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Simple Summary: Despite the progress in diagnostics and therapeutics, epithelial ovarian cancer
(EOC) remains a fatal disease. Using shallow whole-genome sequencing (WGS), we identified copy
number variations (CNVs). In addition, we quantified chromosomal instability using genome-wide
instability and found that it could detect newly diagnosed EOC. In addition, the data showed
RAB25 amplification (alone or with CA125), and disease-free survival and overall survival. Our data
demonstrated that cfDNA, detected by shallow WGS, represents a potential tool for diagnosing EOC
and predicting its prognosis.

Abstract: Despite the progress in diagnostics and therapeutics, epithelial ovarian cancer (EOC)
remains a fatal disease. Using shallow whole-genome sequencing of plasma cell-free DNA (cfDNA),
we investigated biomarkers that could detect EOC and predict survival. Plasma cfDNA from 40 EOC
patients and 20 healthy subjects were analyzed by shallow whole-genome sequencing (WGS) to
identify copy number variations (CNVs) and determine the Z-scores of genes. In addition, we
also calculated the genome-wide scores (Gi scores) to quantify chromosomal instability. We found
that the Gi scores could distinguish EOC patients from healthy subjects and identify various EOC
histological subtypes (e.g., high-grade serous carcinoma). In addition, we characterized EOC CNVs
and demonstrated a relationship between RAB25 amplification (alone or with CA125), and disease-
free survival and overall survival. This study identified RAB25 amplification as a predictor of EOC
patient survival. Moreover, we showed that Gi scores could detect EOC. These data demonstrated that
cfDNA, detected by shallow WGS, represented a potential tool for diagnosing EOC and predicting
its prognosis.

Keywords: cfDNA; epithelial ovarian cancer; shallow whole-genome sequencing; plasma; prognosis

1. Introduction

Globally, 239,000 new epithelial ovarian cancer (EOC) cases are diagnosed yearly.
In addition, 152,000 ovarian cancer (OC)-related deaths occur annually, making it the
second leading cause of cancer-related death in females. Standard EOC treatment strategies
include surgery and conventional chemotherapy [1,2]. However, EOC recurs in most
patients (~70%), with a poor prognosis [3]. Thus, it is critical to understand the molecular
pathways affecting prognosis. Indeed, markers that predict poor prognosis in EOC could
help establish therapeutic strategies.
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Homologous recombination repair (HRR) pathway deficiency leads to the chromo-
somal instability observed in EOC [4]. This HRR deficiency (HRD) results from germline
or somatic mutations in BRCA1/2 or other mechanisms. Increased platinum and PARPi
(PARP inhibitor) responses occur due to pathogenic mutations in BRCA1/2 and other genes,
indicating its importance as a therapeutic target in solid tumors, including EOC [5]. This
concept is illustrated by the central role of platinum agents in the management of EOC
and the advent of PARPi [6]. The myriad myChoiceTM uses the combined HRD score
(Genomic Instability Score) [7] in conjunction with BRCA1/2 mutation and rearrangement
analysis. This test has been included in several PARPi clinical trials and is FDA-approved
as a companion diagnostic for niraparib and olaparib in relapsed EOC [5].

Most cancers are characterized by chromosomal instability (CIN), where there is a
continual gain or loss of chromosomes or parts of chromosomes [8]. This process is often
associated with poor prognosis. CIN in EOC and many other cancer types promotes tumor
heterogeneity, clonal evolution, and chemotherapy resistance [9]. Copy number variations
(CNVs), a CIN mechanism, are analyzed using high-throughput genome sequencing to
detect carcinogenesis. CNVs consist of genomic segments of at least 50 bp that differ in
copy number based on comparing two or more genomes [10]. An estimated 5–10% of DNA
content can be spanned by amplifying or decreasing segments from 50 bp to longer than
1 kb, defined by copy number variations (CNVs) compared to a normal genome [11,12].
CNVs may cause changes in biological function (e.g., altered gene expression) and promote
human disease [13,14].

EOC is characterized by aneuploidy genomes and a large burden of copy number
amplifications and deletions [15]. In 2011, The Cancer Genome Atlas (TCGA) project
identified CCNE1, MYC, and MECOM as common amplifications in EOC. Moreover, tumor
suppressor genes (e.g., PTEN, RB1, and NF1) are frequently deleted in high-grade serous
carcinoma (HGSC) [16], and CNVs predict overall survival (OS) and platinum-resistant
relapse in HGSC, demonstrating their prognostic value [17]. For example, allelic BRCA1
and BRCA2 mutations combined with loss of the wild-type allele disrupt homologous
recombination-mediated DNA damage repair, resulting in CNVs and loss of heterozygosity
(LOH) [18]. Notably, genomic LOH correlated with the response to PARPi in a phase 2
clinical trial with epithelial EOC patients (ARIEL2). Taken together, CNVs may thus serve
as potential clinical markers to predict cancer risk in various cancers [19].

Cell-free DNA (cfDNA) is released from tumor cells into the bloodstream and other
bodily fluids [20]. This non-encapsulated circulating tumor DNA (ctDNA) is generated by
multiple mechanisms, such as apoptosis, necrosis, and secretion from circulating tumor
cells or extracellular vesicles [21]. Next-generation sequencing has shown that CNVs in
cfDNA from plasma can explain the mechanisms underlying carcinogenesis and drug
resistance in various cancers [22,23]. In addition, plasma cfDNA analysis is in the spotlight
because it is a non-invasive tool to monitor cancer progression [21,24–26]. A prospective
trial demonstrated that the recurrence rates for colorectal cancer were >10-fold higher
in patients with detectable cfDNA postoperatively than those with undetectable cfDNA,
identifying cfDNA as a predictive biomarker. However, there have been only limited
studies on cfDNA in gynecologic cancer using whole genome sequencing (WGS) [27].
Therefore, we investigated the genetic characteristics of EOC and evaluated potential
prognostic biomarkers in plasma cfDNA using WGS.

2. Materials and Methods
2.1. Samples

This study analyzed samples from 40 EOC patients and 20 healthy subjects (Table 1).
Study participants provided written, informed consent. The study was approved by the
Institutional Review Boards of Seoul St. Mary’s Hospital of the Catholic University of Korea
College of Medicine (KC17TNSI0215) and Green Cross Laboratories (GCL-2017-1008-03).
The healthy subjects were included for normalization (Table S1). Blood (10 mL) was
collected from each patient in EDTA tubes or Streck Cell-Free DNA BCT® (Streck, La Vista,



Cancers 2023, 15, 530 3 of 13

NE, USA) within one week before the surgery. All patients received systemic chemotherapy
after the debulking surgery.

Table 1. Clinico-pathological characteristics of the ovarian cancer patients.

Ovarian Cancer Patients (n = 40)

Age (median) [quartile 1; quartile 3] 54 yr [47.5; 61.5]
FIGO stage

I 9
II 2
III 26
IV 3

BRCA mutation
Yes 6
No 34

Pathologic types
High-grade serous carcinoma 23
Low-grade serous carcinoma 3

Mucinous carcinoma 5
Endometrioid carcinoma 4

Clear cell carcinoma 5
Recurrence/ progression

Yes 20
No 20

Disease-free time (median) [quartile 1; quartile 3] 11 mo [7; 19.5]
Follow- up time (median) [quartile 1; quartile 3] 50 mo [37.5; 58]
CA125 (U/mL) (median) [quartile 1; quartile 3] 575.5 [91.5; 1175.8]

2.2. Preparation of cfDNA and NGS Data Preparation

cfDNA was extracted from plasma. For 30 EOC samples, extraction was performed
with the QIAamp Circulating Nucleic Acid Kit (Qiagen, Valencia, CA, USA) using the
manufacturer’s protocol. For ten EOC samples, cfDNA was extracted using the Chemagic
cfDNA 2K Kit (PerkinElmer, MA, USA). The NGS library was quantified using the Qubit
dsDNA HS assay kit (Thermo Fisher, MA, USA). Library fragment size was determined
with D1000 screen tape (Agilent, CA, USA) using the Tapestation4200 (Agilent, CA, USA).
Sequencing was performed with PE100 using the DNBSEQ-G400RS High-throughput
Rapid Sequencing kit (MGI Tech Co., Shenzhen, China) and DNBSEQ-G400 sequencer
(MGI Tech Co., Shenzhen, China).

2.3. Shallow WGS of cfDNA

Shallow WGS was performed at a mean depth of 0.27× (11 M reads/sample ×
[75 bp/read]/3 Gbp, the whole genome size). For sequences in which the Phred quality
score was less than 33, adapter sequences were trimmed from the sequencing data using At-
ropos v1.1.28 before alignment [28]. Pre-processed reads were aligned to the hg19 reference
genome using the mem algorithm of bwa v0.7.17. The alignments were sorted according
to chromosome coordinates using samtools v1.0 (https://www.htslib.org/, accessed on
15 August 2014). PCR duplicates were eliminated with Picard MarkDuplicates v2.23.8
(https://broadinstitute.github.io/picard/, accessed on 15 October 2020), and alignments
larger than the maximum insert size (8000), based on the samtools stats, were removed
(Table S2).

2.4. Data Processing for CNV Detection and Z-Score Grouping

Mosdepth v0.3.1 was used to check the read depth of OC-specific genes [29]. The
LOESS algorithm was used to normalize GC bias [30]. The average and standard deviation
of the gene body depth were calculated to determine the Z-scores using the 20 healthy
subjects’ samples. Z-scores were calculated using the gene body depth of the patients. A
Z-score exceeding 2 indicated amplification, and a score less than -2 signified a deletion.

https://www.htslib.org/
https://broadinstitute.github.io/picard/
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To investigate whether OC-specific genes affected disease recurrence/progression, we
performed Z-score grouping and two-step disease-free survival (DFS) analysis. The genes
in the TCGA dataset were divided into AMP and DEL genes. AMP genes were defined
as those with more amplified samples than deletion samples; DEL genes consisted of the
genes with more deletion samples than amplified samples (Tables S3 and S4). Z-scores were
grouped according to DEL and AMP information. For the AMP genes, Z-scores greater
than 2 were grouped as 1, and Z-scores less than 2 were grouped as 0. For the DEL genes,
Z-scores less than −2 were grouped as 1, and Z-scores greater than −2 were grouped as 0
(Table S5).

2.5. Genome-Wide Instability Score

Genome-wide Z-scores were calculated to quantify chromosomal instability using the
following equation [23]:

Genome-wide instability score (Gi score) = ∑ absolute(Z − score)

2.6. Identification of OC-Specific Genes and CNV Validation Using the TCGA Dataset

The ovarian serous cystadenocarcinoma TCGA dataset (n = 489) was used to confirm
the CNV pattern. The data were analyzed with the cBioPortal for Cancer Genomics
(http://cbioportal.org, accessed on 10 November 2015) [31,32].

We evaluated the similarity of the copy number profiles of 33 genes obtained by shal-
low WGS using cfDNA and TCGA WGS using gDNA. Data for 95 ovarian tumor samples
and 75 normal samples were downloaded from the TCGA database. The data/analyses
presented in the current publication are based on the use of study data downloaded
from the dbGaP website, under dbGaP accession number phs000178.v11.p8. The read
depths of the target gene regions were determined using mosdepth v. 0.3.3. Normalization
of the GC content was processed using the LOESS algorithm in R. Z-scores of the read
depths were calculated using the mean and standard deviation from the normal samples.
Genes with a Z-score that exceeded 2 were assumed to be amplified; those with a Z-score
less than -2 were assumed to be deleted. Pearson correlation was used to investigate
the correlation between the mean copy number from the cfDNA and that of the TCGA
gDNA. All statistical analyses were performed with R-4.0.3 and visualized using the gg-
plot2 and ggpubr R packages (https://www.R-project.org, accessed on 24 April 2020 and
https://CRAN.R-project.org/package=ggpubr, accessed on 27 June 2020) [30,33].

2.7. Statistical Analysis

DFS represents the time from treatment to relapse/progression. OS is the time to death,
regardless of disease relapse/progression. Relapse is defined as a disease recurring more
than six months after surgery; progression refers to a disease recurring within six months
of surgery. DFS and OS from our data were determined by the Kaplan–Meier method. The
genes with CNVs were analyzed using univariate analysis. For the multivariate analysis,
the genes with CNVs and median CA125 level were used after classifying the patients into
four subgroups: (1) genes with CNVs and CA125 > median CA125 (U/mL); (2) genes with
CNVs and CA125 ≤ median CA125 (U/mL); (3) genes without CNVs and CA125 > median
CA125 (U/mL); (4) genes without CNVs and CA125 ≤ median CA125 (U/mL). Inter-group
comparisons were made using the log-rank test. Significant differences were defined as
p < 0.05. The Wilcoxon rank sum test was used to analyze the statistical significance of the
genome-wide instability scores (Gi scores) between groups.

3. Results
3.1. Clinical and Pathology Data of Subjects

This study included 40 epithelial EOC patients who received primary debulking
surgery and adjuvant chemotherapy. The clinical-pathological characteristics of the patients
are presented in Table 1. The median age at diagnosis was 54 years (range: 26–75). Nine

http://cbioportal.org
https://www.R-project.org
https://CRAN.R-project.org/package=ggpubr
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patients had stage I disease, and two had stage II. The majority of the patients (73%, 29/40)
were stage III/IV (III, n = 26; IV, n = 3). Most patients (57.5%, 23/40) were diagnosed
with high-grade serous carcinoma (HGSC). The remaining patients were diagnosed with
mucinous and clear cell carcinoma (n = 5 each), low-grade serous carcinoma (n = 3), and
endometrioid carcinoma (n = 1).

During the follow-up period (median 50 months), twenty EOC patients (50%, 20/40)
presented with disease recurrence/progression within a median time of 11 months follow-
ing diagnosis (Table 1 and Table S1). Six EOC patients (15%, 6/40) had BRCA1/2 pathogenic
variants, five of whom had disease recurrence/progression. The median follow-up time
did not significantly differ between EOC patients with BRCA1/2 pathogenic variants and
wild-type BRCA1/2 (53 months vs. 48 months).

3.2. Genome-Wide Z-Scores from Shallow WGS Detect Chromosomal Instability

Shallow whole-genome sequencing was performed to evaluate chromosomal instabil-
ity in plasma cfDNA from EOC patients. For each patient sample, more than 79 M reads
(175.56 ± 64.91 for all samples) were obtained; more than 110.6 M reads (200.52 ± 31.48
for all samples) were acquired for each normal sample. The coverage for each patient and
normal subject was about 5.15× and 5.55×, respectively. To investigate the diagnostic
performance of the shallow WGS CNV counts, the Z-scores for all CNVs were calculated
for each sample. The heatmap shows the somatic amplifications in red (Z-score > 2) and
deletions in blue (Z-score < −2) (Figure 1A). The CN profile showed the CN state across the
genome in a predefined number of genes. Red segments represent CN gain in the genome-
wide scatter plot using the Z-score, and green segments show CN loss (Figure 1B,C). Each
dot represents a gene for which the copy number was inferred. In addition, we investigated
the correlation of the 1× and 5× in silico analysis and found that the shallower WGS data
resulted in similarly reliable outcomes (R = 0.8, p < 2.2 × 10−16) (Figure 1D). In this analysis,
we downsampled the reads of the original data to 1x and calculated the correlation using
the Z-scores of target genes.
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are based on window Z-score calculations. (B) Genome-wide scatter plot using the Z-scores (OC11).
Scatter plot using the Z-scores with the bins for the segmented genome set to 100,000 bases. Red
are the segments with copy gain, and green are those with copy loss. (C) Target gene scatter plot
using the Z-scores (OC11). Scatter plot using the Z-scores of the target genes for each sample (red
circle, Z-score ≥ 2; green circle, Z-score < 2; black circle, other). (D) Correlation plot using an in-silico
method. Downsampling of the reads of the original data to 1X. The correlation was calculated using
the Z-scores of the target genes.

3.3. Genome-Wide Instability by Shallow Whole-Genome Sequencing Characterizes EOC

We determined the genome-wide instability in cfDNA using the sum of absolute
Z-scores (abs [Z-score]) (Table S6). The genome-wide instability score (Gi score) for the
EOC patients was significantly elevated compared to that of the healthy subjects (p = 0.0007,
Wilcoxon test) (Figure 2A). In addition, the median Gi score of the advanced EOC patients
(stage III/IV) was significantly higher than the median Gi score of the healthy subjects
(p = 0.000579), whereas the median Gi score of the healthy subjects did not significantly
differ from that of the early-stage EOC patients (stage I/II) (Figure 2B). There was a trend
towards higher Gi scores for advanced-stage EOC patients compared to early-stage pa-
tients; however, the difference did not reach statistical significance. However, significant
differences were observed between healthy subjects and HGSC (p = 0.02) (Figure 2C). The
Gi score differences were not significant between the no recurrence/progression and recur-
rence/progression groups and between the wild-type BRCA1/2 and BRCA1/2 pathogenic
variant groups (Figure S1).
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Figure 2. Distribution of genome-wide instability scores according to participant type (A) (OC
patients vs. healthy subjects), (B) cancer stage (stages I/II [early] vs. stages III/IV [advanced]), and
(C) histology type.

To demonstrate the specificity of the observed CNVs identified in the cfDNA of EOC
patients, we retrieved segmented CN data for ovarian tissue-derived gDNA in the TCGA
database. The two datasets were in concordance based on the Z-scores, yielding a Spearman
correlation coefficient of 0.44 (p = 0.0095) (Figure S2 and Table S7).

3.4. Copy-Number Variations in cfDNA predict EOC Patient Survival

We selected 33 EOC-specific genes from the TCGA dataset (n = 489, ovarian adeno-
carcinoma patients) (Table 2) [16]. Z-scores exceeding 2 indicated “amplification” (AMP);
“deletion” (DEL) was defined by Z-scores less than −2 (Figure 1A–C). MYC, MECOM,
PRKCI, CCNE1, and EIF5A2 were the top five most commonly detected genes with CNVs
in the TCGA dataset, and AKT1, RPS6KA2, PIK3R1, EIF5A2, and PRKCI were the top five
from our data. Only EIF5A2 and PRKCI were presented in the top five most commonly
detected genes in both datasets.
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Table 2. Copy number variation (CNV) pattern of ovarian cancer-specific oncogenes and tumor
suppressor genes from TCGA data.

Chr Start (hg19) End (hg19) Gene Strand CNV Occuring
Events_Frequency TCGA_Frequency Oncogenic

Information

chr1 156,030,965 156,040,295 RAB25 + AMP 7.50% 7.20% Oncogene
chr3 168,801,286 169,381,563 MECOM − AMP 12.50% 24.70% Oncogene
chr3 169,940,219 170,023,770 PRKCI + AMP 15.00% 22.10% Oncogene
chr3 170,606,203 170,626,426 EIF5A2 − AMP 22.50% 20.70% Oncogene
chr3 178,866,310 178,952,497 PIK3CA + AMP 10.00% 18.00% Oncogene
chr4 55,524,094 55,606,881 KIT + AMP 2.50% 1.20% Oncogene
chr5 67,511,583 67,597,649 PIK3R1 + DEL 20.00% 2.00% Oncogene
chr5 141,971,742 142,077,635 FGF1 − AMP 5.00% 1.00% Oncogene
chr7 55,086,724 55,275,031 EGFR + AMP 2.50% 0.40% Oncogene
chr8 128,748,314 128,753,680 MYC + AMP 7.50% 31.50% Oncogene
chr12 25,358,179 25,403,854 KRAS − AMP 2.50% 9.80% Oncogene
chr14 105,235,686 105,262,080 AKT1 − AMP 22.50% 2.90% Oncogene
chr17 37,844,392 37,884,915 ERBB2 + AMP 0.00% 2.20% Oncogene
chr19 15,270,443 15,311,792 NOTCH3 − AMP 0.00% 11.50% Oncogene
chr19 30,302,900 30,315,215 CCNE1 + AMP 2.50% 21.70% Oncogene
chr19 40,736,223 40,791,302 AKT2 − AMP 10.00% 7.00% Oncogene
chr20 54,944,444 54,967,351 AURKA − AMP 10.00% 3.90% Oncogene

chr1 68,511,644 68,516,460 DIRAS3 − AMP 2.50% 1.00% Tumor suppressor
gene

chr3 38,080,695 38,164,228 DLEC1 + AMP 2.50% 0.60% Tumor suppressor
gene

chr3 50,367,216 50,378,367 RASSF1 − AMP 7.50% 1.00% Tumor suppressor
gene

chr5 39,371,775 39,425,335 DAB2 − AMP 10.00% 3.10% Tumor suppressor
gene

chr5 151,040,656 151,066,615 SPARC − AMP 2.50% 1.20% Tumor suppressor
gene

chr6 144,261,436 144,385,735 PLAGL1 − DEL 12.50% 0.60% Tumor suppressor
gene

chr6 166,822,853 167,275,771 RPS6KA2 − DEL 22.50% 1.40% Tumor suppressor
gene

chr10 89,623,194 89,728,532 PTEN + DEL 12.50% 6.10% Tumor suppressor
gene

chr11 132,284,874 133,402,403 OPCML − AMP 7.50% 2.50% Tumor suppressor
gene

chr13 32,889,616 32,973,809 BRCA2 + DEL 10.00% 0.80% Tumor suppressor
gene

chr13 50,202,434 50,208,008 ARL11 + DEL 2.50% 2.20% Tumor suppressor
gene

chr16 78,133,326 79,246,564 WWOX + DEL 10.00% 5.70% Tumor suppressor
gene

chr17 1,933,430 1,946,725 DPH1 + AMP 0.00% 1.00% Tumor suppressor
gene

chr17 7,571,719 7,590,868 TP53 − DEL 10.00% 0.60% Tumor suppressor
gene

chr17 41,196,311 41,277,500 BRCA1 − DEL 7.50% 0.60% Tumor suppressor
gene

chr19 57,321,444 57,352,094 PEG3 − AMP 5.00% 1.80% Tumor suppressor
gene

We used Kaplan–Meier survival analysis to determine whether the results from the
shallow WGS analysis of cfDNA were associated with clinical outcomes (i.e., DFS and OS).
DFS analysis was performed using the 0/1 grouping information (0 = EOC patients with
no relapse/progression, 1 = EOC patients with relapse/progression) (Table S1). Patients
who did not relapse/progress at the time of sample collection were treated as censored
data. An event occurred when the patient gene grouping matched the TCGA CNV results.
Of the 33 genes from the TCGA data, 10 genes (RAB25, PIK3CA, MECOM, DLEC1, KIT,
EGFR, CCNE1, PTEN, AKT1, and AKT2) had p-values less than 0.05 (Table S8). Four genes
(DLEC1, KIT, EGFR, and CCNE1) occurred only once (event: n = 1) and were excluded
(Figure 3).
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Figure 3. Kaplan–Meier analysis for EOC patient DFS (n = 40). (A) RAB25 amplifica-
tion (RAB25_AMP), (B) PIK3CA_AMP, (C) MECOM_AMP, (D) PTEN deletion (PTEN_DEL),
(E) AKT1_AMP, and (F) AKT2_AMP had a significantly worse DFS (p < 0.05, log-rank test).

OS analysis was performed using the following 0/1 grouping information: 0 = EOC
patients who were alive; 1 = EOC patients who died. Three EOC patients were not available
for follow-up. Therefore, only 37 of 40 EOC patients were analyzed (Table S1). Three of the
thirty-three genes from the TCGA dataset (DPH1, ERBB2, and NOTCH3) were excluded
because none of the EOC patients harboring CNVs in these genes died during the follow-up
period. We found four genes with CNVs (RAB25, DAB2, TP53, and RPS6KA2) present in
more than three EOC patients, that demonstrated statistical significance in the OS analysis
(p < 0.05) (Figure 4, Table S9). In particular, we found that patients with amplified RAB25
(RAB25_AMP, n = 3) had shorter DFS (p = 0.0014) and OS (p = 0.00011).
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3.5. Integrated Value of cfDNA and CA125

The median preoperative CA125 concentration was 575.5 U/mL (range, 17.9–11,494.0)
for all subjects and 954.9 U/mL (range, 26.0–11,494.0) and 105.0 U/mL (range, 17.9–21,760.0)
for EOC patients with or without relapse/progression, respectively (Table S1). We per-
formed integrated analysis to evaluate the associations between the plasma cfDNA results
and the median CA125 and clinical outcomes (DFS and OS). Kaplan–Meier analysis of the
combinations of CA125 and nine genes with more than three events showed statistically signif-
icant effects on the DFS or OS (i.e., RAB25_AMP, PIK3CA_AMP, MECOM_AMP, PTEN_DEL,
AKT1_AMP, AKT2_AMP, DAB2_AMP, TP53_DEL, and RPS6KA2_DEL) (Tables S6 and S8).
The four subgroups analyzed were (1) genes with CNVs and CA125 > 575.5 U/mL; (2) genes
with CNVs and CA125 ≤ 575.5 U/mL; (3) genes without CNVs and CA125 > 575.5 U/mL;
(4) genes without CNVs and CA125 (U/mL) ≤ 575.5 U/mL.

For the DFS, the six genes with CNVs (RAB25, PIK3CA, MECOM, PTEN, AKT2,
and RPS6KA2) and CA125 (subgroup 1) had the shortest DFS rate of the four subgroups
(p < 0.05) (Figures 5A and S3). In contrast, all six genes without CNVs and CA125 (sub-
group 4) had the longest DFS rate (p < 0.05). For subgroup 2, only five genes contained
CNVs (PIK3CA, MECOM, PTEN, AKT2, and RPS6KA2). These genes had the second short-
est DFS rate. Subgroup 3 had the third shortest DFS rate. We performed OS analysis using
the six genes from the DFS analysis. The results showed that only “RAB25_AMP and
CA125 > 575.5 U/mL” had the shortest OS survival rate reaching statistical significance
(p = 0.00056) (Figure 5B).
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4. Discussion

In this study, we investigated whether chromosomal instability in cfDNA, detected
by shallow WGS, is a potential marker for EOC and a prognostic indicator. We found
that plasma cfDNA could detect genome-wide instability in EOC. Our data also showed
that CNVs could provide comprehensive genetic data for EOC patients. Moreover, RAB25
amplification predicted EOC patient survival. Our study is the first to reveal that RAB25
amplification in cfDNA, identified by shallow-WGS, can predict EOC patient prognosis.

Using shallow WGS, we demonstrated that detecting chromosomal instability in
cfDNA from EOC patients is feasible. We investigated the correlation of 1× and 5× in silico
analysis and found that the shallower WGS data produced similarly reliable outcomes
(Figure 1D). Next, we quantified genome-wide instability by developing a “genome-wide
instability score” or Gi score using the sum of (abs[Z-score]). EOC patients had higher Gi
scores than healthy subjects. In addition, we observed a trend towards higher Gi scores in
advanced-stage EOC patients compared to early-stage patients. Our results are consistent
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with recent studies showing that cfDNA detected by shallow WGS signifies chromosomal
instability in EOC patients [34–36].

Our data showed that CNV data from cfDNA, obtained from shallow WGS, provides
comprehensive genetic data for EOC, and may be a highly specific biomarker reflecting
chromosomal instability. In addition, we determined that CNVs from shallow WGS could
predict EOC prognosis. Previous studies showed that WGS makes it possible to detect
cancer-specific CNVs in cfDNA [34,35,37,38]; however, studies predicting survival out-
comes by this method are limited. Vanderstchele et al., were the first to evaluate the
potential of cfDNA for diagnosing EOC. Braicu et al. showed that cfDNA quantification
using shallow WGS based on CNVs could be used for EOC diagnosis and treatment moni-
toring [34,36]. Some studies demonstrated an association between chromosomal instability
in cfDNA detected by shallow WGS and EOC prognosis. However, one study could only
demonstrate the clinical usefulness of shallow WGS in prognosis prediction when it was
combined with whole exome sequencing (WES). Because of the high cost of WES, combin-
ing shallow WGS with WES for determining patient prognosis would negate the financial
benefits offered by shallow WGS [39]. Another study suggested that shallow WGS may be a
clinically feasible method for predicting survival; however, it did not identify an association
between chromosomal instability and EOC prognosis on a genetic level [35].

In our study, RAB25 amplification was associated with poor DFS and OS. In addition,
we found that the integrated value for RAB25 amplification and the known tumor marker
CA125 was associated with EOC patient prognosis. RAB25 was also amplified in the
EOC TCGA dataset [16] and is considered an oncogene in various malignancies, including
EOC [40,41]. We have limitations that the ages of the healthy subjects and EOC patients
were not matched, and the family histories of the healthy subjects were not provided.
However, previous studies presented that ~0.25% of the general population harbored
germline BRCA1/2 mutations; therefore, it is suggested that the healthy subjects should
be considered without germline BRCA1/2 mutations [42–45]. In addition, this study had
a limited number of EOC patients with amplified RAB25 (7%; n = 7/40) and the overall
sample size was small. However, the median follow-up period for the EOC patients in
this study was longer (50 months) than previous studies, and this may demonstrate the
reliability of the study [35].

5. Conclusions

We demonstrated, for the first time, that RAB25 amplification is predictive of EOC
patient survival. It also showed that the genome-wide instability score could detect EOC.
Shallow WGS is an updated tool that can use cfDNA, which can be obtained non-invasively.
This approach has a cost-benefit, over WGS and WES. However, further validation of the
approach with large cohort studies is required. Collectively, our data showed that cfDNA
detected using shallow WGS may be a clinically applicable tool for diagnosing EOC and
predicting patient prognosis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15020530/s1, Figure S1: Distribution of genome-wide
instability scores according to the status of BRCA1/2 genetic mutations (BRCA1/2 [−] vs. BRCA1/2
[+]) and EOC recurrence/progression during the follow-up time (recurrence/progression [−] vs.
recurrence/progression [+]).; Figure S2: The Spearman correlation between the 40 EOC patients
and TCGA datasets.; Figure S3: DFS based on the six genes with CNVs (RAB25, PIK3CA, MECOM,
PTEN, AKT2, and RPS6KA2) and CA125; Table S1: Clinico-pathologic characteristics for the ovarian
cancer patients and healthy subjects; Table S2: Sequencing statistics; Table S3: Reference dataset
statistics of target genes; Table S4: Z-score of ovarian cancer-specific genes; Table S5: Z-score of
ovarian cancer-specific genes as 0 and 1; Table S6: Genome-wide instability score; Table S7: Averaged
Z-score in OC patients cfDNA and TCGA gDNA; Table S8: Disease-free survival analysis using CNV
pattern of ovarian cancer-specific genes; Table S9: Overall-survival analysis using CNV pattern of
ovarian cancer-specific genes.
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