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Simple Summary: Cancer cells that grow near adipose tissue inevitably exchange signals with
adipocytes. The dynamic crosstalk between these two cell types facilitates the alteration of their cellu-
lar properties. The transformation of normal adipocytes into cancer-associated adipocytes (CAAs)
provides a pro-tumorigenic niche for rapid tumor progression. However, the cancer-originated
signals that mediate adipocyte transformation remain largely unknown. In this review, we dis-
cuss various inflammatory signals amplified in both obese and peritumoral adipose tissue. These
inflammatory signals could mediate adipocyte transformation to phenotypes similar to CAAs by
promoting adipocyte dedifferentiation and lipolysis. Epidemiological studies indicate a higher effi-
cacy of nonsteroidal anti-inflammatory drugs in obese patients with cancer. Therefore, delivering
anti-inflammatory agents can be a plausible therapeutic strategy to ameliorate the activation of tumor
microenvironment components, especially adipocytes.

Abstract: Of the various cell types in the tumor microenvironment (TME), adipocytes undergo a
dynamic transformation when activated by neighboring cancer cells. Although these adipocytes,
known as cancer-associated adipocytes (CAAs), have been reported to play a crucial role in tumor pro-
gression, the factors that mediate their transformation remain elusive. In this review, we discuss the
hypothesis that inflammatory signals involving NF-kB activation can induce lipolysis and adipocyte
dedifferentiation. This provides a mechanistic understanding of CAA formation and introduces the
concept of preventing adipocyte transformation via anti-inflammatory agents. Indeed, epidemiolog-
ical studies indicate a higher efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) in obese
patients with cancer, suggesting that NSAIDs can modulate the TME. Inhibition of cyclooxygenase-2
(COX-2) and prostaglandin production leads to the suppression of inflammatory signals such as
NF-kB. Thus, we suggest the use of NSAIDs in cancer patients with metabolic disorders to prevent
the transformation of TME components. Moreover, throughout this review, we attempt to expand
our knowledge of CAA transformation to improve the clinical feasibility of targeting CAAs.

Keywords: obesity and cancer; tumor microenvironment; cancer-associated adipocyte; inflammatory
adipose tissue; adipocyte dedifferentiation; NSAID

1. Introduction

Adipocytes are the primary constituents of adipose tissue that store energy in the form
of lipids. Adipocytes sustain tissue homeostasis by secreting diverse endocrine signals,
including adipokines, lipids, and exosomes [1]. Under certain pathological conditions,
adipocytes undergo dynamic alterations in their physical properties. For instance, obesity
and diabetes accompany adipose tissue inflammation, which induces adipocyte hypertro-
phy and impaired metabolism [2]. Moreover, there is growing evidence that the interaction
between adipocytes and cancer cells modulates adipocyte characteristics, causing them to
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secrete abnormal levels of adipokines and cytokines. However, only a few studies have
suggested the mechanisms underlying adipocyte dedifferentiation [3].

Tumor cells secrete signals that transform nearby stromal cells to facilitate a favorable
environment [4,5]. At the anatomical sites where cancer cells are adjacent to adipose tissue,
cancer cells exert to activate adipocytes and generate cancer-associated adipocytes (CAAs).
CAAs exhibit a dedifferentiated phenotype that entails a smaller size of lipid droplets.
CAAs also possess curtailed mature adipocyte markers while acquiring fibroblast-like
features. Cancer cells can induce the lipolytic activity of these adipocytes to exploit lipids
as their main energy source [6]. Indeed, some cancer cells reprogram their metabolic
dependency towards fatty acid oxidation to fully utilize long-chain fatty acids (FAs) [5,7].
To date, the pro-tumorigenic effects of CAAs have been well-defined (reviewed in [8]).
However, only two cellular homeostatic pathways (Wnt and Notch) were suggested to
generate CAAs, and only a few studies have attempted to provide a therapeutic strategy to
prevent adipocyte transformation. [9,10].

Obesity-related cancers, including esophageal, gallbladder, colorectal, pancreatic,
breast, endometrial, kidney, and thyroid cancer, have been reported to strongly correlate
with patient body mass index (BMI) [11]. Obesity-related cancers tend to be proximal to
adipose tissue, which includes subcutaneous, periprostatic, and visceral adipose tissue,
indicating that the condition of adipose tissue can affect tumor progression [12]. A dramatic
increase in the prevalence of obesity has encouraged many scientists to attempt to elucidate
the link between obesity and cancer. However, despite intensive research, the underlying
mechanisms of how obesity contributes to cancer progression remain unclear. In this review,
we propose that both the tumor microenvironment (TME) and obese adipose tissue are
overwhelmed by pro-inflammatory factors, and these inflammatory agents are sufficient for
adipocyte transformation [13,14]. This supports the notion that anti-inflammatory agents
could be used to modulate the TME, especially in patients with metabolic disorders.

Given that inflammation is one of the leading factors of tumorigenesis and tumor
malignancy, anti-inflammatory agents have been evaluated for their anti-cancer effects [15].
Non-steroidal anti-inflammatory drugs (NSAIDs) target cyclooxygenase (COX) to inhibit
prostaglandin (PG) production, which suppresses the sequential release of inflammatory
mediators. Thus, regular use of NSAIDs has been suggested to inflict cancer-preventive
effects [16]. However, according to multiple clinical practices, NSAID use as a chemothera-
peutic agent has generated contradictory and inconsistent results [16]. Here, we emphasize
the effect of NSAIDs on the inflammatory environment to suppress angiogenesis, fibrosis,
and peritumoral adipocytes. Accordingly, preventing CAA transformation can be beneficial
in cancers surrounded by a large population of adipocytes. This way, the chemotherapeutic
approach simultaneously targets multiple TME components and potentiates NSAID use in
patients with adipose tissue inflammation.

2. Characterization of CAA

The rapid expansion of solid tumors can drastically alter the local microenvironment,
including adipose tissue. Such remodeling of the TME coincides with the increasing plas-
ticity of its components, enabling angiogenesis, immune evasion, and cancer metastasis [4].
Since cancers actively exchange signals with TME components, how peritumoral adipocytes
respond to those signals has garnered immense interest.

CAAs are adipocytes with deeply modified properties via cancer-derived signals,
and they are characterized by diminished lipid content, upregulation of genes associated
with plasticity, and altered cytokine secretion [5,17,18]. Adipocytes grown with cancer
cells using the in vitro cocultivation system underwent a significant loss of lipid content
and showed an elongated morphology similar to that of fibroblasts [9]. Some studies
have evaluated CAAs to have enhanced cellular plasticity and pluripotency, acquiring
MSC-like features. In addition, upon cocultivation with breast cancer cells, CAAs display
significantly low levels of CCAAT enhancer binding protein α (C/EBPα) and peroxisome
proliferator-activated receptor γ (PPARγ), which are master regulators of adipogenesis and
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differentiation [19–21]. Such dedifferentiation of adipocytes enables them to migrate into
the tumor mass and provides lipid metabolites to support tumor progression [7,21,22].

3. Oncogenic Roles of Transformed Adipocytes

Most remarkably, lipolytic enzymes in adipocytes are activated upon cocultivation
with cancer cells [23]. Cancer cells are known to facilitate free fatty acids (FFAs) for energy
production through fatty acid oxidation (FAO) when the available glucose is limited [6].
Such metabolic adaptations enable cancer cells to migrate and colonize other body parts
while evading immune surveillance [24]. Therefore, inhibiting triacylglycerol (TG) break-
down and limiting lipid availability are used as chemotherapeutic strategies [25,26]. Due to
an adipose tissue-rich environment, breast and prostate cancer tend to rely heavily on lipid
metabolism [27–29]. These cancer cells curtail glucose consumption rates, increase fatty
acid uptake, and overexpress the enzymes involved in β-oxidation [23,26,30]. Furthermore,
FFAs can also be synthesized into lipid-signaling molecules, such as lysophosphatidic acid,
sphingolipids, and prostaglandins. These signaling molecules are crucial messengers in the
promotion of cell survival and proliferation [25,31]. The TME is characterized as metabol-
ically restrictive, where CAAs supply metabolites, such as FFAs and lactate, to induce
metabolic reprogramming of the TME components [32,33]. Promoting FAO-dependency
of immune cells, CAAs construct TME favorable for rapid tumor growth and immune
evasion [34,35].

Adipocytes secrete more than 600 metabolites, hormones, and cytokines, collectively
known as adipokines [1]. Once activated by cancer cells, adipocytes secrete a wide ar-
ray of adipokines, which promote tumorigenesis and tumor progression [36–38]. Leptin,
autotaxin, and insulin-like growth factor (IGF) levels were upregulated in peritumoral
adipocytes compared with those in distant mature adipocytes [38]. Patients with high-
grade breast cancers exhibit enhanced levels of these adipokines, which leads to a worse
prognosis [36,38–40]. In addition to breast cancers, these adipokines also promote the
malignant behavior of colorectal cancer. The close relationship between obesity and col-
orectal cancers can be explained by the effect of differential adipokine secretion on cancer
proliferation, metastasis, and resistance to therapy [37]. Unlike leptin, adiponectin level is
downregulated in CAAs. Adiponectin is known to play anti-apoptotic, anti-inflammatory,
anti-fibrotic, and insulin-sensitizing role, and low adiponectin levels support the rapid
growth of cancer cells [41]. Obese patients tend to have a low adiponectin-to-leptin ratio,
which can cause advanced tumors and a poor prognosis [42]. Other adipokines, such as
lipocalin-2, IGF binding proteins (IGFBPs), and resistin, also promote cancer cell migration,
invasion, proliferation, and resistance to therapy [22].

Similar to obese adipocytes, CAA-derived inflammatory factors include IL-1β, IL-6,
TNFα, vascular endothelial growth factor (VEGF), C-C motif chemokine ligand 2 (CCL2),
and matrix metalloproteinases (MMPs) [17,18,43]. Additionally, adipocytes co-cultivated
with cancer cells exhibit a five-fold increase in the level of TNFα, which could partici-
pate in extracellular matrix (ECM) remodeling, angiogenesis, evasion of immune surveil-
lance, epithelial-mesenchymal transition (EMT), and uncontrolled proliferation of cancer
cells [43–45]. Secretory factors of CAAs also modulate immune cells within the TME by
exerting immunosuppressive function during cancer development (reviewed in [17,34]).
Overall, depending on the environmental conditions of adipocytes, their secretory factors
can promote the malignant behavior of various cancer cells (Figure 1).
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Figure 1. Oncogenic role of peritumoral and obese adipose tissue. Adipocyte characteristics are 
highly dependent on the environmental condition. At the invasive tumor front, adipocytes are ex-
posed to various signals from cancer cells and are transformed into immature adipocytes. In paral-
lel, under excessive consumption of nutrients, hypertrophic adipose tissue drives adipocyte death 
and inflammation. Both peritumoral and inflammatory adipose tissues exhibit downregulation of 
PPARγ and CEBPα expression, presenting the population of dedifferentiated adipocytes. Activation 
of lipolysis via key lipases, such as ATGL and HSL, leads to the secretion of various lipid metabolites 
that support tumor progression. Dedifferentiated adipocytes also provide an altered array of adi-
pokines, which are considered pro-inflammatory and tumorigenic. The induction of adipocyte de-
differentiation and lipolysis contributes to cancer cell survival, growth, epithelial-mesenchymal 
transition (EMT), chemoresistance, and immune surveillance. Abbreviations: TNFα, tumor necrosis 
factor α; IL-6, interleukin-6; IL-1β, interleukin-1β; PGE2, prostaglandin E2; HGF1, human gingival 
fibroblast -1; AdipoQ, adiponectin; CCL2, C-C motif chemokine ligand 2; CCL5, C-C motif chemo-
kine ligand 5; MCP-1, monocyte chemoattractant protein-1; Resistin, adipose tissue-specific secre-
tory factor; MMP11, matrix metallopeptidase 11; EMT, epithelial-mesenchymal transition. 

4. Wnt and Notch-Signaling to Induce CAA Transformation 
Adipocyte dedifferentiation is a reverting process of mature adipocytes, which pro-

vides plasticity to transform adipocytes into fibroblast-like progenitor cells [7,9]. PPARγ 
and C/EBPα, the key regulators of adipogenesis and adipocyte differentiation, coopera-
tively provide the enzymes required for insulin sensitivity, lipogenesis, and lipolysis [46]. 
When affected by cancer cells, adipocytes undergo the downregulation of enzymes asso-
ciated with adipogenesis, initiating adipocyte dedifferentiation (Figure 2). To date, two 
distinct pathways (Wnt and Notch) have been proposed to explain adipocyte dedifferen-
tiation induced by cancer cells [10,47,48]. 

Figure 1. Oncogenic role of peritumoral and obese adipose tissue. Adipocyte characteristics are
highly dependent on the environmental condition. At the invasive tumor front, adipocytes are
exposed to various signals from cancer cells and are transformed into immature adipocytes. In
parallel, under excessive consumption of nutrients, hypertrophic adipose tissue drives adipocyte
death and inflammation. Both peritumoral and inflammatory adipose tissues exhibit downregulation
of PPARγ and CEBPα expression, presenting the population of dedifferentiated adipocytes. Acti-
vation of lipolysis via key lipases, such as ATGL and HSL, leads to the secretion of various lipid
metabolites that support tumor progression. Dedifferentiated adipocytes also provide an altered array
of adipokines, which are considered pro-inflammatory and tumorigenic. The induction of adipocyte
dedifferentiation and lipolysis contributes to cancer cell survival, growth, epithelial-mesenchymal
transition (EMT), chemoresistance, and immune surveillance. Abbreviations: TNFα, tumor necrosis
factor α; IL-6, interleukin-6; IL-1β, interleukin-1β; PGE2, prostaglandin E2; HGF1, human gingival
fibroblast -1; AdipoQ, adiponectin; CCL2, C-C motif chemokine ligand 2; CCL5, C-C motif chemokine
ligand 5; MCP-1, monocyte chemoattractant protein-1; Resistin, adipose tissue-specific secretory
factor; MMP11, matrix metallopeptidase 11; EMT, epithelial-mesenchymal transition.

4. Wnt and Notch-Signaling to Induce CAA Transformation

Adipocyte dedifferentiation is a reverting process of mature adipocytes, which pro-
vides plasticity to transform adipocytes into fibroblast-like progenitor cells [7,9]. PPARγ and
C/EBPα, the key regulators of adipogenesis and adipocyte differentiation, cooperatively
provide the enzymes required for insulin sensitivity, lipogenesis, and lipolysis [46]. When
affected by cancer cells, adipocytes undergo the downregulation of enzymes associated
with adipogenesis, initiating adipocyte dedifferentiation (Figure 2). To date, two distinct
pathways (Wnt and Notch) have been proposed to explain adipocyte dedifferentiation
induced by cancer cells [10,47,48].
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cose transporter type 4; FASN, fatty acid synthase; CEBPα, CCAAT/enhancer binding protein α; 
CEBPβ, CCAAT/enhancer binding protein β; CEBPγ, CCAAT/enhancer binding protein γ; CEBPδ, 
CCAAT/enhancer binding protein δ; PPARγ, peroxisome proliferator-activated γ; WNT3α, Wnt 
family member 3A; PREF1, preadipocyte factor 1. 

Cancer-mediated Wnt/β-catenin signaling in preadipocytes mainly suppresses ad-
ipogenesis [9,10,47]. Wnt3α and Wnt5α, the ligands of canonical Wnt signaling, are trans-
ferred to adipocytes during the cocultivation of cancer cells. Administration of Wnt3α and 
Wnt5α induces the c-Jun and activator protein-1 (AP1) signaling pathways while sup-
pressing adipogenic signals [9,10]. Additionally, Li et al. reported that mechanical pres-
sure could dedifferentiate adipocytes through Wnt signaling activation [47]. The rapid 
expansion of solid tumors results in intense physical stress on adjacent stromal cells. Ad-
ipocytes, under such stress, undergo dedifferentiation to acquire a mesenchymal stem cell 
(MSC) phenotype. Compression-induced dedifferentiated adipocytes (CiDAs) generated 
by mechanical pressure activate canonical Wnt/β-catenin signaling. The co-injection of 
cancer cells and CiDAs into mice resulted in the enhanced growth of cancer cells [47]. 

A study on liposarcoma (LPS) showed that adipocyte dedifferentiation could also be 
mediated by active Notch signaling. Herein, mice with constitutively active Notch1 were 
generated in an adipocyte-specific manner (Ad/N1ICD) [48]. The Ad/N1ICD adipocytes 
developed an impaired lipid metabolism pathway and underwent a loss of lipid messen-
ger required for PPARγ activity. Owing to PPARγ ligand deficiency, these adipocytes un-
derwent downregulation of fatty acid oxidation, lipid uptake, and aerobic respiration. 
This led to adipocyte dedifferentiation and exhibited an enriched human LPS gene signa-
ture. Conversely, PPARγ ligand supplementation and Notch inhibition re-differentiated 
adipocytes and suppressed the LPS transformation of mature adipocytes in mice [48]. 

Both Wnt and Notch signaling are closely linked with cellular development, differ-
entiation, and homeostasis [49,50]. Furthermore, mounting evidence supports that Wnt 
and Notch signaling are also involved in the pathogenesis of chronic inflammatory dis-
eases, including cancer-mediated inflammation [49–52]. Exposure to inflammatory cyto-
kines, such as IL-6 and TNFɑ, could upregulate Wnt signaling and abrogate the differen-

Figure 2. Alteration of gene expression during adipocyte differentiation. Differentially expressed
genes throughout the adipocyte lineage are illustrated according to the timeframe. Mesenchymal
stem cells exhibit the highest proliferative and pluripotent capacity, which decreases during adipocyte
differentiation. Adipocyte dedifferentiation involves the loss of mature adipocyte markers, such
as PPARγ and CEBPα, while acquiring the mesenchymal stem cell phenotype. Abbreviations:
COX-2, cyclooxygenase-2; AdipoQ, adiponectin; FABP4, fatty acid binding protein 4; GLUT4, glu-
cose transporter type 4; FASN, fatty acid synthase; CEBPα, CCAAT/enhancer binding protein α;
CEBPβ, CCAAT/enhancer binding protein β; CEBPγ, CCAAT/enhancer binding protein γ; CEBPδ,
CCAAT/enhancer binding protein δ; PPARγ, peroxisome proliferator-activated γ; WNT3α, Wnt
family member 3A; PREF1, preadipocyte factor 1.

Cancer-mediated Wnt/β-catenin signaling in preadipocytes mainly suppresses adipo-
genesis [9,10,47]. Wnt3α and Wnt5α, the ligands of canonical Wnt signaling, are transferred
to adipocytes during the cocultivation of cancer cells. Administration of Wnt3α and Wnt5α
induces the c-Jun and activator protein-1 (AP1) signaling pathways while suppressing
adipogenic signals [9,10]. Additionally, Li et al. reported that mechanical pressure could
dedifferentiate adipocytes through Wnt signaling activation [47]. The rapid expansion of
solid tumors results in intense physical stress on adjacent stromal cells. Adipocytes, under
such stress, undergo dedifferentiation to acquire a mesenchymal stem cell (MSC) pheno-
type. Compression-induced dedifferentiated adipocytes (CiDAs) generated by mechanical
pressure activate canonical Wnt/β-catenin signaling. The co-injection of cancer cells and
CiDAs into mice resulted in the enhanced growth of cancer cells [47].

A study on liposarcoma (LPS) showed that adipocyte dedifferentiation could also be
mediated by active Notch signaling. Herein, mice with constitutively active Notch1 were
generated in an adipocyte-specific manner (Ad/N1ICD) [48]. The Ad/N1ICD adipocytes
developed an impaired lipid metabolism pathway and underwent a loss of lipid messenger
required for PPARγ activity. Owing to PPARγ ligand deficiency, these adipocytes under-
went downregulation of fatty acid oxidation, lipid uptake, and aerobic respiration. This led
to adipocyte dedifferentiation and exhibited an enriched human LPS gene signature. Con-
versely, PPARγ ligand supplementation and Notch inhibition re-differentiated adipocytes
and suppressed the LPS transformation of mature adipocytes in mice [48].

Both Wnt and Notch signaling are closely linked with cellular development, differenti-
ation, and homeostasis [49,50]. Furthermore, mounting evidence supports that Wnt and
Notch signaling are also involved in the pathogenesis of chronic inflammatory diseases,
including cancer-mediated inflammation [49–52]. Exposure to inflammatory cytokines,
such as IL-6 and TNFα, could upregulate Wnt signaling and abrogate the differentiation
of mature adipose cells [53]. Notch signaling could also be regulated by inflammatory
cytokines such as IL-1β and TNFα [50,54]. Collectively, the driver of adipocyte transfor-
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mation can also be regulated by diverse environmental conditions inflicting inflammatory
signals on adipocytes.

5. Adipocyte Transformation via Cancer-Derived Inflammatory Factors

Tumor initiation and progression lead to local and systemic inflammation, which
significantly disrupts tissue homeostasis [55]. In the TME, oncogenic and apoptotic signals
recruit immune cells to the tumor expansion site [56,57]. In addition, enhanced ROS, hy-
poxia, and acidity in the TME present multiple inflammatory signals through cytokines,
chemokines, growth factors, inflammasomes, exosomes, and metabolites [8,43,58]. Particu-
larly in adipose tissue-rich environments, cancer cells attempt to fully utilize adipocytes
through active crosstalk and maintain a favorable TME (Figure 3) [5,12,22,23,43,59].
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Figure 3. Generation of Cancer-Associated Adipocyte. Tumor cells exchange diverse signals
with TME compartments to construct a favorable environment. In the adipose-rich environment,
adipocytes undergo a transformation when influenced by cancer-derived secretory factors. Can-
cer cells and adipocytes also communicate via exosomes, which contain pro-inflammatory factors,
miRNA, and metabolites. Juxtacrine signal also activates Notch signaling of adipocytes to initiate
dedifferentiation. Abbreviation: TME, tumor microenvironment; ROS, reactive oxygen species; TNFα,
tumor necrosis factor α; IL-11, interleukin-11; MCP1, monocyte chemoattractant protein1; PGE2,
prostaglandin E2.

The generation of CAAs can be mediated by inflammatory signals derived from cancer
cells [60–62]. Inflammatory factors, such as transforming growth factor β (TGFβ) and
TNFα, cooperatively inhibit the expression of genes associated with adipocyte matura-
tion [60]. These molecules were found to be transported into adipose stromal cells at
the invasive tumor front of the in vivo models. The transcriptional factors that maintain
the adipocyte phenotype are downregulated in adipocytes cocultured with breast can-
cer cells [60]. Similarly, conditioned media (CM) from T47D breast cancer cells inhibited
adipocyte differentiation. CM treatment downregulated the expression of C/EBPα, PPARγ,
and adipocyte protein 2 (AP2); such phenomena could be abrogated using neutralizing
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antibodies against TNFα and IL-11 [61]. Thus, cancer-derived inflammatory cytokines, such
as IL-11, TGFβ, and TNFα, can stimulate the reversion of mature adipocyte phenotypes.

Cancer cachexia is prevalent among patients with advanced cancer, and its symptoms
involve severe loss of adipose tissue mass. Inflammatory cytokines, including TNF-α and
IL-6, are responsible for cancer cachexia and are relevant to adipocyte transformation.
Adipocytes exposed to such signals experience increased lipolysis, decreased lipogenesis,
impaired lipid deposition, and browning [63]. Anti-IL-6 receptor antibodies could inhibit
lipolysis and adipocyte browning in cachectic mice [62], and the depletion of IL-6 from
tumor cells could prevent lipolysis in cocultivated adipocytes [64,65]. Additionally, cancer-
derived IL-1β also triggers adipocyte transformation and adipose tissue cachexia [66].

Tumor cells also manipulate adipocytes to take full advantage when metastasizing
into the adipocyte-rich bone marrow. Metastatic prostate carcinoma cells interact with
the adipocytes in the bone to activate a pro-survival mechanism that allows rapid growth
and escape from chemotherapy [67,68]. IL-1β secreted from cancer cells can sufficiently
regulate the pro-inflammatory phenotype of adipocytes via the upregulation of COX-
2 and monocyte chemoattractant protein-1 (MCP1). Since COX-2 activation increases
prostaglandin E2 (PGE2) synthesis, modified adipocytes support cancer cells by promoting
clonogenic growth and apoptosis resistance [69].

In cancer, the expression of inflammatory signals, such as TNFα, IL-1β, and IL-6, are
crucial indicators of sensitivity to chemotherapy and patient survival. However, their effect
on proximal adipose tissue has been overlooked [58,70,71]. As individual elements can
alter adipocyte properties, it can be assumed that cancer-adipocyte proximity results in
adipocyte transformation.

6. Adipocyte Transformation via NF-kB-Mediated Inflammation

NF-kB is a signaling hub for multiple inflammatory responses and is activated by
various signals derived from solid tumors or impaired adipose tissues (Figure 4A). Active
NF-kB mediates diverse signals to promote lipolysis and adipocyte dedifferentiation. In this
review, we discuss the mechanisms by which NF-kB modulates adipocyte transformation
and the attempts that have been made to suppress its activation.

In MSC, NF-kB expression increases upon early differentiation and is repressed by
PPARγ during late adipogenesis. [72,73]. However, exposure to inflammatory signals,
such as TNFα, IL-1β, TGFβ, or PGE2, activates NF-kB and halts terminal differentiation
(Figure 4A) [74,75]. The active NF-kB binds to PPARγ and inhibits its interaction with
the PPAR response element (PPRE) [76]. Inhibition of NF-κB using an IκBα repressor
could prevent TNFα-mediated PPARγ loss and recover the adipogenic capacity of NIH-
3T3L1 [77,78]. Simultaneously, NF-κB stimulates the expression of hormone-sensitive lipase
(HSL) and induces lipolysis during inflammation. Intracellular translocation of NF-κB
regulates the expression of perilipin1 (PLIN1) and hormone-sensitive lipase (HSL), which
could be obstructed by NF-κB inhibitors [13].

NF-κB also mediates alternative pathways to induce adipocyte transformation [79–85].
Transcription factors regulated by NF-κB, such as TP53, c-MYC, and BCL2, repress the
expression of PPARγ and C/EBP to reverse adipogenesis [85,86]. In addition, upregulated
pro-inflammatory factors, such as CCL2, IL-6, IL-11, TNFα, IL-15, and PGE2, promote tissue
inflammation to stimulate lipolysis and adipocyte dedifferentiation (Figure 4B) [79–84].
Alternatively, TNFα decreases PPARγ expression by promoting the caspase cascade path-
way [79,87]. In NIH-3T3L1, active TNFR1 cleaves procaspase-8 into a functional caspase-8.
The caspase activation cascade induces proteasomal degradation of PPARγ. Inhibition or
genetic ablation of caspases could prevent TNFα-mediated PPARγ degradation [79,87].
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Figure 4. Summary of NF-κB mediated signal transduction regulating adipogenesis and lipolysis.
(A) Pro-inflammatory signals activate NF-κB signaling to mediate adipocyte dedifferentiation and
lipolysis. Secondary messengers are secreted to initiate an inflammatory signal cascade in adipocytes.
(B) Autocrine and paracrine signals from NF-κB-activated adipocytes also regulate adipogenesis
and lipolysis. Abbreviations: WNT3, Wnt family member 3; WNT3R, Wnt family member 3 re-
ceptor; WNT10A, Wnt family member 10A; CCL2, C–C motif chemokine ligand 2; CCR2, C-C
chemokine receptor type 2; MAPK, Mitogen-activated protein kinases; PI3K, Phosphatidylinositol
3,4,5-trisphosphate kinase; AKT, protein kinase B; IL6, Interleukin 6; IL11, Interleukin 11; IL6R,
Interleukin 6 receptor; IL11R, Interleukin 11 receptor; JAK, Janus family tyrosine kinase; IL1B, In-
terleukin 1B; MYD88, Myeloid differentiation primary response 88; TRAF6, Tumor necrosis factor
receptor-associated factor 6; NF-κB, Nuclear factor kappa-light-chain-enhancer of activated B cells;
IL15, Interleukin 15; MCP-1, monocyte chemoattractant protein-1; COX-2, cyclooxygenase-2; 5-LOX,
5-lipoxygenase; 12-LOX, 12-lipoxygenase; CCND1, Cyclin D1; VEGFA, vascular endothelial growth
factor A; CASP, caspase; TP53, tumor protein p53; BCL2, B-cell lymphoma 2; JAK, Janus family
tyrosine kinase; STAT3, Signal transducer and transcription 3; AC, Adenylyl cyclase; PKA, Protein
kinase A; PPARΥ, Peroxisome proliferator-activated γ; CEBP, CCAAT/enhancer binding protein;
ATGL, adipose triglyceride lipase; HSL, hormone-sensitive lipase; PLIN, Perilipin1.

The mitogen-activated protein kinases (MAPK) pathways are also involved in the
inhibition of PPARγ and C/EBPs. High concentrations of C-C chemokine receptor type 2
(CCR2), TNFα, and IL-1α in obese patients activate p38 in adipocytes and inhibit C/EBPβ
and PPARγ expression [88–91]. The pharmacological inhibition of MAPK stimulated
adipocyte metabolism and adipogenesis. However, due to the lack of specificity, the effect
of MAPK inhibitors on adipocytes should be evaluated more cautiously [91]. Another pro-
inflammatory cytokine, IL-15, upregulates calcineurin to inhibit PPARγ and C/EBPα [92].
The calcineurin inhibitor FK-506 could restore PPARγ and C/EBP activity in the presence
of IL-15 [92].

In terms of lipolysis, the cyclic AMP/protein kinase A (cAMP/PKA) pathway is well-
recognized for phosphorylating adipose triglyceride lipase (ATGL), HSL, and perilipin1
(PLIN1) [93–96]. TNFα and PGE2 stimulate adenylyl cyclase and increase cAMP levels in
adipocytes [94,97]. Genetic ablation of receptors for TNFα and PGE2 could prevent the
activation of PKA and lipolysis; PKA inhibitors, H-89 and KT-5720, restored lipolysis and
blood TG levels in obese mice [98]. IL-6 also stimulates lipolysis via the Janus kinase/signal
transducer and activator of the transcription (JAK/STAT) pathway [81]. Extracellular
vesicles (EV) derived from cancer cells contained IL-6, which was sufficient to induce HSL
phosphorylation and delipidation in adipocytes. IL-6-neutralizing antibodies or STAT3
inhibitors could deactivate lipolysis by inhibiting HSL phosphorylation [81].

Collectively, NF-κB and its downstream pathways are crucial mediators of adipocyte
transformation. Both direct and indirect deactivation of the NF-κB pathway can regulate
lipolysis and adipocyte dedifferentiation. Therefore, we suggest that anti-inflammatory agents
can effectively counter malignant TME formation by targeting adipocyte transformation.
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7. Efficacy of Anti-Inflammatory Agents in Patients with Cancer

NSAIDs, such as aspirin, ibuprofen, mefenamic acid, celecoxib, piroxicam, sulindac,
and diclofenac, act as blockers of the enzyme COX to inhibit PG synthesis [99]. Eicosanoids,
the COX-derived PGs, are crucial mediators of inflammation. Exposure to PG derivatives,
particularly PGE2, activates NF-κB to drive inflammation in adipocytes (Figure 5) [93].
Although COX is constitutively expressed in various cell types, COX-2 in cancer cells is
thought to promote the malignant behavior of cancer cells [100,101].
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Figure 5. Suppression of NF-κB-mediated adipocyte transformation via NSAID treatment. COX
is the major enzyme that catalyzes the conversion of arachidonic acid into prostaglandins. PGE2
and other prostaglandins induce adipocyte transformation and tissue inflammation, involving NF-
κB signaling. To prevent systemic inflammation, NSAIDs are used to suppress COX-mediated
prostaglandin production. Some NSAIDs alter adipocyte characteristics by non-selective inhibition
of NF-κB and induction of PPARγ, which prevent adipocyte transformation by pro-inflammatory
signals. Abbreviation: COX, cyclooxygenase; PGE2, prostaglandin E2; NF-κB, Nuclear factor kappa-
light-chain-enhancer of activated B cells; NSAID, non-steroidal anti-inflammatory drug; PPARγ,
Peroxisome proliferator-activated γ.

COX-2 is overexpressed in various cancers, such as pancreatic, prostate, ovarian,
breast, lung, and colon cancers; this overexpression stimulates angiogenesis, metastasis,
and the chemotherapy resistance of the tumor [102]. Production of PGE2 is increased in
cancer cells and can stimulate cancer cell proliferation and invasion [103,104]. Additionally,
the exchange of pro-inflammatory signals between cancer cells and TME components
sustains the repeated activation of the NF-κB and STAT3 pathways to exacerbate tumor
malignancy [105,106]. For these reasons, NSAIDs are considered plausible candidates for
cancer therapy and prevention. Furthermore, the long-term use of NSAIDs reduced the
incidence of colorectal, esophageal, breast, and lung cancers [107]. As persistent inflamma-
tion is coupled with cancer progression, NSAID use has become a reasonable strategy for
managing chronic inflammation and preventing the activation of TME components [108].

Continuous use of NSAIDs results in a lower incidence and mortality in patients with
colorectal and lung cancers [109,110]. In addition, ibuprofen and piroxicam use significantly
reduced the inflammatory potential in breast and colorectal cancers [111,112]. Moreover,
patients with familial adenomatous polyposis (FAP) show decreased recurrence and lower
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polyp numbers when treated with sulindac [113,114]. The use of celecoxib in rat cancer
models demonstrated a 90% tumor regression and a 25% reduction in the number of solid
tumors [115]. Another study showed that ibuprofen inhibits cell proliferation in mouse
and human colorectal cells. A 40–82% tumor regression and decreased tumor-induced
angiogenesis were achieved by treatment with ibuprofen alone or in combination with
the standard antineoplastic agents 5-fluorouracil or irinotecan [116]. Similarly, aspirin
has demonstrated apoptotic and anti-proliferative effects in the HeLa cells. A synergistic
anticancer effect for aspirin was observed when combined with doxorubicin, cooperatively
inducing cell-cycle arrest, growth inhibition, and apoptosis in vitro and in vivo [117].

Numerous epidemiological studies support the notion that NSAID use benefits pa-
tients with cancer. A study involving 10,280 colorectal cancer cases showed a 27% re-
duction in colorectal cancer risk (odds ratio (OR) = 0.73; 95% confidence interval (CI):
0.54–0.99) [118]. A subsequent study investigated 2,118 women who had a female sibling
with breast cancer. The use of non-COX-inhibiting NSAIDs did not correlate with reduced
breast cancer risk among postmenopausal women. However, for premenopausal women,
non-aspirin NSAIDs and aspirin reduced the risk by 34% (hazard ratio (HR) = 0.66; 95%
CI: 0.50–0.87) and 43% (HR = 0.57; 95% CI: 0.33–0.98), respectively [119]. Another case-
controlled study of 1,736 breast cancer patients in Spain reported a 24% reduction in breast
cancer risk (OR = 0.76; 95% CI: 0.64–0.89) in those who use non-aspirin NSAIDs [120,121].
According to an investigation of 819 patients with prostate cancer, NSAID use significantly
reduced prostate cancer risk (OR = 0.48, 95% CI: 0.28–0.79) [122]. Furthermore, an investi-
gation of 7776 patients with ovarian cancer revealed that only aspirin use reduced the risk
by 9% (OR = 0.91; 95% CI: 0.84–0.99) [123]. Other epidemiological data on NSAID use and
the risk of pancreatic, prostate, bladder, and renal cancers remain controversial and limited.
However, due to the conflicting consequences of the use of NSAIDs, it remains unclear
whether they should be widely implemented against multiple types of cancer. In addition,
epidemiological data imply that the anti-tumor effect of NSAIDs varies depending on their
dose and duration, as well as the cancer types [124–126].

8. Anti-Inflammatory Agents in Obese Patients with Cancer

Some cancer types are surrounded by a large population of adipocytes, and they tend
to rely on environmental cues when developing their malignant behavior. Obesity-related
cancers can be greatly affected by the alteration of the TME during chemotherapy. Strikingly,
NSAID use in obese patients resulted in a better prognosis after cancer treatment [127–132].
Particularly, patients with inflammatory adipose tissue may benefit from suppressing
the chronic inflammation caused by peritumoral adipocytes. For instance, a daily dose
of aspirin was more effective in patients with colorectal cancer who had a higher BMI
(25–29 kg/m2 and >30 kg/m2). Unlike the somewhat increased risk with NSAID use in
patients with normal weights (BMI < 25 kg/m2), obese individuals (BMI > 30 kg/m2) expe-
rienced a 56% reduction in risk upon regular NSAID use [129]. Similarly, in a case-controlled
study involving 5,078 women, those who used NSAIDs regularly had a significantly lower
risk of breast cancer incidence (OR = 0.78; 95% CI: 0.69–0.89) [127]. Another meta-analysis
of 7,120 women with endometrial cancer showed that using aspirin more than once per
week caused a 15% risk reduction among overweight and obese women (OR = 0.86; 95%
CI: 0.76–0.98 and OR = 0.86; 95% CI: 0.76–0.97, respectively, for aspirin; OR = 0.87; 95% CI:
0.76–1.00 and OR = 0.84; 95% CI: 0.74–0.96, respectively, for non-aspirin NSAIDs) [131].
Interestingly, there was no correlation between aspirin use and cancer risk among women
of normal weight.

Although NSAID use as a generalized chemotherapeutic strategy remains uncertain,
specific populations with adipose-rich cancer exhibit positive outcomes. Clinical studies
support that obese patients are likely to benefit more from the protective effects of NSAID
use than normal-weight patients (Table 1). Crude measures, such as BMI and waist circum-
ference, are insufficient to predict a positive response to NSAIDs. Thus, a more precise
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method should be considered to anticipate the effects of NSAIDs on the TME, especially in
the case of an adipose-rich environment.

Table 1. The clinical results of NSAID use in obese patients with cancer Obesity-related cancers:
esophageal, gallbladder, colorectal, pancreatic, postmenopausal breast, endometrial, kidney, and
thyroid cancer. Abbreviations: NSAID, nonsteroidal anti-inflammatory drug; NA-NSAIDs; non-
aspirin-NSAIDs: celecoxib, diclofenac, etodolac, fenoprofen, flurbiprofen, ibuprofen, indomethacin,
ketoprofen, ketorolac, meclofenamate, mefenamic acid, nabumetone, naproxen/naproxen sodium,
rofecoxib, sulindac, and valdecoxib; BMI, body mass index; OR, odds ratio; HR, hazard ratio; RR,
risk ratio.

Cancer Type Gender NSAID Frequency
of Usage BMI (kg/m2)

Number of
Patients

Effect
Compared to

Normal
References

Breast Female

Aspirin,
ibuprofen,

naproxen, in-
domethacin

Regular use >25 5,078 Lower OR (22%) [127]

Breast Female

Aspirin,
ibuprofen,
celecoxib,
naproxen,

meloxicam

Daily >30 440 Lower OR (52%) [128]

Colorectal Female, Male Aspirin Daily
(325 mg) >30 1,084 Lower RR (56%) [129]

Colorectal Female, Male Aspirin Daily
(600 mg) >30 54 Lower HR (10%) [130]

Endometrial Female Aspirin,
NA-NSAIDs

Over weekly
use >25, 30 87,189 Lower OR (15%) [131]

Endometrial Female Aspirin Regular use >30 410 Lower OR (44%) [132]

9. Future Perspective

To date, only Wnt and Notch signaling have been suggested as the major mediators of
CAA transformation. Further studies are needed to identify the key drivers of the dynamic
conversion of adipocytes. As many inflammatory signals are intertwined, it is necessary
to comprehend the complex network of the corresponding pathways. To date, no study
has specifically targeted inflammation to mitigate CAA transformation, even though the
oncogenic role of CAA is starting to be recognized. We have shown that NF-κB could
regulate adipocyte properties through multiple pathways (Figure 4). Although single
delivery of an NF-κB inhibitor has distinct effects on the downstream signaling [133], it
should be considered which inhibitor accounts for preventing CAA transformation.

NSAIDs target COX, which is the limiting enzyme in PGE2 synthesis. As PGE2 is a
potent inducer of NF-κB, NSAID use also regulates multiple NF-κB downstream signals
with minimal side effects (Figure 5). Numerous studies have demonstrated the inhibitory
impact of NSAID use on cancer progression. In particular, we highlighted that patients
with adipose-rich cancer benefited markedly from regular NSAID use. Furthermore,
patients with a higher BMI showed better prognoses for breast, colorectal, and endometrial
cancers (Table 1). It can be inferred that cancer patients with metabolic dysregulation or
inflammatory adipose tissue may benefit from anti-inflammatory agents. This highlights
the importance of evaluating an individual’s TME when predicting therapeutic outcomes
and efficacy.

There remains a need to identify standard CAA markers through which cancer-
derived cytokines drive CAA transformation. In addition, it is necessary to elucidate
how adipocytes exposed to inflammatory signals share common and distinct features
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with CAAs. This will enable us to understand the resemblance between peritumoral and
inflammatory adipose tissue, revealing the veiled connection between obesity and cancer.
Furthermore, it is also essential to evaluate the condition of adipose tissue in patients
with cancer to understand how the TME aids tumor growth. Currently, crude measures
such as BMI and waist circumference are the only means used to evaluate adipose tissue
condition; a more precise evaluation of patients’ TME status will improve the efficacy of
chemotherapy, including that based on NSAIDs.

10. Conclusions

CAAs contribute to the secretion of inflammatory signals, metabolic reprogramming,
and ECM remodeling in cancer cells. Despite the critical role of CAAs in the TME, the
cell-intrinsic and extrinsic factors that trigger adipocyte transformation remain largely
unknown. Inflammatory adipose tissues impose signals on adipocytes that are akin to the
inflammatory factors secreted by tumor cells into the TME. These inflammatory signals
have been found to be sufficient to modulate adipocyte properties (Figure 1). The major
characteristics of CAA: suppression of adipogenic potential and activation of lipolysis,
are found to be more pronounced in the adipose tissue of obese cancer patients. This
implies that inflammatory adipose tissue provides more malignant TME through enhanced
adipocyte transformation. Particularly, patients with impaired adipose tissue may signifi-
cantly benefit from the delivery of anti-inflammatory agents via reconstructing the TME.
NSAID use in obese patients yields better cancer prognosis, especially in those who bear
tumors in an adipose-rich environment. This phenomenon may further explain the strong
correlation between obesity and cancer progression.
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CAA cancer-associated adipocyte
TME tumor microenvironment
COX-2 cyclooxygenase-2
NSAID nonsteroidal anti-inflammatory drug
FA fatty acid
BMI body mass index
PG prostaglandin
PPAR peroxisome proliferator-activated receptor
C/EBP CCAAT enhancer binding protein
IL interleukin
TNFα tumor necrosis factor α
FFA free fatty acid
FAO fatty acid oxidation
TG triacylglycerol
MMP matrix metalloproteinase
CCL2 chemokine ligand 2
VEGF vascular endothelial growth factor
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EMT epithelial-mesenchymal transition
IGF insulin-like growth factor
IGFBP IGF binding protein
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AP1 activator protein-1
MSC mesenchymal stem cell
CiDA compression-induced dedifferentiated adipocytes
LPS liposarcoma
AP2 adipocyte protein 2
TGFβ transforming growth factor β
MCP1 monocyte chemoattractant protein-1
PPRE PPAR response element
PLIN1 perilipin1
HSL hormone sensitive lipase
CCR2 C-C chemokine receptor type 2
cAMP cyclic AMP
PKA protein kinase A
ATGL adipose triglyceride lipase
JAK Janus kinase
STAT signal transducer and activator of transcription
EV extracellular vesicle
FAP familial adenomatous polyposis
OR odds ratio
CI confidence interval
HR hazard ratio
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