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Simple Summary: This review provides an update on recent evidence supporting the role of various
microbiomes mediating the interactions that occur between dietary factors, inflammation, and various
cancers. Microbiomes interact with localized and systemic host cell populations where they help
to maintain immune homeostasis. Microbiota use different dietary factors for energy and in turn
produce by-products that impact the host cell populations. Dietary factors can also influence the
composition and diversity of microbiota populations, in turn impacting the interactions of the
microbiomes with host. Perturbations in this system, commonly referred to as dysbiosis, have been
associated with various diseases including cancer.

Abstract: Cancer is the second leading cause of death globally, and there is a growing appreciation
for the complex involvement of diet, microbiomes, and inflammatory processes culminating in
tumorigenesis. Although research has significantly improved our understanding of the various factors
involved in different cancers, the underlying mechanisms through which these factors influence tumor
cells and their microenvironment remain to be completely understood. In particular, interactions
between the different microbiomes, specific dietary factors, and host cells mediate both local and
systemic immune responses, thereby influencing inflammation and tumorigenesis. Developing an
improved understanding of how different microbiomes, beyond just the colonic microbiome, can
interact with dietary factors to influence inflammatory processes and tumorigenesis will support
our ability to better understand the potential for microbe-altering and dietary interventions for these
patients in future.
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1. Introduction

Sustained inflammation is a hallmark of cancer, predisposing the host to tumorigenesis
and promoting all stages of tumor progression [1–3]. Significant advancements have been
made in recent years as research has continued to uncover the role of various host cell
subsets (e.g., leukocytes, cancer stem cells, innate lymphoid cells), environmental factors,
and microbiomes in development and progression of cancers [1,3–7]. Interestingly, one
environmental factor that continues to receive mounting, yet often conflicting evidence
for its role in cancer, is diet [8,9]. Many studies offer simplified approaches, for example,
suggesting that a “Western” diet increases risk of malignancies, while a “Mediterranean”
diet is thought to reduce inflammatory burden and tumorigenesis [10–13]. Progress beyond
correlative analysis has demonstrated that the high phenolic contents of extra virgin olive
oil, a major component of the Mediterranean diet, confers protection in an inflammatory
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setting by reducing the effects of pro-inflammatory mediators partially through interactions
with the gut microbiota [14–16]. This is just one example of how mechanistic research
continues to underpin the complex role that microbiomes play in mediating host interac-
tions with dietary factors and how we can harness this knowledge to better understand the
processes of inflammation and tumorigenesis in several organ systems.

2. The Impact of Diet on Cancer

In recent decades, the impact of diet on cancer has attracted considerable attention
related to either cancer prevention or adjuvant therapy. Dietary intake is thought to
contribute to 30–35% of cancer incidence; however, the influence of dietary factors in specific
types of cancer such as colorectal cancer can be even higher [8,17,18]. One of the most
impactful recent studies of the implications of dietary factors in various cancers examined
associations between diet and risk of cancer at 11 anatomical sites, evaluating the inherent
biases present in many studies and the downfalls associated with present methods used to
assess diet [9]. They found several concrete pieces of evidence relating dietary factors to
cancer outcomes based on studies published to date. Alcohol consumption remained one
of the most positively associated risk factors for a variety of cancers including esophageal,
head and neck, colorectal, liver, and post-menopausal breast cancer [9]. Consumption of
coffee was inversely linked to risk of liver cancer and skin basal cell carcinoma [9]. Lastly,
consumption of calcium, whole grains, and dairy products was inversely linked to risk of
colorectal cancer [9].

However, the study of diet is complex, as a majority of studies evaluate real-world
diets which involve a high degree of heterogeneity. The key components included in
Mediterranean, Western, Paleolithic, and ketogenic diets and their impacts on gut micro-
biota have been described previously which Sinibaldi et al. highlighted in Figure 1 of
their manuscript [19]. Whole food diets such as the Mediterranean diet (MD) consist of a
recommended intake of dietary carbohydrates (including fibers; ~30 g/day), high intake
of mono-unsaturated fatty acids, polyphenols, and omega-3 fatty acids which have been
shown to reduce inflammatory signaling and elicit protective effects against cancer [20–22].
In contrast, the ketogenic diet (KD), which consists of very low carbohydrate intake (in-
cluding fibers), high fat intake, and adequate protein intake to limit glucose levels, has
long been recognized for its benefits in neurological conditions where KD reduces seizure
frequency [23,24]. However, there remains inadequate scientific evidence to support long-
term safety of KD. While KD has more recently received attention for a variety of health
conditions, with some evidence to suggest it may elicit anti-tumor effects in certain cancers,
the improvements are often only temporary, and this restrictive diet negatively impacts diet
quality by recommending increased intake of foods linked to chronic disease and cancer
risk while in turn decreasing intake of protective foods [23,24]. The Paleolithic diet (PD)
displays similarities to the MD, as it is characterized by high consumption of fruits, vegeta-
bles, lean meats, fish, eggs, nuts, and seeds, yet it excludes all processed foods, legumes,
grains, dairy products, and plant oils (except for olive and coconut oil) [25,26]. The PD
also consists of extraordinarily high amounts of fiber intake (~100 g/day), yet interestingly,
while the benefits of PD may be in part due to high consumption of microbiota-accessible
carbohydrates which positively impact gut microbiota diversity, there is some evidence to
suggest PD promotes higher microbiome diversity compared to MD [22,27].
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fruits and vegetables which are metabolized into their active forms and have been known 
to play a role in cell cycle arrest and apoptosis, as well as the prevention of production of 
inflammatory cytokines [32,33]. Several vitamins including biotin, cobalamin, folate, and 
niacin amongst others have also been shown to elicit anti-tumor effects; several of these 
vitamins can be produced by microorganisms in nutrient-scarce conditions [34–37]. Select 
microbes also contribute to anti- or pro-inflammatory responses which can influence the 
development and progression of various cancers, demonstrating the importance of pro-
moting health of these microbiota communities [12,13,28]. 

 
Figure 1. Brief overview of dietary factors, host pathways, and various microbiomes that have been
associated with different organ system cancers described and referenced in this manuscript. Red text
has been correlated with negative impacts on cancer; green text has been correlated with positive
impacts on cancer.

While evidence suggests that diet plays a role in ~30% of all cancers, whether diet
alone or in conjunction with other interventions can be used in the treatment cancers
remains to be fully understood [8,17,18]. Many of the dietary factors increased in diets that
are shown to improve cancer outcomes, including fruits, vegetables, dietary fibers, and
proteins, partially rely on interactions with gut microbiota to elicit health benefits [12,13].
These microbiota communities, particularly oral and intestinal microbiota, are capable
of utilizing dietary factors to produce by-products that impact host cells, and in turn
dietary factors can also influence growth and health of microbiota [12,13,28]. Dietary
metabolites such as short chain fatty acids (SCFAs) produced during fiber fermentation by
select commensal microorganisms in the intestine play a protective role against cancers by
inhibiting myeloid cell-driven pro-tumorigenic inflammation [29]. Furthermore, alterations
in the Firmicutes/Bacteroidetes ratio which are particularly high in obese individuals and
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patients with colorectal cancer can be reduced by decreasing caloric intake [30,31]. Within
the gut, microbiota can also mediate accessibility of polyphenols, a major component of
fruits and vegetables which are metabolized into their active forms and have been known
to play a role in cell cycle arrest and apoptosis, as well as the prevention of production
of inflammatory cytokines [32,33]. Several vitamins including biotin, cobalamin, folate,
and niacin amongst others have also been shown to elicit anti-tumor effects; several of
these vitamins can be produced by microorganisms in nutrient-scarce conditions [34–37].
Select microbes also contribute to anti- or pro-inflammatory responses which can influence
the development and progression of various cancers, demonstrating the importance of
promoting health of these microbiota communities [12,13,28].

3. The Role of Microbiomes in Cancers in Connection to Diet

Several studies have alluded to the role of microbiomes in tumorigenesis and can-
cer immunotherapy [38–40]. Infectious agents including viruses, bacteria, and fungi are
thought to cause over 20% of global cancer cases [6,41]. Commensal microorganisms regu-
late tumor suppression, engage in immunosurveillance during tumor development, and
play a significant role in the maturation and stimulation of the immune system [12,13,42,43].
For example, members of the Lactobacillaceae family are involved in anti-tumor immune
responses driven through stimulation of dendritic cell maturation and subsequent acqui-
sition of other immune cell subsets, including anti-tumorigenic myeloid cells [42,43]. On
the other hand, pathogenic microorganisms play a key role in tumor development and
metastasis and impair responses to anti-cancer therapies [39]. For example, infectious
agents including human papillomavirus (HPV), hepatitis C virus (HCV), hepatitis B virus
(HBV), and Helicobacter pylori have significant and unrefuted roles in tumorigenesis [44].

However, the microbial communities that make up human microbiomes are more com-
plex than the individual microbes that have been implicated in cancers; each microbiome
includes a variety of commensal, pathobiont, and pathogenic microorganisms along with
microenvironment factors including various metabolites [6]. Together these microbiome
communities influence the host directly and indirectly, resulting in beneficial and detrimen-
tal effects on drug metabolism, hormone regulation, inflammation, nutrient access, and
uptake [6,45]. The cancer ecosystem involves a dynamic interaction between the related
microbiomes, cancer cells, non-cancerous host cells, circulating metabolites, and systemic
immunity [6]. Given their diverse nature, microbiomes are in a constant state of flux and
are influenced heavily by nutrition, amongst other external factors [46]. Different dietary
factors have been implicated in various cancers, but how the host microbiomes impact
or influence the effects of these dietary factors on cancer development and progression
requires further elucidation. The gut microbiome has been and continues to be established
as a significant regulator of health and disease; however, it is not the only microbiome
involved in tumorigenesis [12,13].

Several recent studies demonstrated a link between malignancies such as oral squa-
mous cell carcinoma (OSCC) and the oral microbiome [47–49]. Interestingly, such studies
have also linked the effects of alcohol consumption on the oral microbiome and tumorige-
nesis [50]. The oral microbiota can be quite complex, as it encompasses several different
microenvironments; as such, specific microbial species uniquely dominate the oxygenic
oral cavity (e.g., Streptococci and Actinomyces spp.), while others prefer the subgingival
region (below the gum line) where oxygen content is more limited (e.,g. Bacteroides spp. and
spirochaetes).[51,52] Of these common oral microbiota, enrichment of Streptococcus is found
in the oral cavity, stomach, and intestines of gastric cancer patients, suggesting a role for
this microbe in tumorigenesis [53]. Streptococcus has further been confirmed to play a role in
tumor metastasis and in progression of breast cancer migration to the lung via interactions
with endothelial cells and induction of vascular inflammation [54]. Interestingly, use of
Iranian propolis (produced by honeybees) has been shown to reduce growth of oral Strepto-
coccus while in turn displaying cytotoxic effects specific to cancer cells [55]. Increasingly,
evidence is being recognized of, in particular, the interactions that occur between the oral,
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lung, and gut microbiomes and their impact on immunoregulation, inflammation, and
tumorigenesis, although much remains to be understood [49]. The lung microbiome, in
combination with the gut microbiome, has been linked to development of tumorigenesis in
the lung along with development of lung metastases from various other primary cancers,
demonstrating a possible link between the lung microbiome, gut microbiome, and changes
in the lung microenvironment that favor malignancy [56,57]. This interaction between the
oral and gut microbiomes with the lung and potentially other distal organ microbiomes is
impacted by dietary metabolites produced by oral and gut microbiota; these metabolites
can further impact the host cells located in these localized and systemic organ systems,
including immunomodulation [58,59]. The immunomodulator effects of the microbiomes
and the resulting impact on tumorigenesis are clear, showing, for example, the effects of
gut microbes such as H. pylori, Campylobacter jejuni, and chlamydia infections in mediating
chronic inflammation, thereby leading to lymphomas [60]. These distal effects can be far
reaching, and evidence continues to mount in support of the interactions between the
gut microbiome and various other microbiomes such as the breast microbiome and the
role of this cross-talk in breast malignancies that are impacted by micronutrients such as
queuine [61]. Further links between the gut and oral microbiomes have been found in
association with the skin microbiome and malignancies such as melanoma [62], with the
esophageal microbiome and esophageal cancers [63], with the uterine and vaginal micro-
biomes in gynecological cancers [64,65], and with the prostate microbiome and prostate
cancer [66–68]. These interactions that occur between different microbiomes, dietary factors,
and the host differ between different cancers, as highlighted below (Figure 1). Furthermore,
those studies that examined diet, microbiome, and tumorigenesis in specific cancers have
been summarized in Table 1.

Table 1. Studies that examined diet, microbiome, and tumorigenesis in specific cancers.

Cancer Diet Findings Microbial Findings Reference

Nasopharyngeal High salt intake (nitrosamine) Epstein-Barr virus [8]

OSCC Metabolism (nutrients/vitamins) Oral microbiome [69]

Oral and pharyngeal Dietary factors Gut/oral microbiomes [70]

Squamous cell carcinoma Folate Folate-producing microbes [71,72]

Esophageal adenocarcinoma Fatty acid biosynthesis and D-alanine
and nitrogen pathways Esophageal microbiota [73]

Barrett’s esophagus High-fat diet Esophageal microbiota [74]

Esophageal cancers Fiber intake, SCFA, sugar Esophageal microbiota [75]

Stomach cancers High salt intake (nitrosamine) Fungal species [76]

Stomach cancers Nitrogens (processed meats) Helicobacter pylori [77,78]

Inflammatory bowel diseases Dietary fibers Fiber-fermenting microbes [79]

Colorectal cancer Fiber fermentation Fiber-fermenting microbes [80,81]

NAFLD, liver cancer Fiber fermentation, SCFA Fiber-fermenting microbes [82]

NAFLD, liver cancer Alcohol Escherichia coli [82,83]

Liver cancers Dried fruits, nuts and grains Fungal species (Aspergillus) [8]

Cirrhosis and HCC Coffee Bifidobacterium species [84]

HCC Dietary fibers, SCFA (butyrate) Tenericutes, Proteobacteria, Clostridia [85]

Breast cancer Micronutrient queuine Produced by microbes [61]

Prostate cancer Dietary factors Gut, urinary, and prostate microbiomes [67,68]

Prostate cancer Dietary fibers, SCFA Bifodobacterium and F. prausnitzii [86]

Prostate cancer Folic acid Folic-acid producing fecal microbes [67]

Prostate cancer Polyphenols (catechin/isoflavin) Gut microbes [87]
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4. Oral and Pharyngeal Cancers

High salt intake (e.g., Chinese style salted fish) associated with nitrosamine formation
and Epstein–Barr virus has been correlated with nasopharyngeal cancer, which is most
common in Asian, Arctic, Middle East, and North African populations [8,88]. In contrast,
increased consumption of high-fiber foods (fruits, vegetables), vitamin C, and folate has
been associated with decreased risk of oral and pharyngeal cancers, although this evidence
is merely suggestive as confounding environmental factors such as altered smoking and
alcohol consumption patterns may influence disease outcomes also [8,88]. These correlative
studies, which are often plagued by recall or selection biases, are not well supported by
prospective studies; however, more recent mechanistic studies have begun to uncover how
specific dietary factors found within certain fruits and vegetables influence tumorigene-
sis [8]. As well, protein breakdown creates a neutral-alkaline environment that can promote
periodontal disease, which is a risk factor for oral cancer and oral cancer survival [70,89].
However, studies are limited, and the mechanisms are not well understood [70].

The oral microbiome has been referred to as the ‘oralome,’ an umbrella term en-
compassing the dynamic interactions between host cells of the oral cavity and microbial
communities [90]. The oral microbiome therefore not only regulates interspecies inter-
actions but also mediates the crosstalk between the microbial community and the oral
cavity [90]. The balance between a healthy/homeostatic (i.e., eubiotic) and a diseased
(i.e., dysbiotic) state depends on the interactions between microbial species within the oral
cavity and between the host and the oralome itself. Head/neck cancer and oral cancers
have been shown to have a distinct dysbiotic signature, but direct causality between the
oralome and oral cancers remains limited [89,90]. The oral microbiome is predominantly
composed of a bacterial biome.

Oral cancer is most associated with and thereby influenced by the oral and gut micro-
biota [69]. Induction of chronic inflammation by bacterial stimulation is one mechanism,
which has been thought to influence pathogenesis via production of inflammatory media-
tors, causing mutagenesis and uncontrolled cell proliferation [91]. The latter process has
been thought to be regulated through activation of the nuclear factor κB (NF-κB) signaling
pathway and inhibition of apoptotic pathways [92]. The highest mortality oral cancer
remains OSCC which is significantly influenced by the oral microbiota through carcino-
genetic modulation of cell metabolism (i.e., regulating changing concentrations of nutrients
and vitamins) [69]. This modulation can then promote cytokine production associated with
different pathological conditions [69]. Porphyromonas gingivalis, Fusobacterium nucleatum,
and Prevotella intermedia are the microbes most significantly associated with OSCC; P. gingi-
valis and F. nucleatum have been shown to promote tumor progression in mice, and in OSCC
these bacteria increase toll-like receptor 2 (TLR2) and pro-inflammatory cytokines IL-6 and
IL-8 production, potentially contributing to disease progression [89]. As well, P. gingivalis
has been found to increase oral cancer cell invasion and proliferation, increasing myeloid-
derived suppressor cells and chemokines (CCL2 and C-X-C motif) [89]. Interestingly, the
abundance of F. periodonticum, Parvimonas micra, Streptococcus constellatus, Haemophilus
influenza, and Filifactor alocis increases from stages one to four of OSCC [89]. Additionally,
studies have shown that the Fusobacterium, Peptostrepococcus, and Prevotella genera increase
in the periodontal tissues in patients with gingival squamous cell carcinoma [89].

The oral microbiome is an ideal biomarker for oral tumors, compared to other biomark-
ers, highlighting its possible role as an important immunotherapy agent [47]. Commensal
bacteria have been shown to enhance the efficacy of immunotherapy with checkpoint
inhibitors where tumor growth can be controlled through combined oral administration of
Bifidobacterium and programmed cell death protein 1 ligand 1 (PD-L1)-specific antibody
therapy [47]. Dietary changes over time, including introduction of dairy products, refined
carbohydrates, vegetable oils, and alcohol, have been associated with, but not all causatively
linked to, a decline in overall oral health and cancers [70]. Dietary factors have a significant
influence on the gut microbiome, and this influence branches out to the oral microbiome,
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highlighting the critical role of the crosstalk between the human microbiome(s), diet, and
disease [70].

5. Esophageal Cancers

Esophageal cancers are common in areas of Africa, China, and Iran [93]. Green tea is
thought to be anti-tumorigenic; however, scalding hot drinks above 65 ◦C in temperature,
such as coffee and tea, have been associated with increasing risk of esophageal cancers,
potentially due to thermal injury [94–97]. Squamous cell carcinoma is the more common
form of esophageal cancer globally, and both smoking and alcohol consumption have been
noted as risk factors, with limited evidence supporting the direct effects of micronutrients
or dietary factors [8,71,73]. However, some suggest that polycyclic aromatic hydrocarbons
from high-temperature foods might increase risk and dietary folate, which can be produced
by microbes, and might reduce risk of esophageal squamous cell carcinoma [71,72].

Damage of the esophagus caused by acid reflux (via diet or gastroesophageal reflux
disease) complicating Barrett’s esophagus (precursor to esophageal adenocarcinoma) can
increase risk of esophageal adenocarcinomas [73,98,99]. The esophageal microbiome in
esophageal adenocarcinoma is dominated by lactic acid producing Lactobacillus which
can acidify the esophageal microenvironment which can be further exacerbated by the
hydrogen peroxide produced by these microbes [73]. Furthermore, the functions of the
esophageal microbiota are altered in esophageal adenocarcinoma, including an upregu-
lation of cell replication and metabolism along with a decrease in fatty acid biosynthesis
and D-alanine and nitrogen pathways [73]. Interestingly, while H. pylori is best known
for its significant role in stomach cancers, there is also an increase in the abundance of
this pathogen in esophageal tumor tissues [73]. Meanwhile human papillomavirus and
Epstein–Barr virus are reported to increase the risk of developing esophageal squamous cell
carcinoma [100]. Furthermore, increased Porphyromonas gingivalis, and Fusobacterium, along
with reduced Streptococcus, have been identified in esophageal tumor tissues [73]. Both
the oral and intestinal microbiota have also been linked to esophageal cancers; increased
Neisseria and Streptococcus pneumoniae were uncovered in esophageal adenocarcinoma,
while increased P. gingivalis, Actinomyces, and Atopobium were indicative of high risk of
esophageal squamous cell carcinoma [101–103]. Alterations of the microbiome in models
of esophageal cancers and precancerous lesions have been associated with TLR and NLR
inflammatory pathways, demonstrating these pro-inflammatory pathways along with pro-
inflammatory cytokines are increased in esophageal malignancy, possibly via interactions
with the resident microbiota [73,103].

Interestingly, a high-fat diet in a mouse model of Barrett’s esophagus induced tumors
faster than the control diet, likely related to altered microbiota and an increase in neutrophils
and cytokines in the esophagus [74]. Importantly, body size had no effect on tumor
growth, suggesting diet rather than obesity influences cancer risk [74]. Associations have
been identified between diets that are high in red and processed meats and low in fruits,
vegetables (leafy greens especially), and cruciferous vegetables with an increased risk
of esophageal cancer [72]. As well, N-nitroso from processed foods is associated with
increased risk, influencing cell cycle progression (increased cyclinE 1 and cyclinD 1) and
epidermal growth factors (increased transform growth factor α and epidermal growth
factor receptor) [71]. Further inverse associations identified include dietary fiber, vitamin E,
vitamin C, and β-carotene intake and esophageal cancer [72]. Studies have shown that fiber
intake can change the composition of the esophageal microbiome, increasing Firmicutes
and decreasing gram-negative bacteria, with limited detection of SCFA-producing bacteria
regardless of fiber intake [75]. Disease progression specifically has been worsened by sugar,
which increases pro-inflammatory cytokines and causes dysbiosis [71,75].

6. Stomach Cancers

Stomach cancers are most commonly diagnosed in Eastern Asia and comprise the
fifth most common cancer worldwide [93]. Similar to oral cancers, a diet high in salted
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foods (e.g., salt preserved fish) may increase risk directly or via nitrates, nitrites, and
N-nitroso compounds commonly contained in preserved high-salt foods, smoked foods,
and as food additives [76,104,105]. As well, these nitrates and nitrites can mix with heme
irons, amines, and amides from other foods to produce N-nitroso compounds [76]. For
example, consuming large amounts of pickled foods is thought to increase stomach cancer
risk via fungal species commonly found in these foods that produce N-nitroso compounds
and also inhibit prostaglandin E synthesis, which protects the mucosa [76,106]. As well,
a strong correlation has been identified between increased alcohol intake and risk of
gastric cancer [76]. The metabolism of alcohol produces reactive oxygen species (ROS),
which can block blood vessels and promote inflammation and injury, and acetaldehyde,
which binds to and inhibits DNA synthesis in gastric glands [76]. Again, some correlative
evidence supports the benefits of a diet high in fruits, vegetables, and vitamin C in reducing
cancer risk, although mechanisms have yet to be uncovered [107]. However, it has been
suggested that vitamin C can act as an enzyme cofactor and ROS scavenger, decreasing
oxidative damage [76]. Studies show mixed results about the effects of vitamin E on
gastric cancer risk; however, one study demonstrated that vitamin E succinate (a vitamin E
derivative and by-product of fiber fermentation by microbiota) could induce autophagy
in gastric cancer cell lines [76]. Interestingly, supplementation with combinations of α
tocopherol, β carotene, vitamin C, and selenium in clinical studies resulted in a regression
of precancerous lesions and significant reduction in stomach cancer mortality [108–110].
Further, it has been suggested that carotenoids drive a shift from a Th-1 response to a
Th-1/2 response, reducing inflammation [76]. As well, green tea consumption in non-
smoking women has been shown to reduce risk of stomach cancer, potentially linked to
the polyphenols in tea [111]. Helicobacter pylori infection directly causes stomach cancer
by inducing chronic inflammation and causing DNA damage by converting nitrogen
compounds into N-nitroso in gastric fluids, explaining why salted foods might promote
tumorigenesis [77,78,112]. Interestingly, studies of the gastric microbiome have been
limited due to difficulty culturing most microorganisms residing in the stomach; however,
microbial diversity is thought to be significantly lower in patients with gastric cancer [105].
In particular, studies have highlighted an increase in acid-producing microbiota genera
including Lactobacillus and Lactococcus, along with higher pro-inflammatory and pathobiont
microbes such as Fusobacterium, Veillonella, Leptotrichia, Haemophilus, and Campylobacter in
gastric cancer patients [105]. Recent advances in sequencing technologies have allowed for
the detection of these microbes that make up the gastric microbiome, which have helped
improve our understanding of microbes involved in gastric cancers [105].

7. Intestinal Cancers

The gut microbiome is the most well studied of the microbiomes to date, demonstrating
direct links to development of colorectal cancer which is the third most common cancer
globally [93,113]. A wealth of evidence further supports obesity, alcohol, and smoking as
risk factors of colorectal cancer, while consumption of processed meat and unprocessed
red meat have been significantly linked to carcinogenesis [8,114–120]. Use of nitrates and
nitrites in meat preservatives may expose the gut to mutagenic N-nitroso compounds, while
heme iron contained in red meats may also increase N-nitroso and resulting cytotoxicity
and gut damage [8]. Interestingly, exposure of certain meats to high heat during cooking
can increase mutagenic heterocyclic amines and polycyclic aromatic hydrocarbons, while
lactic acid bacteria (primarily Lactobacillus helveticus and Streptococcus thermophilus and less
so Lactobacillus kefir and Lactobacillus plantarum) in the gut are capable of binding to these
chemicals and reducing their mutagenic potential [8,118,121]. Calcium, including in milk
products which are associated with moderate reduction in colorectal cancer, may also bind
secondary bile acids and heme, reducing their tumorigenic potential [122–124].

Consumption of greater than 10 g of total dietary fibers (found in fruits, vegetables,
and grains) a day is associated with reduced risk of colorectal cancer [125,126]. Interest-
ingly, humans do not digest dietary fibers; they require gut microbes to ferment them
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into by-products such as SCFAs, which display beneficial and anti-inflammatory effects
in the gut and systemically reduce risk of colorectal cancer [127–129]. However, recent
evidence suggests there is a pro-inflammatory impact of specific dietary fibers in settings
where the gut microbiota is altered, suggesting the microbiota are key to mediating these
diet-associated benefits [79]. The opportunities to utilize microbe-altering therapies to ma-
nipulate production of SCFA levels in the intestinal tract for the treatment and prevention
of cancers, including colorectal cancer could be considered [129–131]. This also highlights
the implications of dysbiosis (altered microbiota composition) in development and pro-
gression of colorectal cancer, as commensal microbes that are key for fiber fermentation
(Bifidobacterium, Faecalibacterium, and Blautia) are commonly reduced in colorectal cancer
patients [80,81]. Significant associative changes between the gut microbiome and host fac-
tors have been highlighted in a recent study of healthy controls, irritable bowel syndrome,
inflammatory bowel disease, and colorectal cancer patients, demonstrating increased Parvi-
monas, Bacteroides fragilis, Peptostreptococcaceae, and Streptococcus spp. associated with
Syndecan-1, DNA replication, and cell cycle pathways [132]. Significantly greater details
of the highlighted similarities and differences in associations between microbes and host
genes in these GI disorders are discussed in the referenced manuscript [132].

8. Liver Cancers

Several factors have been directly linked to development and progression of liver can-
cers, particularly consumption of alcohol which induces liver inflammation associated with
cirrhosis (including systemic inflammation) and alcoholic hepatitis [8,133]. Furthermore,
alcohol can alter the epithelial barrier of the gut allowing microbes and microbial metabo-
lites (including toxins) to be taken up more readily and translocate to the liver where they
are capable of inducing inflammation and subsequently fibrosis and cirrhosis [134,135].

Another disease called non-alcoholic fatty liver disease (NAFLD) has the potential
to progress into non-alcoholic steatohepatitis (NASH), which causes inflammation and
damage due to excess fat stored by liver cells, cirrhosis, or hepatocellular carcinoma
(HCC) [136]. Recent studies have shown data about the role of the gut microbiome in the
etiology of NAFLD [82,136,137]. NAFLD is caused by the accumulation of triglycerides
(TG) hepatocytes formed from the esterification of fatty acids in the liver [138]. During gut
dysbiosis, gut permeability increases, allowing the increased absorption of fatty acids and
translocation of bacteria and inflammatory cytokine and leading to worsened inflammation.
SCFA producers and fiber fermenters such as Faecalibacterium prausnitzii and Akkermansia
muciniphila are reduced in NAFLD [82]. This lowered production of SCFA could in turn
increase gut permeability. Patients with NAFLD also have increased population of Es-
cherichia coli that in turn leads to an increased production of ethanol in anaerobic conditions,
stimulating the NF-kB pathway that leads to inflammation [82,83].

Furthermore, the fungal species Aspergillus, which is commonly found in foods such
as dried fruits, nuts, and grains when stored incorrectly (hot and humid), produces a muta-
genic toxin, aflatoxin [8]. This is particularly considered a risk factor for individuals with
active HBV and HCV infections, which are the primary microbial cause of liver cancers [8].
Meanwhile, some studies suggest consumption of coffee with the bioactive compounds
found in coffee beans may reduce risk of liver cancers [8,139–141]. Consumption of caffeine
increases Bifidobacterium species as well as the expression of Aquaporin 8 in the colon, which
reduces the risk of cirrhosis and HCC as well as improves barrier integrity [84]. Similarly,
green tea extracts have been shown to lead to improved liver enzymes, to reduced body fat,
and to an increase in barrier function [142]. The catechins in green tea extract are poorly
absorbed and therefore degraded by gut microbes such as Bifidobacterium, Lactobacillus, and
Ruminococcus, producing SCFA [143].

On the other hand, a study found that certain fermentable fibers such as inulin induced
cholestasis and HCC in dysbiotic mouse models [85]. After receiving a diet rich in soluble
fermentable fibers, the HB mice had lower abundance of Tenericutes and increased abun-
dance of Proteobacteria, which have been indicated in hepatocarcinogenesis in humans [85].
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In addition, there was an increase in Clostridia, which are a fiber-fermenting species that
also increased the amount of butyrate and secondary bile acids that further aggravated the
disease and created a tumor-promoting environment when in a large amount [85].

9. Pancreatic Cancers

Pancreatic cancer remains one of the most lethal cancers globally, with surgery as
the only potentially curative option for intervention [144]. Several factors associated
with obesity increase risk of pancreatic cancer, including diabetes (heightened insulin),
suggesting a role for diet [8,145]. Recent research has begun to uncover these links as
high-fat diets significantly increase pancreatic metastases and activate receptors involved
in driving progression of precancerous pancreatic lesions to pancreatic cancer [146–148]. A
high-fat diet readily leads to obesity and elicits changes in the gut microbiome and microbial
metabolites [149]. In addition, it might lead to the translocation of intestinal microbes as
well as detrimental metabolites into the blood stream, which then make their way to the
pancreas [150]. This dysbiosis has been associated with tumorigenesis and more aggressive
pancreatic cancer [144]. For instance, Helicobacter pylori, which has been associated with
increased risk of pancreatic cancer, can bind to epithelial cells in the stomach using the
adhesin HopQ and carcinoembryonic antigen-related cell adhesion molecules (CEACAM)
and inject its virulence factor CagA into the epithelial cells. This then activates a signaling
pathway called the Wnt/β-catenin pathway, which is involved in various cellular functions
such as proliferation [151].

Moreover, although inconsistent, some studies have also associated the increased
intake of red meat and processed meat containing carcinogenic nitrites and N-nitroso
compounds (NOCs) with the risk of developing pancreatic cancer due to their ability to
form DNA adducts, inducing mutations [152,153]. On the other hand, increased fruit and
vegetable intake have been shown to reduce the risk of pancreatic cancer [154,155]. Black
raspberries, for instance, have been found to inhibit inflammation, cell transformation,
and tumor-specific gene expression as well as increase tumor-infiltrating CD8+ T cells in
pancreatic ductal adenocarcinoma [156]. Similarly, another study saw a down-regulation
in the miRNA gene responsible for the development of inflammation, metabolic disease,
carcinoma, invasion, and metastasis after introducing resistant starch diet in xenograft mice
models [157]. This suggests that microbe-altering therapies such as prebiotics, probiotics
(e.g., Faecalibacterium prausnitzii and Lactobacillus casei), and fecal microbiota transplant
could offer potential to improve pancreatic cancer outcomes by reducing severity and
improving treatment response [144,150,158].

10. Breast and Prostate Cancers

The second most common cancer globally is breast cancer, while prostate cancer is
the fourth most common global cancer [8,93]. Interestingly, while hormonal factors includ-
ing estrogen, testosterone, and progesterone are key determinants of risk, the intestinal
microbiome has been identified as a major regulator of circulating estrogen, as a producer
of testosterone, and as a source for increased risk of breast and prostate cancer [159–163].
Obesity has been linked to breast cancer risk, likely through increased circulating estro-
gens which are produced in adipose tissues, and to the aggressiveness of prostate cancer,
although the evidence remains controversial, and prospective observational studies have
been null [8,164–167]. Adipose tissue in obese individuals may also secrete high levels of
plasminogen activator inhibitor-1 (PAI-1), which inhibits enzymes involved in remodeling
tissue and degrading blood clots and has been associated with increased risk of breast
cancer [168]. Interestingly, the microbes of the gut are able to translocate to the skin and
in turn to the breast tissues altering the breast microbiome which has been shown to im-
pact breast malignancies [61]. As mentioned earlier, the micronutrition queuine, which is
produced by microbes, is increased in breast cancers, and modifications of queuine can
impact tight junction pathways leading to increased migration, invasion, and metastases
of breast cancer [61]. Major changes in the breast microbiome in breast cancers include
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decreased Anaerococcus, Caulobacter, Streptococcus, Propionibacterium, and Staphylococcus;
these changes were associated with increased oncogenic immune potential [169]. Similarly,
in prostate cancer, various dietary factors which have been profoundly linked to prostate
malignancies can impact the gut, urinary, and prostate microbiomes, demonstrating a
decrease in microbes and microbial metabolites that play a significant role in regulating
anti-cancer immune surveillance [67,68].

Dietary studies suggest a benefit of vegetable intake, dietary fibers, and soya isoflavins
in relation to breast and prostate cancer, although the evidence remains largely inconclu-
sive [170–174]. These foods increase the production of SCFAs by beneficial bacteria such
as Bifodobacterium and F. prausnitzii, which modulate anti-inflammatory and anti-cancer
responses [86,175]. As well, total meat and processed meat intake have been associated
with an increased risk of breast and prostate cancer [176]. This could be caused by the fat
in meat increasing estrogen production and the meat components (heme iron, heterocyclic
amines, polycyclic aromatic hydrocarbons, and N-nitroso compounds) causing DNA dam-
age [176]. Further correlative evidence suggested beneficial effects of tomato lycopene, β
carotene, vitamin D, vitamin E, and selenium in prostate cancer; however, the data remain
inconclusive, requiring further investigations [8,177–180].

Although difficult to define, evidence shows that the Mediterranean diet reduces
the incidence and mortality of prostate cancer, though the mechanisms have yet to be
determined [87]. This diet includes legumes, nuts, vegetables and fruits, fish, and eggs
and has been shown to lead to an increase in the abundance of Lactobacillus compared to
the Western diet [181]. Lactobacillus has shown anti-tumor activity in synergistic breast
cancer models and increased migration and activation of immune cells in other body sites
including the mammary glands [182,183]. Studies also suggest that natural folic acid might
be protective of prostate cancer [67]. For example, people with prostate cancer show a
fecal microbiome with reduced folic-acid-producing microflora, and folic acid is needed
for DNA methylation [67]. Further, diets low in fat, paired with exercise, can change
hormone levels and induce apoptosis [87]. For instance, mice on a low-fat diet had reduced
prostate-specific serum antigen, inulin, and Igf1 mRNA and showed delayed tumor growth
overall [87]. As well, eicosapentaenoic acid and docosahexaenoic acid (e.g., n-3 fatty acids
in fish oil) have been shown to reduce the proliferation and invasion of prostate cancer
cells [87]. Moreover, polyphenols, especially catechin and isoflavone, have a positive effect
on prostate cancer [87]. For example, catechin epigallocatechin-3-gallate found in green
tea causes cell arrest and induces apoptosis, and soy isoflavone has a similar structure
to 17 β-estradiol, allowing it to bind to the estrogen receptor [87]. As well, microbes can
metabolize polyphenols into urolithin A and 5-(3′,4′,5′-trihydroxyphenyl)-γ-valerolactose,
which decreases proliferation [87].

Total dairy product intake (especially whole milk) and calcium have been associ-
ated with an increased risk of prostate cancer [184]. However, it remains unclear if it is
the fat component or non-fat components driving this association [184]. For example,
dairy might increase circulating hormones, and the casein protein in milk could increase
proliferation [184].

11. Tumor Microbiomes

The first comprehensive characterization of the tumor microbiome was recently pub-
lished in Science; therefore, there is not yet any evidence linking the tumor microbiome
and diet in tumorigenesis [185]. However, this study compared and contrasted tumor
biospecimens with adjacent normal tissues in 1,526 clinical samples, uncovering the distinct
organ-specific bacteria associated with breast, lung, ovary, pancreas, melanoma, bone, and
brain tumors [185]. Uniquely, these intratumor bacterial species were primarily found in
the intracellular compartments of cancer and immune cells [185]. The role of the broader mi-
crobiome (bacteria, fungi, viruses) in human cancers was further reviewed, presenting the
limited causal role of specific microbes as highlighted throughout the present review [186].
Examining the cancer mycobiome, Narunsky-Haziza et al. examined 17,401 clinical samples
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(blood, plasma, and tissues) in 35 different types of cancer [187]. The findings were similar,
demonstrating intratumor fungi are spatially associated with cancer cells and macrophages,
and the tumor mycobiome co-resides with tumor bacteriomes [187]. Recent evidence ex-
panded on this topic, taking a step away from the bulk-tissue approaches implemented by
previous studies and instead utilizing in situ spatial-profiling technologies and single-cell
RNA sequencing to show that these tumor bacteria reside in highly organized micro-niches
that display higher immune-suppression and lower vasculature associated with malignant
cells compared to tumor micro-niches devoid of bacteria [188]. These intracellular tumor-
resident bacteria have also been shown to promote metastasis, carried by circulating tumor
cells to secondary sites [189]. However, the question remains of how diet then impacts these
tumor resident microbes if they typically reside in low vascular micro-niches? Is nutrient
value provided by the tumor cells and neighboring stromal cells [190,191]? Furthermore,
can dietary factors impact these microbes during tumor metastasis to secondary sites (e.g.,
SCFA in the vasculature)?

12. The Take Home Message

The described interactions are complex and indicate similarities along with clear differ-
ences between dietary factors, microbiomes, and host responses involved in tumorigenesis
in different common cancers, summarized in this review (Figure 2). Host microbiomes have
co-evolved with the host immune system, demonstrating the significance of microbiomes
as a critical influencing factor on health and disease [46,151]. External factors, such as diet,
influence the effect of different microbiomes on host immunity, contributing to homeostasis
and overall immune function [46]. Therefore, changes in host microbiome communities can
impact the ability for crosstalk between different host microbiomes and immune system to
occur, contributing to the pathogenesis of several diseases, such as cancer [39].

Cancer is a multifactorial disease and considered to be the second leading cause of
death globally [192]. Microorganisms play critical roles in both protecting against or pro-
moting tumorigenesis [192]. Changes in diet and certain dietary factors can introduce
perturbations in the host microbiome by affecting the diversity and regulation of the mi-
crobiota. Variable microbiota diversity can result in dietary factors interacting with the
immune system differently [28]. An in-depth knowledge of the functions and architecture of
various microbiomes, along with their interaction with the host, can support development
of individualized dietary guidelines and microbe-altering approaches in future. Further-
more, microbe-based therapies can be used to target specific tumor microenvironments as
each microenvironment has its own microbiome community, regulating its intra-tumoral
processes [39]. However, uncovering the underlying causative and mechanistic interac-
tions between microbiomes, dietary factors, and tumorigenesis requires further studies
utilizing improved methods and study designs. From a microbiome standpoint, Niño et al.
demonstrated substantial progression using spatial distribution approaches to uncover
localized effects of microbes within the tumor microenvironment [188]. However, diet was
not taken into account in these studies. As such, one consideration is to ensure appropriate
24 hr recall diet diaries are collected by patients when microbial samples are obtained
whenever possible in clinical cohorts [193]. However, these diet data are simply correlative,
and it is essential to follow-up this work with dietary intervention studies [194]. The best
dietary intervention study design involves a cross-over event where every participant acts
as their own control, consuming both the trial diet and the control diet with a washout
period between treatments [194]. Ultimately these studies are well supported by continued
mechanistic experiments examining the interactions of both individual dietary factors,
microbes, and host populations, along with more physiologically relevant whole diets with
microbiota and host communities. As described in this review, while research continues to
uncover interesting mechanistic and correlative relationships between diet, microbiomes,
and tumorigenesis, the majority of studies only examine two of the three factors at a time,
and the majority of the studies completed to date have focused specifically on the gut
microbiome. This highlights important opportunities for future studies to examine organ-
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specific microbiomes and how these communities interact with dietary factors and host cell
populations. Elucidating mechanisms or therapies to control and influence these processes
can help us up-regulate protective mechanisms and down-regulate harmful mechanisms,
providing relief to the host.
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