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Simple Summary: Despite its involvement in several human pathophysiological processes, the
cellular prion protein (PrPC) remains enigmatic. During the last ten years, PrPC has also been
reported to be implicated in several human cancers, the molecular mechanisms of which are under
investigation. In some tumors, elevated expression of PrPC protein is associated with poor patient
prognosis. At the cellular level, high PrPC expression in tumor cells is associated with the acquisition
of stemness1-like characteristics, metastatic and invasive process, and resistance to chemotherapy.
This review explores PrPC’s expression in different types of cancer and addresses its potential as a
target for their treatment.

Abstract: The cellular prion protein (PrPC) is a glycoprotein anchored to the cell surface by glyco-
sylphosphatidylinositol (GPI). PrPC is expressed both in the brain and in peripheral tissues. Investi-
gations on PrPC’s functions revealed its direct involvement in neurodegenerative and prion diseases,
as well as in various physiological processes such as anti-oxidative functions, copper homeostasis,
trans-membrane signaling, and cell adhesion. Recent findings have revealed the ectopic expression
of PrPC in various cancers including gastric, melanoma, breast, colorectal, pancreatic, as well as
rare cancers, where PrPC promotes cellular migration and invasion, tumor growth, and metastasis.
Through its downstream signaling, PrPC has also been reported to be involved in resistance to
chemotherapy and tumor cell apoptosis. This review summarizes the variance of expression of PrPC

in different types of cancers and discusses its roles in their development and progression, as well as
its use as a potential target to treat such cancers.

Keywords: prion protein (PrPC); cancer; drug resistance; therapeutic target

1. Introduction
1.1. Background

Cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored glyco-
protein expressed on the cell surface in various organs and tissues [1]. The PrPC protein is
encoded by the PRNP gene that is localized on Chromosome 20 and 2 in humans and in
mice, respectively [1]. PrPC is first synthesized as a pre-pro-protein with a leader peptide
at the N-terminal tail, and a GPI anchor signaling peptide (GPI-PSS) at the C-terminal tail.
The leader peptide guides the pre-pro-PrPC into the endoplasmic reticulum (ER) where it
is cleaved to generate the pro-PrPC (Figure 1). Like other GPI-anchored proteins, pro-PrPC

is then translocated from the ER to the Golgi with the help of post-GPI attachment proteins
1 and 5 (PGAP1 and PGAP5) [2,3]. In this compartment, PrPC becomes a mature protein by
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undergoing further processes such as N-linked glycosylation, GPI-PSS removal, and addi-
tion of the pre-assembled GPI anchor [4,5] (Figure 1). PrPC is translocated from the Golgi
to the outer leaflet of the plasma membrane where it is inserted via its GPI domain [4,5]
(Figure 1).
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Figure 1. Cellular biosynthetic pathway of PrPC protein. PrPC is synthetized as a pro-pre-protein
in the endoplasmic reticulum compartment before trafficking to the Golgi apparatus and plasma
membrane where it is anchored as a glycosylphosphatidylinositol (GPI) protein.

PrPC contains a flexible N-terminal domain (Nt) located between residues 23 and
124. It comprises five repetitive motifs of eight amino acids (PHGGGWGQ) that exhibit a
high affinity for copper ions (Cu2+). This binding takes place within the HGGGW residues
that showed, in vitro, more affinity for Cu2+ than for Cu+ or to any other metal ion [6]
(Figures 1 and 2). PrPC also exhibits a globular C-terminal domain (Ct), anchored to the
plasma membrane, of about 100 amino acids, from residues 125 to 228. This domain is
composed of three α-helices, corresponding to amino acids 144–154, 173–194, and 200–228,
interspersed by two antiparallel β sheets of residues 128–131 and 161–164 (Figure 2).
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of human PrPC showing important protein domains.

The third α helix and the second β sheet are connected by a flexible loop. There
are two N-glycosylation sites (residues 183 and 199), which might not be partially or
fully glycosylated, resulting in three distinct forms of the PrPC: the non-glycosylated
(~25 kDa), the mono-glycosylated (~25 to 30 kDa) and the bi-glycosylated forms (~35 kDa),
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respectively. PrPC is also characterized by the presence of a single disulfide bridge between
the two cysteine residues 179 and 214, which allows the link between helix 2 and 3 and
serves to stabilize the tertiary structure of the PrPC (Figure 2). Between the Nt and Ct
domains (residues 110 to 135), there is a strongly conserved hydrophobic region called the
TMD (transmembrane domain). The function of this region is not yet known, but seems
to be involved in the conversion of PrPC to a pathogenic form [7]. PrPC exhibits a highly
conserved structure in mammals regardless of the degree of the sequence’s homology.

1.2. PrPC Expression and Functions

The expression of PrPC begins at embryogenesis [1]. The highest level of PrPC ex-
pression was found in the central and peripheral nervous systems [1]. In adults, strong
expressions were detected in the brain, spinal cord, neurons, and glial cells [8,9]. PrPC

expression was also ubiquitously detected in various cells of the peripheral tissues [10–13].
The interest in the study of PrPC was mainly related to its incrimination in the patho-

genesis of the neurodegenerative disorders known as spongiform encephalopathies (SE) or
prion diseases [14,15].

The SE was mainly associated with bovines (BES), and commonly referred to as mad
cow disease, which refers to an untreatable and inevitably fatal neurodegenerative illness
that affects cattle [16]. BES is characterized by the aggregation of an abnormal beta-sheet
rich isoform of the PrPC protein called scrapie (PrPSc) [14,15]. In humans, the corresponding
form of BES is Creutzfeldt-Jakob’s Disease (CJD), which is also characterized as a brain
degenerative disorder [17]. Fatal familial insomnia (FFI) stands as an exceptionally rare
prion disease that induces neurodegeneration and primarily manifests through insomnia,
making it incredibly challenging to sleep. The predominant instances of this condition
are hereditary in nature, resulting from a mutation in the PRNP gene, while sporadic
cases make up the remaining occurrences [18]. Scrapie gives rise to a lethal degenera-
tive ailment that targets the nervous systems of goats and sheep. Classified as one of
several transmissible spongiform encephalopathies (TSEs), it is believed to stem from
prions [19]. Numerous other prion diseases affect both animals and humans, including
kuru, Gerstmann–Sträussler–Scheinker syndrome, and chronic wasting disease. These
disorders are characterized by prolonged incubation periods, abnormal behavior, and
rapid deterioration of brain function. Unfortunately, they always culminate in fatality and
currently lack any known cure.

In addition to its involvement in prion diseases, several studies have attributed
plenty of physiological roles to PrPC including anti/pro-apoptosis, metal homeostasis,
anti-oxidative damage, cell adhesion and migration, signaling, immune modulation, cell
differentiation, and epithelial junctions [20–27]. Yet, the PrPC physiological function is still
enigmatic, since no obvious phenotype was observed in PrPC knockout mice [28,29].

In the last decade, PrPC has also been shown to play a significant role in cancer
biology. PrPC has been found to be upregulated or ectopically expressed in different types
of cancer tissues, such as hepatocellular carcinoma, gastric cancer, melanoma, breast cancer,
colorectal cancer, pancreatic ductal adenocarcinoma, prostate cancer, osteosarcoma, and
glioblastoma [30–39]. The increased expression of PrPC appears to play a crucial role in
cancer growth, development, differentiation, invasion, migration, metastasis, chemotherapy
resistance, and resistance to apoptosis [30–37]. The growing body of evidence linking PrPC

to cancer has opened up new avenues for cancer research [40,41].
The interaction of PrPC with various proteins and receptors leads to the activation

of intracellular signaling pathways that promote tumorigenesis [42,43]. The differential
expression of PrPC in various types of cancer, its involvement in protein–protein interactions
and its activation of downstream pathways confers to this protein a likely role in cancer
(Table 1).
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Table 1. Identified roles of PrPC protein in different types of human cancers.

Cancer Type Role of PrPC References

Gastric Cancer
Promotion of multidrug resistance [31]

Enhancement of adhesive and invasive abilities [33,34,36,44]

Melanoma
Promotion of cancer migration [21,45–48]

Disruption of Filamin A [21,45–48]

Breast Cancer
Resistance to apoptosis and drug treatment [30,49–55]

Promotion of invasion and migration [56–58]

Colorectal Cancer

Promotion of tumor growth via Warburg effect [59–61]

Enhancement of metastasis [62,63]

Confer resistance to anti-cancer drugs [64–67]

Prostate Cancer Potential involvement in tumor development [68]

Osteosarcoma Association with tumor development [69]

Glioblastoma Enhancement of glioma stem cell proliferation [70,71]

Lung Cancer Possible involvement in tumorigenesis [72,73]

While much progress has been made in the last few years, there is still much to do to
fully understand the role of PrPC in cancer and to develop effective therapies targeting this
protein. One promising area of research is the development of new compounds that can
directly reduce the levels of expression of PrPC in cancer cells [74].

These compounds have shown great potential in preclinical studies, and could rep-
resent a new class of anti-cancer agents. Additionally, the development of monoclonal
antibodies against PrPC and PrPC-specific T cells represents exciting new approaches for
cancer immunotherapy [75].

2. Aims

While much remains to be done, the growing body of evidence suggests that PrPC is a
promising target for cancer treatment and that sustained research in this area is warranted.
Understanding the mechanisms by which PrPC contributes to cancer progression is of
major interest that may help to develop new and more effective therapies targeting this
protein. With continued effort and innovation, PrPC could become an important target for
cancer treatment in the years to come.

Our review aims to create a summary of the specific roles of PrPC in each type of cancer
and discuss the underlying mechanisms that may shed light on potential cancer-targeted
therapy involving this protein.

3. PrPC in Human Cancers

3.1. PrPC and Gastric Cancer

The expression of PrPC has been reported to be highly elevated in gastric cancer
tissue, indicating its potential involvement in the pathogenesis of this disease [31]. More-
over, PrPC has been shown to promote multidrug resistance in gastric cancer cells by
inhibiting apoptosis [31]. Due to its ability to bind to certain extracellular matrix and
adhesive proteins, PrPC exhibits an adhesive feature, indicating its involvement in cell
adhesion [33,37,76]. A comparison of the PrPC expression in primary and metastatic sites
was conducted in patients with metastatic and non-metastatic gastric cancer [34]. Although
no significant difference in the PrPC expression was observed between the primary and
metastatic sites, a higher staining score for PrPC was observed in the metastatic compared
to the non-metastatic cancers, indicating a potential correlation between the PrPC expres-
sion and gastric cancer aggressiveness. Moreover, the expression of the PrPC protein has
been shown to enhance the adhesive, invasive, and metastatic abilities of cancer cells
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through the activation of the ERK1/2 signaling pathway and transactivation of MMP11, a
metalloproteinase responsible for extracellular matrix (ECM) degradation in cancer [34,36].
In vitro invasion assays showed a strong invasiveness profile of two gastric cancer cell lines
that constitutively express PrPC (SGC7901 and MKN45), confirming the role of PrPC in the
invasion process. Additionally, using a tail vein metastasis model, these cell lines exhibited
metastatic capacity to the liver and other organs [34]. To validate the role of PrPC in the
development of gastric cancer, its expression was downregulated using siRNA vectors
named PrPsi1. The knockdown of PrPC resulted in a decrease in the adhesive and invasive
abilities of both SGC7901 and MKN45 cells, and to a reduction in the metastasis process
in vivo [34]. Mechanistically, the metastatic potential of PrPC-expressing gastric cancer
cells is mediated by MMP11 [36,44]. Inhibition of MMP11 using an anti-MMP11 antibody
decreased the number of invasive cells in a concentration-dependent manner [34]. Further
studies revealed that the NH2-terminal region of PrPC was critical for conferring invasive
properties to gastric cancer cells, by using the ERK1/2 signaling pathway [34].

Molecular studies using three different PrPC constructs, NH2-terminal deleted (PrP∆N),
Octarepeat-copper binding region (PrP∆OR), and C-terminal deleted (PrP∆C), confirmed
the critical role of the N-terminal region of the PrPC protein in promoting the invasive
properties of gastric cancer cells [34,77]. Therefore, these findings suggest that PrPC plays
a significant role in promoting the adhesive, invasive, and metastatic abilities of gastric
cancer cells and that targeting PrPC or its downstream effectors may represent a potential
therapeutic strategy for gastric cancer.

3.2. PrPC and Melanoma

Previous studies have shown that PrPC interacts with Filamin A (FLNA) to promote
cancer progression [47]. PrPC-silenced FLNA-deficient M2 melanoma cells exhibited de-
creased M2 cell migration in wound healing assays [21]. This was further reversed by
reintroducing PrPC in PRNP-null M2 cells [46]. Despite the fact that PrPC enhances cell
migration and alters the cell cytoskeleton organization through FLNA disruption, M2 cells
do not express FLNA. Indeed, the effect of PRNP deletion on cell migration was shown to be
associated with F-actin protein. The latter, in wild-type M2 cells that are characterized with
a higher mobility, shows an expression level which varies according to that of PrPC [46].
These findings demonstrate that PrPC negatively regulates F-actin without binding to
FLNA. To determine the pathway through which PrPC affects F-actin, Hsp27 was assessed
based on its importance for cell motility and its ability to reduce actin aggregation [78,79].
The levels and phosphorylation of Hsp27 were evaluated in the presence or absence of
PrPC. There was a significant decrease in phosphorylated Hsp27 at Ser82 when PRNP was
deleted, and P-Hsp27 levels were rescued when PRNP was re-expressed in PRNP-null
M2 cells [46]. To identify the kinase responsible for this observation, the inhibition of
P38MAPK, Akt, PKD, PKA, and PKC was assessed, as these kinases have been reported
to act on Hsp27 [80–84]. Only Akt inhibition decreased the P-Hsp27 levels that were also
decreased when PRNP was silenced. The Akt expression was rescued when PrPC was re-
expressed. The binding between Akt and Hsp27 was confirmed by co-immunoprecipitation
and co-purification in the presence of PrPC and was higher in comparison to their binding
in PrPC-null M2 cells [46]. These findings support the correlation between PrPC and Akt
levels, which will disturb the downstream Akt/Hsp27 interaction, inducing the regulation
of actin polymerization and cell migration. PrPC interaction with FLNA also promotes
FLNA interaction with β1 integrin, contributing to melanomagenesis [45,48]. A7 cells,
which express FLNA, exhibited higher spreading and migration ability compared to M2
cells that do not express FLNA [85]. PrPC exists as Pro- PrPC in both A7 and M2 cells,
retaining its glycosylphosphatidylinositol anchor peptide signal sequence (GPI-PSS) with
an FLNA binding motif. Reducing the PrPC expression in A7 cells altered the distribution
of FLNA and the organization of actin, diminishing cell migration. Integrin β1 also binds
FLNA as an independent complex from PrPC-FLNA, but reducing the PrPC expression
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caused a decrease in FLNA-Integrin β1 binding. Therefore, in A7 cells, FLNA interacts
with Integrin β1, which is enhanced by Pro-PrPC, leading to spreading and migration.

The in situ detection of Pro-PrPC in melanoma and its increased expression in invasive
melanoma indicates that PrPC is directly involved in the development of this cancer [45,48].

3.3. PrPC and Breast Cancer

The resistance of cancer cells to apoptosis or drug treatment is one of the main features
of tumorigenesis. Epigenetic modifications [86], ectopic gene expression [50,87,88], and
oncogene overexpression can lead to aberrant expression of anti- or pro-apoptotic proteins.
In breast cancer, PrPC has been reported to contribute to cancer resistance to apoptosis
and drug treatment. Chemotherapy of TNF-resistant breast carcinoma cells was effective
in patients who were PrPC-negative. However, PrPC overexpression in estrogen receptor
(ER)-negative breast cancer patients was linked to decreased sensitivity to chemotherapy,
indicating that PrPC could potentially be used as a predictor of adjuvant chemotherapy
benefit in ER-negative patients [50].

Overexpression of PrPC has also been shown to cause resistance to TRAIL (Tumor
necrosis factor-Related Apoptosis Inducing Ligand)-induced apoptosis in Adriamycin
(MCF7/ADR) [49,51–55]. The elevated expression of PrPC in MCF7/ADR and 2101 cell
lines compared to MCF7 cells correlates with the breast carcinoma cells’ resistance to
Adriamycin and TRAIL-induced cell death [89].

Nevertheless, the knockdown of PrPC using the siRNA-PrPC strategy in resistant cell
lines only restores sensitivity to TRAIL-mediated apoptosis by up to 25% in MCF7/ADR
and 60% in 2101 cells. This is achieved through the enhancement of Bid cleavage and
caspase-3 processing, concomitantly with Mcl-1 downregulation and activation of pro-
apoptotic Bax through the downregulation of Bcl-2 [89]. In addition to its role in acquiring
resistance, PrPC has been shown to be a crucial factor for invasion and migration of
MCF7 breast cancer cells. PrPC overexpression increases matrix metalloprotease-9 (MMP-9)
expression by enhancing the association of NF-κB with the promoter of the MMP-9 gene
and ERK signaling, similar to that observed in gastric cancer [57] (Figure 3). Furthermore,
PrPC physically associates with P-glycoprotein (P-gp), an ATP-binding cassette (ABC)
drug efflux pump, leading to higher invasive capacity and advanced malignancies in
MCF7/ADR cells treated with paclitaxel [58] (Figure 3). Indeed, paclitaxel had no effect
on the invasion of P-gp (+)/PrPC (−) and P-gp (−)/PrPC (+) cells, confirming that this
drug promotes the invasion in multidrug-resistant (MDR) breast cancer cells through a
mechanism that involves the interaction of P-gp with PrPC [58] (Figure 3).

3.4. PrPC and Colorectal Cancer

Colorectal adenocarcinoma (CRC) cells exhibit high levels of expression of PrPC com-
pared to normal colorectal cells. PrPC plays a crucial role in tumor growth and survival by
promoting the Warburg effect, which involves increased reliance on glucose metabolism,
in the presence of oxygen. This process ensures rapid proliferation and survival of cancer
cells [59,61]. Through the Fyn-HIF-2α pathway, PrPC increases the expression of GLUT-1,
the main glucose transporter, thereby enhancing the dependency of CRC cells on the gly-
colytic pathway for tumor growth (Figure 3). In contrast, the depletion of PrPC suppresses
glucose utilization by suppressing GLUT-1 expression, leading to the inhibition of tumor
growth both in vitro and in vivo [60]. Cell surface proteomics studies have identified the
differential expression of GLUT-1 and PrPC as potential biomarkers of colorectal adenoma
to carcinoma progression. Hence, these proteins can serve as potential targets for the
emerging molecular imaging modalities [90]. Functional assays have revealed a molecular
mechanism that links the levels of PrPC expression to the regulation of CRC metastasis.
Ectopic PrPC expression was found to promote the in vitro metastatic potential of CRC
cells, while inhibition of PrPC significantly reduced cancer cell motility [63]. The pathway
involving PrPC-mediated upregulation of SATB1 is a matrix attachment region-binding
protein that regulates higher-order chromatin organization and tissue-specific gene expres-
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sion. This pathway uses a novel PrPC-dependent pathway that involves the activation of
Fyn-SP1-SATB1 complex protein. The depletion of PrPC abolished the activity of Fyn and
SP1, resulting in reduced SATB1 expression [63]. PrPC has also been found to increase the
growth of LS-174T colon cancer cells and promote their invasion and migration abilities [56].
Additionally, cancer stem cells expressing CD44+/PrPC+ exhibited a higher liver metastatic
capacity compared to CD44+/PrPC- stem cells from CRC, emphasizing the contribution
of PrPC to cancer metastasis [62]. Recently, PrPC was shown to interact with c-Met in
colorectal cancer cells to regulate cancer stem cell properties [91].
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In colorectal and pancreatic ductal adenocarcinoma (PDAC), the overexpression of
PrPC has been shown to confer resistance to anti-cancer drugs, including doxorubicin,
etoposide, and vincristine sulfate [64–67]. In LS-174T cells overexpressing PrPC, a higher
cell viability and less apoptosis were observed compared to non-transfected cells. The
PrPC anti-apoptotic effect is thought to be mediated through the upregulation of the three
proteins that are involved in the inhibition of apoptotic pathway. These include the inhibitor
of apoptosis proteins (IAPs)-survivin, the X-linked inhibitor of apoptosis protein (XIAP),
and the cellular inhibitor of apoptosis protein-1 (cIAP-1) [56] (Figure 3). On the other hand,
the silencing of PrPC has been shown to enhance the anti-cancer effect of fucoidan in HT29
colon cancer cells [67].

Fucoidan (a sulfated polysaccharide with anti-inflammatory and anti-cancer prop-
erties) treatment led to reduced PrPC expression, which results in an anti-proliferative
and pro-apoptotic effect. When PrPC expression was further downregulated using siRNA,
in addition to fucoidan treatment, a further increase in apoptotic cells and a significant
reduction in cell migration were observed [67].

At the molecular level, it was proposed that the PrPC involvement in PDAC is medi-
ated upon its interaction with filamin A (FLNA). This interaction affects the cytoskeleton
organization and the expression of different signaling proteins, triggering the cellular pro-
liferation and invasiveness, leading to overall tumor growth [64,66] (Figure 3). In addition,
the expression of PrPC in PDAC has been associated with a poor prognosis and reduced pa-
tient survival. One study found that the risk of death was four times higher (HR = 3.8; 95%
CI: 2.2, 6.5) in 108 PDAC cases with PrPC+ tumors (median survival 5 months) compared
to the 34 cases with PrPC- tumors (median survival 20 months), indicating that PrPC may
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serve as a potential prognostic biomarker of PDAC [67]. Hence, targeting PrPC could be a
potential therapeutic approach to overcoming drug resistance and improve the efficacy of
anti-cancer treatment.

4. The Potential Diagnostic and Therapeutic Value of PrPC in Different Types of Cancer

PrPC expression has been investigated in various types of cancer, including bladder
and prostate cancer, osteosarcoma, and glioblastoma [41,68–70,92]. In prostate spheroids,
PrPC expression was inversely correlated with the spheroid diameter and related to the
intracellular redox state, potentially by contributing to anti-oxidative defense. Moreover,
PrPC was found to be overexpressed in 90% of prostate cancer biopsies, although its
diagnostic or prognostic value remains unknown [68]. In osteosarcoma, the most common
bone malignancy, PrPC was differentially overexpressed and appeared to be associated with
tumor development and aggressiveness, as well as a negative regulator of apoptosis [69].
In glioblastoma, a CNS solid tumor, PrPC was highly expressed and found to contribute to
tumorigenesis through its interaction with the stress-inducible protein-1 STI1 [70].

PrPC expression was directly correlated with the proliferation of glioma stem cells
(GSC), and its downregulation reduced GSC stemness, cell growth, clonogenicity, and
spherogenicity, as well as the ability to develop tumors in animal models. The results imply
that PrPC plays a crucial role in preserving GSC stemness [93,94].

Hence, blocking its activity could enhance the sensitivity of cancer cells to chemother-
apy [70,95]. Interestingly, PrPC expression was found to increase the sensitivity to dox-
orubicin in MDA-MB-435 breast cancer cells, unlike colorectal cancer, suggesting a tumor
type-specific mechanism [71].

Recent studies have also shown that PrPC is expressed in human lung epithelial
cells and is involved in anti-oxidative defense and the maintenance of tight junctions in
the epithelial barrier [72]. Furthermore, PrPC has been reported to be implicated in the
invasiveness and metastasis of lung cancer [73], highlighting its crucial role in both lung
physiology and lung tumorigenesis, as observed in other types of cancer.

Given the well-known association between smoking and lung cancer, it would be
interesting to investigate the effect of nicotine on the levels of expression of PrPC in lung
epithelial cells, and to determine how smoking may affect PrPC expression. Hence, further
studies are required to decipher the contribution of PrPC to lung tumorigenesis.

5. Targeting PrPC Interactions in Cancer: New Insights and Potential Strategies
(Figure 4)

PrPC plays a central role as a scaffold protein by forming multiprotein complexes with
receptors or extracellular molecules. These interactions may contribute to the activation of
downstream signal pathways that control numerous biological functions, including cancer
stem cell self-renewal, the central entity of tumor maintenance and dissemination [41,96].
One potential strategy for targeting PrPC in cancer is to disrupt its interactions with other
molecules known to be involved in cancer progression [95]. For example, PrPC has been
shown to interact with several cell surface receptors, including integrins and laminin
receptors. Importantly, these proteins have been reported to play important roles in cancer
cell adhesion, migration, and invasion [68]. Inhibiting these interactions could potentially
prevent cancer cells from spreading and invading surrounding tissues. In breast cancer,
PrPC interaction with P-gp was associated with drug resistance, higher aggressiveness,
invasion, and migration. PrPC also interfered in neo-adjuvant chemotherapy response in
this cancer [96]. In addition, the PrPC-STI1 interaction has been shown to be involved in
many tumors, including glioblastoma [96]. In PDAC and melanomas, pro-PrPC has been
shown to interact with FLNA to promote tumorigenesis and was associated with worse
prognoses. These results strongly suggested that inhibition of these interactions by specific
compounds could constitute a promising therapy to treat cancer [97]. Additionally, in some
categories of breast cancer that are resistant to conventional treatment, ER stress increased
the PrPC expression, contributing to their survival. Therefore, targeting ER stress response
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and PrPC may provide synergistic effects [98]. PrPC silencing has been shown to sensitize
breast cancer cell lines to TRAIL-, Bax, TNF-α, and adjuvant chemotherapy-mediated cell
death, which can also be considered as alternative treatments in breast cancer [96] (Figure 3).
The direct targeting of PrPC protein, may also be considered as an interesting alternative.
Several compounds such as small molecules, peptides, and siRNA, have been identified as
reducers of PrPC expression in cancer cells [74]. These compounds have shown promising
results in preclinical studies and may represent a new class of anti-cancer agents (Figure 4).
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Figure 4. Potential therapeutic strategies in PrPC-associated cancer. RISC; RNA-induced silencing
complex, SiRNA; small interfering RNA, dsRNA; double-stranded RNA. Several small molecules,
including Quinacrine, Chlorpromazine, Amphotericin B, Pentosan polysulfate, and Suramin, have
been identified as potential inhibitors of PrPC.

Finally, immunotherapy approaches targeting PrPC have also been explored [99].
For example, monoclonal antibodies against PrPC have been shown to inhibit cancer cell
proliferation and migration in vitro and in vivo [99]. Additionally, PrPC-specific T cells
have been generated and have been shown to recognize and kill PrPC-expressing cancer
cells. Overall, these studies strongly suggest that the targeting of PrPC interactions with
tumor-associated proteins may represent a promising new avenue for cancer therapy.

While much more research is needed to fully understand the role of PrPC in cancer
development and progression and to develop effective therapies targeting this protein, the
growing body of evidence suggests that PrPC is a promising target for cancer treatment [100]
(Figure 4).

6. Conclusions

Despite the lack of solid evidence for the precise physiological role of PrPC, its in-
volvement in human diseases, especially cancer, is now well-established. A growing body
of evidence linking PrPC to cancer has opened up new avenues for cancer research and
treatment.

Through this review, we shed light on the role of PrPC in numerous types of cancers
where it is highly expressed. In addition, we believe that PrPC may contribute to tumori-
genic processes by regulating tumor cell invasion, migration, and metastasis. PrPC also
appears to exhibit anti-apoptotic and drug resistance effects.

At the therapeutic level, one promising area of research is the development of new
drugs that can directly reduce the PrPC expression in cancer cells or target its interactions
with other molecules involved in cancer progression. Some of these drugs have shown
great potential in preclinical studies, and could represent a new class of anti-cancer agents.
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Moreover, the development of monoclonal antibodies against PrPC and PrPC-specific T
cells represents exciting new approaches for cancer immunotherapy.

Future research should focus on a better understanding of the mechanisms by which
PrPC contributes to cancer progression, as well as on developing new and more effective
therapies targeting this protein. With continued effort and innovation, PrPC could become
an important target for cancer treatment in the years to come.

In conclusion, the discovery of the link between PrPC and the etiology of cancer will
open up exciting new avenues for cancer research and therapy. While much remains to be
done, the growing body of evidence suggests that PrPC is a promising target for cancer
treatment. Hence, sustained research in this area is warranted.
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Abbreviations

ABC ATP-Binding Cassette
Akt Protein Kinase B
ATP Adenosine Triphosphate
BES Bovine encephalopathies spongiform
CD44 Cluster of Differentiation 44
cIAP-1 Cellular Inhibitor of Apoptosis Protein-1
CJD Creutzfeldt-Jakob’s Disease
CNS Central Nervous System
CRC Colorectal Cancer
CSC Cancer Stem Cells
Ct C-terminal domain
Cu2+ Copper ions
dsRNA Double-Stranded RNA
ECM Extracellular Matrix
ER Endoplasmic Reticulum
ERK1/2 Extracellular Signal-Regulated Kinases 1 and 2
FFI Fatal Familial Insomnia
FLNA Filamin A
Fyn Proto-oncogene tyrosine-protein kinase Fyn
GA Golgi Apparatus
GLUT-1 Glucose Transporter 1
GPI Glycosylphosphatidylinositol
GSC Glioma Stem Cells
HIF-2α Hypoxia-Inducible Factor-2 Alpha
HSP27 Heat Shock Protein 27
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HT29 A colorectal carcinoma cell line
IAPs Inhibitor of Apoptosis Proteins
LS-174T A colorectal adenocarcinoma cell line
MCF7/ADR MCF7 Adriamycin-Resistant Cells
MDA-MB-435 A breast cancer cell line
MDR Multidrug Resistance
MKN45 A gastric cancer cell line
MMP Matrix Metalloprotease
Nt N-terminal domain
P38MAPK p38 Mitogen-Activated Protein Kinase
PDAC Pancreatic Ductal Adenocarcinoma
PGAP1/PGAP5 Post-GPI Attachment Proteins 1 and 5
P-gp P-glycoprotein
PKA Protein Kinase A
PKD Protein Kinase D
PRNP Prion Protein Gene
PrPC Cellular Prion Protein
RISC RNA-Induced Silencing Complex
SATB1 Special AT-Rich Sequence-Binding Protein 1
SE spongiform encephalopathies
Ser82 Serine 82
SGC7901 A gastric cancer cell line
siRNA Small Interfering RNA
Sp1 Specificity Protein 1
TMD Trans Membrane Domain
TNF-α Tumor Necrosis Factor Alpha
TRAIL Tumor Necrosis Factor-Related Apoptosis Inducing Ligand
TSE Transmissible spongiform encephalopathies
XIAP X-Linked Inhibitor of Apoptosis
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