of future attempts to
inhibit resistance to the TKIs. Unlike KRAS, which resides in the cytoplasm, the transmem-
brane localization of EGFR might become a key for effective targeting of the mutant forms
using synthetic degraders, especially lysosome-targeting PROTACs [166]. In the same vein,
the many lines of evidence linking up-regulation of compensatory RTKs (e.g., HER3 and
HER2) and resistance to TKIs offer combinations of antibodies, for example cetuximab
(anti-EGFR) plus trastuzumab (anti-HER2), as potential resistance-nullifying approaches.
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Likewise, the clinical approval of amivantamab, a bispecific antibody co-targeting MET
and EGFR [138], is yet another source of hope that overcoming resistance to EGFR-specific
TKIs is within reach.
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