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Simple Summary: Advances in our understanding of human brain structure and function have 

been facilitated through improved mapping of the structural and functional neural connections 

throughout the human brain ‘connectome’. By utilizing different statistical techniques and non-in-

vasive imaging modalities to capture the structural and functional properties of the brain connec-

tome, such as with diffusion or functional MRI, the brain can also be represented as a graph of 

individual nodes which are connected throughout a network. Previously, the neurosurgical com-

munity has often relied on traditional maps of the human brain to identify highly functional regions, 

often called ‘eloquent’, but these regions differ between patients and do not always provide an ad-

equate guide to reliably prevent functional deficits. Through graphically representing the brain, 

mathematical graph theory approaches may be able to provide additional information on important 

inter-individual network properties and functionally eloquent brain regions. This review attempts 

to outline and review the applicability of graph theory for neurosurgery. 

Abstract: Improving patient safety and preserving eloquent brain are crucial in neurosurgery. Since 

there is significant clinical variability in post-operative lesions suffered by patients who undergo 

surgery in the same areas deemed compensable, there is an unknown degree of inter-individual 

variability in brain ‘eloquence’. Advances in connectomic mapping efforts through diffusion trac-

tography allow for utilization of non-invasive imaging and statistical modeling to graphically rep-

resent the brain. Extending the definition of brain eloquence to graph theory measures of hubness 

and centrality may help to improve our understanding of individual variability in brain eloquence 

and lesion responses. While functional deficits cannot be immediately determined intra-operatively, 

there has been potential shown by emerging technologies in mapping of hub nodes as an add-on to 

existing surgical navigation modalities to improve individual surgical outcomes. This review aims 

to outline and review current research surrounding novel graph theoretical concepts of hubness, 

centrality, and eloquence and specifically its relevance to brain mapping for pre-operative planning 

and intra-operative navigation in neurosurgery.  
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1. Introduction 

Preserving brain function and maximizing quality of life are fundamental goals in 

neurosurgery while increasing the extent of resection. Advances in surgical methods, in-

cluding intraoperative mapping, awake surgery, and neurophysiology have helped min-

imize post-surgical neurological deficits and improve patient outcomes [1,2]. Generally, 

these techniques attempt to identify brain areas which are more readily associated with 

observable functions to inform the surgeon of which areas can be cut safely. Collectively 

referred to as “eloquent” brain, previous attempts to delineate these regions preopera-

tively through the use of imaging techniques such as functional magnetic resonance im-

aging (fMRI) have not been widely implemented, potentially due to unavailability of pipe-

lines for clinical translation [3,4].  

The application of graph theory to the brain is a promising research area which has 

potential to further improve patient safety [5,6]. Combining non-invasive imaging with 

statistical modeling, the brain can be represented as a network of elements, or nodes, with 

pairwise connections, or edges [7]. The complete set of these nodes and edges comprises 

the adjacency matrix of the connectome, a model of the brain topology [8]. Several metrics 

defined within the framework of graph theory can then be applied to this graph to exam-

ine the information flow within the brain, in health and disease (Table 1). There is still a 

limited understanding of the neurological correlates and clinical utility of these mathe-

matical measures [9].  

Table 1. Glossary of network terms 

Term Definition Examples of Methods Used for Its Acquisition 

Adjacency matrix 
A summary of all connections between each 

pair of nodes. 
-- 

Centrality 
Measure of the importance of a node within the 

network.  
Degree, betweenness, closeness, and PageRank 

Connection 

A relation or interaction between two nodes in 

the network. Connections may be binary or 

weighted and can be directed or undirected. 

They are referred to as edges in graphs. 

Diffusion MRI (structural connectivity), func-

tional MRI (functional connectivity) 

Connectome 
A map of all of the anatomical connections of 

the brain. 

Degree The number of edges attached to a node. Degree centrality 

Edge 
A term in graph theory to refer to a connection 

between two nodes.  

Diffusion MRI (structural connectivity), func-

tional MRI (functional connectivity) 

Functional connec-

tivity 

The statistical correlation of co-activation of 

two nodes in the network. 
fMRI, MEG, EEG  

Graph 
A mathematical representation of a network, 

comprising of nodes and edges. 
-- 

Hub 

A node with a central role in the network deter-

mined by its possession of links that greatly ex-

ceed the average, often defined through central-

ity. 

Centrality 

Module 

A group of nodes within a graph which have 

many mutual connections, and few connections 

to nodes outside their module.  

Number of links in the network; number of links 

between nodes in a specific module, summation 

of the degrees of the node within the module 

Parcellation 

An anatomical or functional division of the 

brain, which can be used as a node in graph 

theory. 

Atlas-based schemes (Glasser, AAL, Gordon),  
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Participation coeffi-

cient 

A measure of the distribution of a node’s edges 

across the modules within the graph.  

Number of links to other nodes in a module; de-

gree of the node 

Path length 

The number of edges which must be traversed 

to travel from one node to another node in the 

network. While this term technically refers to 

pathways in which the edges and nodes are 

traversed only once, it is commonly used in the 

literature to define any successive edges from 

one node to another. If there are multiple paths 

between two nodes, the path length may refer 

to the average length of all these paths. 

The inverse of the average path length within the 

network, or the average distance between each 

pair of nodes, reflects the efficiency of infor-

mation transferring in the entire network 

Percolation 

The method of deleting nodes within a network 

to model the effects of lesions on network to-

pology. 

Performed on an existing connectome to virtu-

ally emulate a lesion 

Structural connec-

tivity 

The anatomical connections between the nodes 

of the network. 
Diffusion MRI  

2. Connectomics of the Brain 

Graph theory provides a mathematical representation of brain architecture, consist-

ing of nodes and edges. The definition of nodes and edges depends on the scale and tech-

nique used to study the brain. Broadly, graphs may model structural or functional con-

nectivity based on a group of brain regions, known as a brain network. Graph theory has 

been popular in connectomics, which is defined as the study of the anatomical and func-

tional connections between regions in the brain. 

2.1. Graphing Structural Connectivity 

Structural connectivity at the macroscale relies on diffusion MRI (dMRI), which is 

based on the water molecule diffusion in the brain. When unconstrained, water molecules 

have an equal probability of diffusing in any direction, referred to as isotropic diffusion 

[10]. In the brain however, axons constrain water molecule diffusion, resulting in aniso-

tropic diffusion parallel to fibre direction [11]. The tracts are reconstructed using fibre 

tractography, which propagates streamlines based on the direction of water diffusion [12]. 

The magnitude of diffusion can be measured using dMRI. A model is then applied, most 

commonly diffusion tensor imaging (DTI), to infer the direction of diffusion within each 

voxel [13]. DTI however performs poorly in estimating multiple orientations, and there-

fore crossing fibres, which account for 30–90% of white matter volume in the brain [14]. 

Other methods, such as constrained spherical deconvolution, or Q-ball imaging are in-

creasing in popularity to address these concerns.  

Once streamlines have been tracked between all nodes, the strength of connectivity, 

or the edge weight is derived. As deterministic tractography is the most commonly uti-

lized method, the number of streamlines, or connections, between each node is the most 

common measure of edge weight. Streamlines, however, do not directly correspond to 

axons and are confounded by factors unrelated to connectivity such as myelination, den-

sity, and axonal number within a region [15,16].  

The inherent limitation, and a popular criticism against dMRI-based tractography is 

the lack of ground truth. Attaining actual ground truth for the human brain however 

would require a tremendous effort to track every single axon, which is currently unlikely 

to be achieved. Despite concerns over sensitivity, the utility of tractography has been val-

idated in several neurosurgical studies [17–19], and intraoperative visualization tools are 

becoming increasingly popular. Any improvements in the accuracy of these techniques 

will further benefit operative planning.  
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Finally, dMRI is unable to provide the direction of information flow, and therefore 

graphs based on diffusion tractography are undirected (Figure 1), resulting in incomplete 

representation of network structure [20]. Nonetheless, dMRI remains the best available 

method to study structural connectivity, and methods to improve its accuracy are an area 

of active research [21–23].  

 

Figure 1. The circles represent network nodes, and the lines connecting the nodes are termed as 

edges. The edges of a network can be binary (a) or weighted (b). Thick bolded and highlighted lines 

represent weighted edges. Binary graphs may be useful when studying the topology of the network, 

while weighted graphs represent the diversity of connections between neural elements in the brain. 

Undirected straight-line connectors represent undirected edges, while the arrows represent directed 

edges. Edges may also be undirected (a,b) or directed (c,d) depending on the method used to con-

struct the graph. In vivo human studies utilize undirected graphs. Note that these planar graphs are 

for visualization only, and real brain graphs do not necessarily have to be planar. Figure adapted 

from Farahani et al. 2019 [7]. 

2.2. Graphing Functional Connectivity 

In contrast, functional connectivity reflects regions which co-activate at a given time. 

While the nodes may be similarly defined as structural graphs, edges in functional graphs 

are often a correlation coefficient, summating neurophysiological activity over time. De-

pending on the desired temporal resolution, functional connectivity can be measured non-

invasively using fMRI, electroencephalography (EEG), or magnetoencephalography 

(MEG). EEG uses electrodes placed on the scalp to measure electrical activity which is 

thought to arise from synchronized activation of pyramidal neurons [24]. MEG on the 

other hand uses superconducting quantum interference devices (SQUIDs) to detect mag-

netic fields generated by neuronal currents [24]. While EEG and MEG display millisecond 

changes in functional connectivity, they lack spatial precision since their sensors receive 

aggregate activity over large populations of neurons [25,26]. As a result, it becomes diffi-

cult to precisely localize connectivity changes. This is compounded by volume conduc-

tion, which refers to the effect of measuring electrical activity away from its source, as the 

signal is conducted through several tissue compartments of the head [24]. Conversely, 

fMRI offers lower temporal resolution at around 0.5 to 1.5 Hz [27]; however, due to its 
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higher spatial resolution, it is the most common method of acquisition for functional con-

nectivity studies.  

fMRI relies on fluctuations of the blood-oxygenation-level-dependent (BOLD) signal 

based on the differences of magnetic properties between oxygenated and deoxygenated 

blood [28]. fMRI is therefore a haemodynamic measure of neuronal metabolic demand in 

a given region, and edges of the functional graph produced from fMRI are Pearson corre-

lation coefficients of the BOLD signal between two regions. Fluctuations in the BOLD sig-

nal have been shown to correlate with neuronal dynamics [29]; can influence task-evoked 

activity and behavior [30,31]; and are under genetic control [24,32,33]. Resting-state fMRI 

has also been shown to correlate with structural connectivity measured with diffusion 

MRI and tract tracing studies [24]. Conversely, since it is an indirect measure, it is unclear 

whether an increase in the BOLD signal is due to excitation or inhibition in an area, though 

the correlation coefficient between the BOLD signal in different areas has been shown to 

be a sensitive method of detecting network connection in experiments using simulated 

BOLD signals on several ground-truth networks [34]. Moreover, given its hemodynamic 

nature, the BOLD signal can be confounded by variations in vasculature [35] and ageing 

[36]. Studies are however underway to improve the measurement of functional connec-

tivity, either through post-processing methods to improve reproducibility, or through 

multi-modal measurement techniques combining MEG or EEG with fMRI, in order to ad-

vantage from the temporal and spatial resolution of each [37,38]. Despite its disad-

vantages, fMRI remains the most widely used measure of functional connectivity as it is 

able to provide insight into the whole-brain connectome and is currently more widely 

available than MEG [39].  

3. Parcellating the Brain 

The measurement of network connectivity is affected by the way regions of the brain 

are delineated to define nodes, which are also known as parcellation [40,41]. Traditionally, 

parcellations have been based on anatomical landmarks and cytoarchitecture, with the 

latter relying most basically on the distribution of neuronal cell bodies, which is funda-

mental to Broddmann’s parcellation system [42,43]. These methods commonly rely on mi-

croarchitecture, making it difficult to apply without autopsy [43]. Furthermore, while 

these maps enable a simple schema to understand neurobiology and pathology, they fail 

to incorporate the functional organization of the brain, which may lead to poorly defined 

nodes. For example, the anterior cingulate cortex is often represented as a single region in 

many atlases. This region however demonstrates enough heterogeneity in structural and 

functional connectivity to warrant further dividing it into distinct areas [44]. Since many 

of these atlases are based on small samples, they also neglect individual differences which 

may exist [45].  

Recent approaches to parcellation incorporate functional connectivity to separate re-

gions more accurately. The Glasser atlas is a cortical parcellation scheme generated from 

imaging data of 210 adults [46]. It employs a machine-learning classifier to parcellate re-

gions based on resting state fMRI for functional connectivity, task functional MRI for cor-

tical function, myelin content, and cortical thickness. A recent systematic review compar-

ing different parcellation measures concluded that an optimal method to parcellate the 

cortex could not be determined since they each utilized different methods and subjects 

[47]. However, it is recommended that parcellation schemes based on multiple modalities, 

such as the Glasser scheme, should be prioritized as they are more accurate when analyz-

ing functional connectivity. Another study, however, demonstrated that parcellations 

based on functional connectivity may change based on the task performed during fMRI 

[48], though the implications of this have not been studied. Therefore, while further stud-

ies are required to produce optimal cortical parcellations for structural and functional 

graphs, the Glasser scheme is a validated approach which consistently outperforms other 

methods. Unfortunately, the machine learning tool used for the Glasser atlas is not pub-

licly available and only group averages from the Glasser study may be utilized. It must 
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be noted that these group averages may misleadingly dismiss important individual ana-

tomical differences and therefore further study of patient or subject-specific machine 

learning tools is essential [6,49]. Machine learning tools may enable patient-specific auto-

mated parcellation based on multi-modal features, thereby accounting for differences in 

brain architecture, and even enabling parcellation of anatomically distorted brains, which 

may for example be useful when studying patients with brain tumors [50] 

4. Hubness and Centrality 

Once a network is constructed, measurements can be made on the topology of the 

network (Figure 2). Within a network, nodes which have structural or functional signifi-

cance are referred to as network hubs [51]. There are a number of mathematical ap-

proaches to define hubs within a structural or functional network [52]. However, central-

ity—or the ability of a node to influence or be influenced by other nodes as a result of its 

connection topology—is the most common measurement [53]. There are several measures 

of centrality which have been used to analyze the brain (Figure 3).  

 

Figure 2. Schematic of brain network construction. (A) Neuroimaging data are used to estimate 

functional or structural connectivity using diffusion MRI, functional MRI, EEG, or MEG. (B) Parcel-

lations are created based on T1 or T1-weighted structural MRI scans. A parcellation scheme is ap-

plied to define nodes. (C,D) The relationship between each pair of nodes is then represented as an 

adjacency matrix which can be used to construct a network of the brain. (E) Graph theory metrics 

can then be applied to the network to examine its topology. dMRI, diffusion magnetoencephalog-

raphy; EEG, electroencephalography; MEG, magnetoencephalography; fMRI, functional magne-

toencephalography. Figure adapted from Liao et al. (2017) [54]. 
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Figure 3. Visual representation of network centrality. In graphs of the brain, nodes (a) correspond 

to parts of the brain, while edges (b) signify either structural or functional connections. The nodes 

in red display the highest corresponding centrality. (c) The degree centrality is the number of direct 

neighbors a node has, such that the degree of the red node is 3. (d) The betweenness centrality 

measures the extent to which a node acts as a bridge between two other nodes. (e) Closeness cen-

trality measures how fast a given node can access every other node in the graph. (f) Participation 

coefficient is a measure of the distribution of a node’s connections among the modules in a network, 

with each module represented in orange. (g) PageRank centrality scales the influence of a node’s 

neighbors by its degree. (h) Eigenvector centrality considers the quality of a node’s neighbors when 

quantifying its centrality. The red node has a higher eigenvector centrality than the grey node 

(pointed to by the dashed arrow), despite their degrees being the same. (i) Path length is a measure 

used to calculate the efficiency of information flow in a given network. Figure adapted from Fara-

hani et al. (2019) [7]. 

4.1. Types of Centrality 

Degree centrality is the simplest measure of centrality. The degree of a node corre-

sponds to the number of edges connected to that node [55]. However, this treats all con-

nections equally, without considering the influence of each connection. In contrast, eigen-

vector centrality accounts for the quality and quantity of connections by including the 

degree of the neighbors of a node in the calculation [6,56]. A similar measure, PageRank 

centrality, scales the influence of a node’s neighbors by their degree [57]. This minimizes 

bias when calculating centrality for nodes which may be connected to a single high-degree 

node. PageRank centrality has been considered as a measurement to identify important 

hubs for the planning of supratentorial neurosurgery [57,58].  

In contrast to degree-based measures of centrality, betweenness and closeness cen-

trality rely on shortest paths between nodes. Betweenness centrality identifies the fraction 

of shortest paths between any pair of nodes which pass through the selected node, or the 

extent to which it lies between all pairs of nodes [59]. It quantifies how many times a node 

acts as a bridge of information transfer to other regions. In contrast, closeness centrality is 

a measure of the average distance between the selected node and all other nodes [53].  

The aforementioned centrality measures may not be suitable for functional graphs. 

Path length in a functional network is difficult to define, while node degree is biased by 

the size of the communities they belong to [60]. Communities in a graph refer to groups 

of nodes which are highly connected to each other compared to other nodes in the graph 

[61]. Once the graph has been partitioned into communities, a proposed method to char-

acterize hubs in functional networks is participation coefficient rather than degree-based 

hubs from centrality analysis [60]. Participation coefficient is a measure of the distribution 
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of a node’s edges among the communities within the graph [62]. A participation coeffi-

cient of 0 refers to a node which only communicates with nodes in its own module, while 

the participation coefficient approaches 1 if the node’s edges are evenly distributed among 

every module in the graph. As an example, participation coefficients have been studied to 

be used as preoperative prediction value for cognitive decline in patients with resective 

neurosurgery [63].  

4.2. Centrality as a Measure of Hubness 

Hubness is a measure of how influential and significant a node is in relation to sur-

rounding nodes. Different centrality measures are often correlated [53,64,65], and it is 

therefore possible to define network hubs by combining rankings of centrality measures, 

though disparities arise depending on measures chosen. Sporns and colleagues concluded 

in tract-tracing studies on cat and macaque brains that hub nodes had high degree, close-

ness, and betweenness centrality [52]. This definition of hubness was later applied to hu-

man structural connectivity graphs to conclude that the right caudate, left and right supe-

rior frontal gyrus, right middle cingulate gyrus, right precuneus, left and right putamen, 

and left thalamus were the highest-ranking hubs [66]. This study, however, relied only on 

40 participants, which is unlikely to reflect the degree of heterogeneity within the general 

population. In fact, a recent study demonstrated unexpected hubness at the individual 

level using PageRank centrality in areas which were lowly-ranked at the group level [58]. 

Evidently, there is no validated method to characterize hubness, and group-based aver-

aging cannot account for interindividual variation. Nonetheless, hub regions are often as-

sociation regions which do not have direct functional association, making it difficult to 

map during surgery.  

Modeling hubness based on distance-based centrality measures rests on the assump-

tion that communication in the brain occurs through shortest paths. This presupposes that 

neurons have access to information about global topology when sending information [67]. 

Since this may be unlikely, other models of neural communication have recently emerged. 

Among these, diffusion proposes that neurons send information to all their neighbors in 

parallel [68]. Centrality measures based on a diffusion model have also been proposed 

[67,69]. These measures only partially correlate with degree, closeness, and betweenness, 

suggesting they may offer further information about centrality [59]. Diffusion-based mod-

els however have not been adopted as widely within preclinical and clinical connectivity 

studies. This may be due to the relative simplicity of degree and path-length based 

measures, and their availability within network analysis packages. The traditional 

measures also remain applicable in clinical studies, and it is difficult to challenge their 

validity when they consistently explain empirical evidence. Further studies are necessary 

to determine information flow dynamics within the brain, though this may be beyond 

current technological capabilities. Some clues may be derived from developmental studies 

examining hub node formation, though results of these have so far been conflicting 

[70,71]. Future studies into neurosurgical eloquence may also benefit from the application 

of other topological indices which have been extensively used in the application of graph 

theory in other fields, though as is the case with any metric, deriving clinical meanings 

from these values remains the challenge. 

5. Eloquence in Neurosurgery 

Eloquent brain regions refers to brain regions with direct functional association, 

which when injured leads to neurological deficit [72]. While such classification has surely 

benefited the neurosurgical community previously, it is important to consider that regions 

outside traditional language and motor regions also maintain functional relevance [2]. 

Furthermore, damage to these traditionally defined eloquent regions however do not al-

ways lead to impairment [73–75], where in some patients, focal lesions in areas are not 

defined as eloquent can lead to unexpected cognitive deficits not associated with the re-

gional function. For example, multiple-domain cognitive decline was observed in both 



Cancers 2023, 15, 556 9 of 17 
 

 

groups in a study which attempted to compare the cognitive effects of resection of insular 

glioma compared to glioma in other locations [76]. Studies into the neurocognitive effects 

of resection are conflicting and the incidence of deficits following resection are unknown. 

While some studies demonstrate improvement from baseline [77,78], others report worse 

neurocognitive outcomes [79], and many studies suffer from methodological limitations 

such as inappropriate assessment tool choice and attrition bias with worse-off patients 

often lost to follow-up. Although recent machine learning models can accurately predict 

average outcomes following neurosurgery [80], the heterogeneity of intracranial patholo-

gies and the observed individual responses to surgery require patient-level prediction 

models to aid in prognostication and surgical planning. 

5.1. Individual Variability  

Disability caused by focal lesions to eloquent areas cannot be discounted, as it can 

certainly be predicted for instance that damage to the primary visual cortex will lead to 

visual impairment. Nevertheless, post-operative impairments suffered by patients are not 

equal, even when the surgeries are in the same areas of non-eloquence [58]. This suggests 

that there is inter-individual variability in cerebral eloquence, where some patients may 

be more eloquent than others in areas previously recognized as non-eloquent [81]. While 

previous areas recognized as high-eloquence areas were confirmed to have high Pag-

eRank centrality, there was also a level of inter-individual anatomical variability found 

[81], with unexpected hubs found in up to 8% of people in areas previously thought to be 

insignificant. This reinforces the need for novel approaches to identifying brain areas with 

heavy neuropsychological burden, where routine diffusion tractography can identify ob-

vious functional associations, but is less able to elucidate areas of cognitive and neuropsy-

chological eloquence. Such inter-individual variability in cerebral eloquence and therefore 

responses to focal lesions in neurosurgery may be addressed by expanding our traditional 

idea of “eloquent” regions to one which also considers the hub regions of network (Figure 

4).  

 

Figure 4. Comparing eloquence and hubness. Hubness may be used to extend the definition of elo-

quence once clinically validated. The intraoperative identification of eloquent brain can be com-

bined with preoperative identification of hub nodes in each patient to further inform surgical deci-

sion-making. 

5.2. Hubness as a Measure of Eloquence 

A number of recent works suggest hub regions are most susceptible to various neu-

rological diseases, and given their importance within a network, damage to these regions 
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map during surgery

• Difficult to predict 
individual responses: 
regions not considered 
eloquent can still lead 
to significant 
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HUBNESS
• Standardised definition 

lacking
• Hub regions often have 

unclear functional links à
difficult clinical translation

• May explain and predict 
individual differences in 
eloquent brain
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domain cognitive 
impairment following 
surgery
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clinically validated
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preoperative 
planning and 

prognostication, 
in addition to 

existing 
intraoperative 
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confers greater damage on the network [82–84]. Reasons for this are related to the obser-

vations that hubs: (1) make several long-distance connections [85,86], which are suscepti-

ble to white matter injury [87,88]; (2) they lie on many shortest paths [89], allowing pa-

thology to spread easily to these nodes [90,91]; and (3) may have higher metabolic require-

ments [92], making them susceptible to metabolic stress. Empirically, cognitive recovery 

of ischaemic stroke patients was predicted using a score of the extent to which hub nodes 

were affected [93]. Infarcts in regions with higher hubness scores was associated with re-

duced global efficiency, while strokes in regions with lower scores were independent pre-

dictors of better cognitive function at one-year post-stroke. The odds ratios for their uni-

variate and multivariate models of cognitive recovery suffered from wide confidence in-

tervals approaching one. It is likely that a 75-patient sample was not large enough to ob-

serve a robust relationship. The study also suffered from selection bias, as only patients 

with post-stroke cognitive impairment were recruited. It therefore overlooked whether 

those without cognitive impairment suffered from strokes to hub nodes. Nonetheless, sev-

eral studies have established a relationship between hub nodes and neurocognitive per-

formance [94–96], though it is uncertain which measures are most useful to define hub 

nodes in a clinical setting. To compare centrality measures empirically, Warren et al. 

showed that 19 patients with focal lesions in high participation coefficient areas had more 

severe cognitive impairment compared to 11 patients with lesions in high degree central-

ity areas [97]. Aside from small sample size, the study lacked sufficient description of the 

neuropsychological assessment tools used, making it difficult to evaluate its validity. Fur-

ther clinical studies are required to compare centrality measures.  

6. Emerging Difficulties and New Prospects Moving Forward 

6.1. Difficulties of Analysis and Interpretation for Patients 

While the applications of graph theory are not relatively new, their ability to repre-

sent brain connectivity data for clinical translation in particular has brought about new 

challenges which must be considered. Firstly, there is a still need for a formalized parcel-

lation strategy to conventionally define nodes in networks [7]. The different thresholding 

methods as well as the reproducibility and small sample sizes of current studies limit the 

ability to standardize such a protocol [98]. At the current time, it likely remains most wise 

to use a parcellation atlas which utilizes multi-modal integration of varying data sources, 

such as both in- and ex-vivo data and quantitative analyses of imaging signals, in order 

to produce a more biologically grounded approach [46,98,99].  

After parcellation, there remains concerns of graph theory analyses on patient con-

nectomes because data may be produced which has been affected by a number of prob-

lems such as multiple-comparison errors due to the high-dimensionality of the data, sub-

jective utilization of varying thresholds between pipelines to differentiate true connec-

tions from noise, and also spatial embedding concerns which introduce distance depend-

ent errors into connectivity maps due to motion artifacts and poor preprocessing tech-

niques [98]. A number of solutions have been proposed for these problems, such as ML 

based analyses to manage the high dimensionality of individualized patient data [100] 

and network based statistics to control for family-wise error [101]. Although it remains 

necessary to utilize these graph theory methods with patient data in a cautious manner 

which prospectively considers many of these known problems and the strengths and lim-

itations of these analyses based on their specific goals, or else the data will not be an ap-

propriate neurobiological representation.  

Similarly, appropriate interpretation of graph theoretical metrics has become a key 

challenge because many of these metrics rely on basic assumptions which may be more 

applicable to complex systems beyond the brain. For instance, pagerank centrality is de-

signed for directed networks and therefore when used on a brain connectivity data the 

brain graph must be treated as a directed network with bidirectional edges, although this 

information is difficulty to estimate reliably with modern neuroimaging modalities. Even 
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more broadly, it still remains unclear the appropriate hub measures which best estimate 

desired clinical correlates, such as determining if pagerank in fact best correlates with “el-

oquent” regions [6,57,58]. However, it must be noted this problem is largely related to the 

previous lack of studies which sought to link computational or experimental work with 

clinical outcomes, and moving forward such comprehensive work will hopefully clarify 

many of these questions. 

6.2. Clinical Graph Theory on the Horizon  

Despite these concerns, the application of graph theory in a clinical setting is prom-

ising with increasing work recently demonstrated. Graph theory and its identified metrics 

have been identified as potential biomarkers in Parkinson’s disease [102], in the detection 

of an incoming seizure in the field of epilepsy [103], and in the identification of atypical 

hemispheric dominance and language reorganization [104]. As such, graph theoretical 

measures in neurological patients can provide a novel non-invasive tool which can aid in 

early diagnosis, surveillance of disease progression, and potential targets for therapeutic 

interventions [105]. 

A particularly interesting application with relevance to intra-axial brain surgery can 

be seen with percolation theory. Once hub nodes have been defined preoperatively, the 

effects of lesions on the network can be predicted using percolation models by deleting 

nodes from the graph and measuring the outcomes. In one study, removal of central hub 

nodes—especially those in the temporoparietal junction and the superior frontal gyrus—

reduced functional connectivity across the brain in graphs derived from five adult males 

[106]. Although the small sample size and imprecise parcellation method limits external 

validity, it provides a utility for graph theory in predicting lesion effects. Since then, per-

colation has been studied in some pathological processes [83,107], however its clinical ap-

plicability remains unclear as they have not been validated against empirical findings. 

Recently, in a proof-of-concept study, Aerts et al. applied graph theory metrics to compare 

the functional connectivity maps of post-operative glioma patients to lesion maps pro-

duced from pre-operative scans [108]. They first performed virtual neurosurgery on struc-

tural connectivity graphs, then utilized a model to derive the functional connectivity of 

the lesion maps. However, their model only corresponded with the empirical results in 

four out of seven glioma patients, limited by small sample size and choice of anatomical 

parcellation.  

Although early, graph theory models provide the ability to pre-operatively predict 

or intra-operatively estimate a patient’s response to operative decisions, and thus can pro-

vide information to assist with surgical decision making regarding angle of approach or 

extent of resection. For instance, the success of cavernous malformation surgery for lesions 

deep to the surface is largely predicated based on the appropriate angle of surgical ap-

proach. Furthermore, while small differences in the angle of approach may seem non-

trivial, inter-individual differences in patient structural–functional connections and hub 

regions can lead to varying unpredicted outcomes [109]. Pre-operative graph theory anal-

yses may predict patient-specific epicenters of damage or hubs which confer the most 

damage when removed from a graph, and therefore can guide simple but meaningful 

decisions between patients. For instance, differentiating between an anterior medial vs. 

posterior lateral approach in the inferior parietal lobe (IPL) to the same deep seated lesion 

in patients with an anterior medially located hub region vs. posterior laterally located hub 

in the IPL. Once an approach is decided based on these connectomic maps, intraoperative 

neuronavigation may provide an additional tool which can assist with resection decisions 

by examining the functional integrity of various connectomic structures, but further work 

should clarify the additional clinical benefits of combining these modalities [5,110]. 

The inability of network studies to account for the brain’s physiological response to 

injury may contribute to the disparity in empirical studies. Structural plasticity of the 

nervous system accounts for significant long-term improvement and even complete re-

covery in many disorders. Although compensation can be inferred from a network model, 



Cancers 2023, 15, 556 12 of 17 
 

 

modeling contralateral homotopic hyperexcitability, and axonal and dendritic sprouting 

which constitute plasticity may be beyond the capability of current models [111,112]. In a 

recent comparison of the functional connectivity graphs of chronic stroke participants and 

matching percolated graphs derived from healthy controls, percolation was able to model 

short-term consequences of lesions; however, the connectomes in chronic stroke had re-

organized with the emergence of new network hubs [113]. Therefore, future connectivity 

models must account for the dynamic nature of the brain, which requires the longitudinal 

characterization of these changes across different pathologies.  

Quicktome, a surgical software developed to identify anatomical locations of signif-

icant hubs based on individual connectomic maps, may provide an advantage in terms of 

catering to inter-individual variability in cerebral eloquence. It was able to visualize path-

ways and assist in navigation in patients that were not suitable for awake craniotomies, 

providing similar guidance around important language areas [17]. This software was also 

found to be able to explain the previously not understood phenomenon of cognitive dys-

function variability experienced in post-operative glioma patients, in visualizing hubs 

that were disrupted by the glioma surgery. While these initial results show significant 

potential for this software as a tool to fill in the gaps in current fMRI and DTI imaging, 

large amounts of further development are required to allow for external generalization 

past its current assumptions of left-hemispheric dominance and western language utili-

zation [17].  

7. Conclusions 

Currently, intraoperative monitoring remains the gold-standard in practice. How-

ever, regions which require the most attention to preserve—the hub nodes—have unclear 

functional association, making it difficult to immediately observe deficits intraopera-

tively. While intraoperative applications of graph theory are under investigation, preoper-

ative classification of hub nodes using centrality may serve as a useful tool to predict sur-

gery outcomes, though a precise and validated workflow is required to utilize this in pri-

mary care.  
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