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Simple Summary: The integration of advanced magnetic resonance imaging (MRI) has the potential
to enable the improved prediction of the molecular diagnosis of adult-type gliomas. In this context,
this study investigated whether deep learning-based predictive models can benefit from adding
multi-shell diffusion MRI to conventional MRI. We evaluated the performance of an exemplar deep
learning model for differentiating (1) isocitrate dehydrogenase (IDH)-mutation versus IDH-wildtype;
(2) 1p/19q codeletion versus 1p/19q non-codeletion; and (3) IDH-mutation with or without 1p/19q
codeletion, and IDH-wildtype. The model achieved the best prediction performance in our cohort of
146 patients in all three tasks when multi-shell diffusion MRI and conventional MRI are combined.
These results demonstrate the specific added value provided by advanced diffusion MRI, extending
the current literature on building deep learning models based on multiple MRI modalities.
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The aim of this work is to evaluate the potential benefit of combining cMRI and multi-shell dMRI
in DL-based models. A model implemented with deep residual neural networks was chosen as an
illustrative example. Using a dataset of 146 patients with gliomas (from grade 2 to 4), the model was

Academic Editor: Leonardo Pace trained and evaluated, with nested cross-validation, on pre-operative cMRI, multi-shell dMRI, and a
Received: 1 December 2022 combination of the two for the following classification tasks: (i) IDH-mutation; (ii) 1p/19g-codeletion;
Revised: 21 December 2022 and (iii) three molecular subtypes according to WHO 2021. The results from a subset of 100 patients
Accepted: 3 January 2023 with lower grades gliomas (2 and 3 according to WHO 2016) demonstrated that combining cMRI and
Published: 12 January 2023 multi-shell dMRI enabled the best performance in predicting IDH mutation and 1p/19q codeletion,

achieving an accuracy of 75 & 9% in predicting the IDH-mutation status, higher than using cMRI
and multi-shell dMRI separately (both 70 &= 7%). Similar findings were observed for predicting the
- 1p/19q-codeletion status, with the accuracy from combining cMRI and multi-shell dMRI (72 + 4%)
higher than from each modality used alone (cMRI: 65 £ 6%; multi-shell dMRI: 66 4= 9%). These
findings remain when we considered all 146 patients for predicting the IDH status (combined:
81 £ 5% accuracy; cMRI: 74 & 5%; multi-shell AMRI: 73 + 6%) and for the diagnosis of the three
conditions of the Creative Commons molecular subtypes according to WHO 2021 (combined: 60 & 5%; cMRI: 57 £ 8%; multi-shell dMRI:
Attribution (CC BY) license (https:// 90 £ 7%). Together, these findings suggest that combining cMRI and multi-shell dMRI can offer

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article

distributed under the terms and

creativecommons.org/licenses /by / higher accuracy than using each modality alone for predicting the IDH and 1p/19q status and in
4.0/). diagnosing the three molecular subtypes with DL-based models.

Cancers 2023, 15, 482. https:/ /doi.org/10.3390/ cancers15020482 https://www.mdpi.com/journal/cancers


https://doi.org/10.3390/cancers15020482
https://doi.org/10.3390/cancers15020482
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-8107-3812
https://orcid.org/0000-0001-6555-1784
https://orcid.org/0000-0002-8238-2262
https://doi.org/10.3390/cancers15020482
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15020482?type=check_update&version=2

Cancers 2023, 15, 482

20f18

Keywords: adult-type gliomas; multi-shell diffusion MRI; molecular subtypes; IDH-mutation;
1p/19q codeletion; deep learning

1. Introduction

The prognosis accuracy of diffuse gliomas, the most common tumours of the cen-
tral nervous system (CNS), has been greatly improved in recent years with advances
in molecular biomarkers. Two key molecular biomarkers are isocitrate dehydrogenase
(IDH) genotype and epigenetic 1p/19q codeletion. Since 2016, the presence or absence of
IDH-mutation and of 1p/19q codeletion [1] have been integrated into the WHO classifica-
tion of adult-type gliomas [2]. IDH-mutant gliomas have a less poor prognosis and tend to
occur in up to 80% of patients with lower grades gliomas (LGG, i.e., WHO-2 or -3) and in
patients with secondary glioblastomas (GBM) [3]. In contrast, IDH-wildtype gliomas have
worse prognosis and include primary GBMs and a minority of LGG-mimicking gliomas.
The 1p/19q codeletion is a pathognomonic biomarker that defines oligodendrogliomas, a
distinct glioma subtype, that is likely to respond better to chemotherapy [4].

The importance of molecular biomarkers has grown further in the fifth edition of the
WHO classification of CNS tumours (WHO CNS5) released in 2021 [5]. In this update,
adult-type gliomas now include three subtypes: “oligodendroglioma, IDH-mutant, 1p/19q
codeleted”, “astrocytoma, IDH-mutant, uncodeleted”, and “glioblastoma, IDH-wildtype”.
Oligodendrogliomas are associated with a better prognosis and a median overall survival
(OS) of 8 years. Astrocytomas show an intermediate OS of 5-8 years. Glioblastomas are
prone to early recurrence with short progression free survival (PFS) and OS < 2 years [6].
Of note, the subtype “glioblastoma, IDH-wildtype” in WHO CNS?5 also includes the rare
group of IDH-wildtype gliomas mimicking LGG, hereafter denoted as molecular GBM.

The demonstrated value of molecular biomarkers for prognosis motivates the devel-
opment of non-invasive techniques that can infer molecular biomarkers from conventional
MRI (cMRI) commonly used for diagnosis and treatment of CNS tumours. A few inves-
tigators have shown that cMRI features help predict the IDH status [7,8], perform more
accurate prognoses, and enable the personalized treatment [9,10] of patients with gliomas.
Several studies highlighted the value of post-contrast imaging in identifying patients with
IDH-wildtype gliomas. However, tumour enhancement is inadequate as a discriminative
feature, since it is observed also in up to 50% of patients with IDH-mutant gliomas with
1p/19q codeletion [11]. Moreover, a minority of IDH-wildtype tumours may not enhance,
in particular, those with histopathological features mimicking LGGs [12-14].

Improvements to cMRI can be made with more advanced MRI techniques, such as
diffusion MRI (dMRI), which provides measurements that inform tumour features at
the micron scale. In particular, dMRI can be used to infer apparent diffusivity, which is
usually higher in IDH-mutant than IDH-wildtype gliomas due to lower cellular density
and increased interstitial edema. In 2021, Yan et al. showed that incorporating radiomic
signatures from post-contrast T1-weighted (cMRI) and apparent diffusion coefficient (ADC)
(derived from dMRI) achieved an accuracy of 82% for predicting the IDH status [15]. Other
investigators have used diffusion tensor imaging (DTI) and multiple diffusion metrics (i.e.,
mean diffusivity (MD) and fractional anisotropy (FA)) for the subtyping of gliomas [16-18],
1p/19q codeletion status [16,19], and their correlation with therapy response and patient
outcome [20,21].

The studies above are limited to the use of a single diffusion-weighting factor (b-value).
These single-shell approaches can be improved when the appropriate instrumentation is
available to include additional and significantly higher b-values. Such multi-shell ap-
proaches allow for the use of more informative diffusion models. Multi-shell dMRI enables,
for example, diffusion kurtosis imaging (DKI), which provides additional metrics such as
kurtosis anisotropy (KA) and mean kurtosis (MK). They are useful for predicting the IDH
status, because higher tumour cell density results in higher kurtosis values [22]. Another
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example is neurite orientation dispersion and density imaging (NODDI), which uses a
multi-compartment biophysical diffusion model. NODDI improves specificity to brain
microstructure by taking into account, in a single voxel, the models for water diffusion
in three different compartments: intracellular, extracellular, and cerebrospinal fluid [23].
Figini et al. showed that molecular GBMs present with a significant higher volumetric
fraction of the intracellular compartment (fR), higher KA, and lower MD compared with
IDH-mutant gliomas [24]. Taken together, these studies indicate that multi-shell dMRI
carries complementary information not conveyed by cMRI or single-shell dMRI and could
help identify the IDH and 1p/19q status of patients with gliomas.

Recent progress in deep learning models and techniques may provide powerful solu-
tions to determine the molecular subtypes of gliomas using automatic learning of features
directly from histopathology images [25,26] and, noninvasively, also from magnetic reso-
nance images [27-30]. In particular, Residual Network (ResNet) architectures (ResNet34,
ResNet50, ResNet101, and ResNet152) have been used for glioma segmentation, classifi-
cation, and molecular subtype identification [31-36]. The extensive use of ResNet in the
literature to accomplish several tasks in glioma research and other fields is due to the
presence of shortcuts (residual connections) among the layers of the network, which helped
to address the problem of vanishing gradients and training accuracy saturation compared
to other neural network architectures. As a consequence, this has allowed the network
depth to be increased while having faster training and higher accuracy. However, studies
aiming to predict molecular subtypes of gliomas with MRI using ResNet or other deep
learning algorithms have been based on cMRI alone or limited by the exclusive use of an
ADC map [29,37]. To date the potential of adding microstructural features derived from
advanced dMRI to deep learning models has yet to be explored.

In this study, we investigated whether adding multi-shell dMRI metrics to cMRI will
improve the predictive performance of ResNet compared to using only cMRI, or only
multi-shell dMRI. We trained several ResNet models based on multi-shell dMRI and cMRI,
either alone or in combination, and compared their performances in different tasks. We
hypothesize that using a combination of image features extracted by ResNet from multi-
shell dMRI and cMRI may result in improved glioma molecular subtype assessment. This
potential improvement was evaluated in two rounds of analysis to specifically understand
if it was influenced by considering the LGG-mimicking molecular GBMs (1) alone or
(2) together with IDH-wildtype GBMs.

2. Materials and Methods
2.1. Experimental Design

We investigated the network performances in three classification tasks that are the
most clinically relevant and frequently investigated in neuro-oncological applications re-
lated to gliomas: (i) IDH-mutant versus IDH-wildtype; (ii) 1p/19q codeleted versus 1p/19q
non-codeleted; and (iii) three molecular subtypes according to WHO CNS5 (IDH-mutant
1p/19qg-codeleted oligodendroglioma, IDH-mutant astrocytoma, and IDH-wildtype glioblas-
toma). As part of a first round of analysis, task (i) and (ii) were conducted in patients with
LGG as defined by the 2016 WHO classification, to exclude the effect of GBMs. Then, in
the second round of analysis, tasks (i) and (iii) were performed considering the entire set
of patients with low- and high-grade gliomas. This strategy will also help to compare our
results with prior studies using either one of the two WHO classification schemes.

2.2. Dataset

The multimodal MRI and genetic data of patients with glioma were collected at the
Humanitas Research Hospital, Rozzano (MI), Italy between April 2012 and November 2015,
as part of a previous study [24]. A total of 146 patients with adult-type gliomas and no
prior surgery were selected; the demographic patients data are summarized in Table 1. The
first round of analysis was performed in 100 patients with LGG according to the 2016 WHO
classification to predict the IDH mutation and 1p/19q codeletion without the interference
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of GBMs: 50 IDH-mutant and 1p/19g-codeleted oligodendrogliomas, 28 IDH-mutant and
1p/19g-uncodeleted astrocytomas, and 22 patients with IDH-wildtype gliomas mimicking
LGG (molecular GBM). The second round was performed on 146 patients with three
glioma subtypes according to WHO CNS5, to predict the IDH status and the molecular
subtype: 62 IDH-wildtype glioblastomas (42.5%), 50 IDH-mutant and 1p/19q-codeleted
oligodendrogliomas (34.2%), and 34 IDH-mutant and 1p/19g-uncodeleted astrocytomas
(23.3%). This latter group included six IDH-mutant astrocytomas of grade 4 according to
WHO CNSS.

Table 1. Demographic and clinical data of the patient cohorts.

Clinical Characteristics Values
Number of subjects, N (%) 146 (100)
Age, mean (range) years 46.2 (14-77)
Sex
Male, N (%) 88 (60)
Female, N (%) 58 (40)
Hemisphere
Left, N (%) 95 (65)
Right, N (%) 45 (31)
Bilateral, N (%) 6 (4)
WHO grade
2, N (%) 50 (34)
3, N (%) 50 (34)
4,N (%) 46 (32)
Molecular subtype
Grade 2-3 diffuse astrocytoma, IDH-mutant, N (%) 28 (19.2)
Oligodendroglioma, IDH-mutant, 1p/19q codeleted, N (%) 50 (34.2)
Molecular glioblastoma, IDH-wildtype, N (%) 22 (15)
Grade 4 diffuse astrocytoma, IDH-mutant, N (%) 6(4.1)
Glioblastoma, IDH-wildtype, N (%) 40 (27.5)

IDH = isocitrate dehydrogenase.

2.3. Image Acquisition and Processing

The preoperative brain MR images were acquired with a 3-tesla MRI scanner (Magne-
tom Verio; Siemens, Erlangen, Germany). The cMRI protocol included T2-weighted (T2-w),
pre-and post-contrast T1-weighted (T1-w and T1-cw, respectively), and FLAIR images. The
multi-shell dMRI was acquired as follows: 8 volumes withb =0s/ mm?, 20 volumes with
b = 700 s/mm?, and 40 volumes with b = 2000 s/mm?. The quantitative maps derived
from diffusion images encompassed MD from DTI, KA from DKI, and the fR from NODDI.
The image acquisition and dMRI processing are described in greater detail in a previous
study [24].

For each subject, the images from cMRI were co-registered with the corresponding
b = 0 image used as a reference volume and by the rigid registration algorithm FLIRT
using FSL tools (https:/ /fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT, accessed on 21 December
2022). The mask of the tumours was extracted either using the HD-GLIO brain tumour
segmentation tool (https:/ /github.com/NeuroAI-HD/HD-GLIO, accessed on 21 December
2022) or, if the output of HD-GLIO was not satisfactory, by manually contouring in 3D-Slicer
(http:/ /www.slicer.org, accessed on 21 December 2022). The delineation of the tumour
masks was validated by a neuroradiologist (A.B.). For each patient, the voxel values were
normalized for each image of the cMRI protocol. Specifically, the mean intensity of the
image was subtracted from the intensity value of each voxel, which was then divided by
the standard deviation (i.e., Z-score normalization).

The MR images and diffusion metrics maps of representative cases of five molecular
subtypes are illustrated in Figure 1.
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Figure 1. Axial Tlcw, T2w, and FLAIR images and MD, KA, and fR maps at the level of the
tumour are shown for five representative subjects with distinct molecular subtypes of adult-type
gliomas. (A) Patient with IDH-wildtype glioblastoma: a necrotic central area is surrounded by a
rim of enhancement following gadolinium injection with low MD and high KA and fR. This distinct
radiologic appearance can help the network to distinguish this subtype from those with IDH-mutation.
(B) Patient with molecular GBM: lack of enhancement and necrosis, but with low MD and high KA and
fR. (C) Patient classified as grade 4 IDH-mutant astrocytoma according to WHO CNS5: radiological
characteristics similar to an IDH-wildtype glioblastoma. (D) Patient with IDH-mutant astrocytoma:
lack of enhancement and necrosis, with high MD and low KA and fR. (E) Oligodendroglioma with
IDH-mutation and 1p/19q codeletion: lack or subtle contrast enhancement with high MD and low KA
and fR. Tlcw = post-contrast T1-weighted; T2w = T2-weighted; MD = mean diffusivity; KA = kurtosis
anisotropy; fR = restricted fraction; GBM = glioblastoma; and WHO CNS5 = fifth edition of the WHO
classification of the central nervous system tumours.
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2.4. Input Data

The networks were designed and trained based on three input sets: (1) 3D image
patches extracted from normalized cMRI (T1-cw, T2-w, FLAIR) centred on tumour seg-
mentation, (2) the corresponding 3D patches of quantitative maps derived from multi-
shell dMRI (MD, KA, {R), and (3) the combination of cMRI and multi-shell dMRI inputs
(Figure 2). In particular, the multi-shell dMRI inputs were selected on the basis of previous
results [21] that had shown MD, KA, and {R to have the highest significant differences be-
tween molecular subtypes; other diffusion metrics were not considered. The input patches
were chosen to be of the size 64 x 64 x 15, which was large enough to fit all the tumours.
The laterality of tumours (located on the left or right brain hemisphere) was included as an
additional input.

A i ii i

IDH-mutant 1p/19g-codeleted | |DH-mutant 1p/19g-codeleted
CLASSIFICATION Vs Vs vs
TASK IDH-wildtype 1p/19g-uncodeleted | IDH-mutant 1p/19g-uncodeleted
Vs
IDH-wildtype

Only patients with grade
2 and 3 gliomas

TARGET (n=100)

POPULATION &

Only patients with
grade 2 and 3 gliomas
Patients with grade 2, 3, (n=100)
and 4 gliomas (n=146)

Patients with grade 2, 3, and 4
gliomas (n=146)

Conventional MRI (cMRI) Multi-shell diffusion MRI (dMRI)

TASK-SPECIFIC
ResNet10 = CLASS

PREDICTION

Figure 2. (A) Classification tasks considered in this study. Task (i) was performed in the entire set
of patients included in the study (with WHO grade 2, 3, and 4 gliomas) and in the subset of those
with lower-grades (2 and 3) gliomas. Task (ii) was performed only in the subset of patients with
lower-grades gliomas. Task (iii) was performed only in the entire set of patients included in the
study. (B) Representative conventional and diffusion MR images of a 23-year-old female patient
with IDH-mutant and 1p/19g-codeleted oligodendroglioma. The tumour volumes (in red) of each
image, obtained after semiautomatic segmentation, were subsequently used as input for the models.
(C) Models developed for each task. They differ for the set of images used as input: (a) conventional
MRI with tumour laterality (left or right brain hemisphere); (b) diffusion MRI with tumour laterality;
(c) conventional and diffusion MRI with tumour laterality. The architecture of the residual network
(ResNet10) used to provide the task-specific class prediction was the same. This figure was created
with BioRender.com, accessed on 21 December 2022.
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2.5. ResNet Architecture Description and Model Development

The ResNet10 model built into the PyTorch library (https:/ /pytorch.org, accessed
on 21 December 2022) was adapted for this study. The ResNet10 model consisted of 10
3D convolutional layers, batch-normalization, followed by average max-pooling and a
fully connected layer. The rectified linear unit (ReLU) activation function was used in the
convolutional layers. The Softmax activation function was used in the fully connected layer
and cross entropy was used as loss function. The model was trained end-to-end using
an adaptive moment estimation optimizer (Adam) with a batch size of 32 and maximal
epochs of 100. An initial learning rate of 10~%, a momentum of 0.9, and a weight decay of
0.1 were used. A learning rate scheduler was applied to allow reducing the learning rate
with gamma of 0.1 and patience of 10 based on the validation results. This model trained
on the entire dataset for IDH prediction was repurposed as the starting point for the other
models. This is an optimization technique called transfer learning: it is used for saving
time and achieving better performance on small datasets and it works well if the features
learnt in the first task are suitable for the new task.

To mitigate the limitations of the modest sample size of our patient cohort and to
reduce overfitting, data augmentation was applied during model training. Data augmenta-
tion included vertical flipping, horizontal flipping, translation, rotation, and addition of
Gaussian noise to the 3D input data. Moreover, the oversampling of the minority class was
performed during training to mitigate the class imbalance of the training set.

To reliably evaluate the performance of each network, we used a nested cross-validation
comprising an outer loop with 5-fold cross-validation to evaluate the classification perfor-
mance and an inner loop with 5-fold cross-validation to tune the model hyperparameters
and find the best features (Figure 3). In the outer loop, the held-out test sets were chosen
that preserved the class balance (Table 2). In the inner loop, the validation sets were chosen
so that they have the same (balanced) class distribution as the test sets (Table 2). The
model was trained in the inner loop on each of the 5 training sets and validated on the
corresponding validation set: the model that achieved maximum validation accuracy and
minimum loss was selected. Then, the selected model was tested on the corresponding
held-out unseen set in the outer loop. The results of the 5 runs of model-testing were
averaged together to evaluate the final classification performance of the network. The
validation and unseen test sets remained the same for all different modality combinations
in each classification task. Only for the second round of analysis, we balanced molecular
GBMs and IDH-wildtype GBMs within the IDH-wildtype class for each validation and
test set.

Table 2. Class distribution in training, validation, and test sets for each classification task.

Target Population Classification Task Training ! Validation ! Test 2
IDH-mutant (n = 78) n=72 n=2 n=4
) ) vs. vs. vs. vs.
Only patients with grade 2 and IDH-wildtype (1 = 22) n=16 n=2 n=4
3 gliomas
(n = 100) 1p/19q-codeleted (1 = 50) n=41 n=3 n=6
vs. vs. vs. vs.
1p/19g-uncodeleted (1 = 50) n=41 n=3 n==6
Patients with grade 2, 3, and IDH-mutant (n = 84) n=71 n=4 n=9
4 gliomas VS. VS. VS. VS.
(n = 146) IDH-wildtype (1 = 62) n=49 n=4 n=9
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Table 2. Cont.

Target Population Classification Task Training ! Validation ! Test 2
IDH-mutant and
1p/19q-codeleted (1 = 50) n =40 n=4 n==6
vs. vs. vs. vs.
IDH-mutant and n=24 n=4 n=6
1p/19g-uncodeleted (1 = 34) vs. vs. vs.
Vs n=>52 n=4 n==6

IDH-wildtype (1 = 62)

! The reported numbers of patients in training and validation tests refer to one split within an inner loop.? The
reported numbers of patients in test sets refer to one split within the outer loop.

A Outer Loop Inner Loop
Training+Validation Unseen (Test) Training Validation
Dataset Dataset Dataset Dataset

[ IDH mutant

B Outer Loop Inner Loop
Training+Validation Unseen (Test) Training Validation
Dataset Dataset Dataset Dataset

[ 1DH mutant, 1p/19q uncodeleted
IDH mutant,1p/19q codeleted
[l 1oH wildtype

>
A\ 4
Test the best Model on
the Unseen Dataset

Figure 3. Scheme illustrating the nested cross-validation procedure for developing the net-
work for (A) a two-group prediction task (as an illustrative example, IDH status prediction)
and (B) a three-group prediction task (i.e., diagnosis of the three molecular subtypes accord-
ing to WHO 2021 classification). (Outer loop) Splitting the dataset into unseen test dataset (or-
ange) and training—validation dataset (green) with a 5-fold cross-validation. (Inner loop) Splitting
training-validation dataset into training (violet) and validation (blue) datasets with a 5-fold cross-

validation for feature extraction and hyperparameter optimization. All splits were performed to have
balanced classes in the validation and in the test sets. At the end of the outer loop, the results of the
models tested on the 5 unseen test sets were averaged together to report the final classification results.
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2.6. Evaluation of the Classification Performance

The classification performance of each network was evaluated by measuring the
individual class sensitivity of each group, as well as overall through the following metrics:
accuracy, average precision (i.e., average of the positive predictive values of the groups), and
the Matthews correlation coefficient (MCC). The MCC is a robust metric that summarizes
the classifier performance in a single value ranging from —1 (total disagreement) to +1
(perfect classification), with a value of 0 indicating random prediction; it is particularly
useful when positive and negative cases are of equal importance [38].

3. Results

In this section, we illustrate the classification performances of the networks obtained
in the two rounds of analysis.

3.1. IDH and 1p/19q Status Prediction in Lower Grade Gliomas

In the first round of analysis on 100 patients with LGG, the model combining multi-
shell dMRI and cMRI achieved an average accuracy of 75 £ 9% for IDH status (Table 3)
and 72 £ 4% for 1p/19q status prediction (Table 4). The cMRI-only and multi-shell dMRI-
only networks achieved lower classification accuracies in predicting the IDH status (both
70 & 7%) and the 1p/19q codeletion status (65 & 6% and 66 & 9%, respectively). Besides
accuracy, the average precision and the MCC coherently also indicated that the model com-
bining cMRI and multi-shell dMRI achieved the best performance in patients with LGGs.

Table 3. IDH status classification performance in LGGs (WHO 2016).

cMRI and

Classification Metrics cMRI Multi-Shell dMRI Multi-Shell dMRI

Overall performance

Accuracy 70% £ 7% 70% £ 7% 75% % 9%

Precision ! 0.81 +0.03 0.78 +0.03 0.82 + 0.06

MCC 0.50 £ 0.11 0.47 = 0.09 0.56 +0.14
Individual group sensitivity

IDH mutant 100% =+ 0% 75% + 31% 95% £ 11%

IDH wildtype 40% =+ 14% 65% =+ 28% 55% =+ 21%

Classification performance of ResNet on the unseen test sets with different MRI inputs to predict IDH-mutation
versus IDH-wildtype status in lower-grade gliomas according to the 2016 WHO classification. Data are reported
as average + standard deviation over the five test sets in the outer loop. Overall, data of 40% (40 out of 100)
LGGs patients were tested as unseen sets, covering almost all IDH-wildtype lower-grades gliomas in our cohort.
! Computed as the macro-average of the precisions for the IDH-mutant group and the IDH-wildtype group.
IDH = isocitrate dehydrogenase; LGG = lower-grades glioma; cMRI = conventional MRI; dMRI = diffusion MRI;
MCC = Matthews correlation coefficient.

Table 4. 1p/19q status classification performance in LGGs (WHO 2016).

cMRI and

Classification Metrics cMRI Multi-Shell dMRI Multi-Shell dMRI

Overall performance

Accuracy 65% £ 6% 66% £ 9% 72% £ 4%

Precision ! 0.66 £ 0.06 0.73 +£0.10 0.75 4+ 0.05

MCC 0.30 £0.10 0.38 £ 0.20 0.45 £ 0.08
Individual group sensitivity

1p/19q codeleted 70% £ 10% 60% £ 10% 60% £ 10%

1p/19q uncodeleted 61% %+ 20% 70% + 20% 83% £ 10%

Classification performance of ResNet on the unseen test sets with different MRI inputs to predict 1p/19q codeletion
versus 1p/19q non-codeletion (IDH-mutant or IDH-wildtype) in LGGs according to the 2016 WHO classification.
Data are reported as average & standard deviation over the five test sets in the outer loop. Overall, data of 60%
(60 out of 100) LGGs patients were tested as unseen set. | Computed as the macro-average of the precisions for
the IDH-mutant group and the IDH-wildtype group. LGG = lower-grades glioma; cMRI = conventional MRI;
dMRI = diffusion MRI; MCC = Matthews correlation coefficient.
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The detailed molecular subtype prediction results in LGGs are also shown in Tables 3 and 4.
As for the tasks related to IDH-mutation prediction, all the networks had higher sensitivity
for the IDH-mutant group and had lower performances in correctly identifying the IDH-
wildtype gliomas. In the task related to the 1p/19g-codeletion status prediction, the
networks based on dMRI alone or in combination with cMRI had higher performances in
correctly identifying the 1p/19g-uncodeleted gliomas.

3.2. IDH Status and Three Molecular Subtypes Prediction in All Glioma Grades

The second round of analysis was performed on the whole cohort of 146 patients with
low and high grade adult-type gliomas. For IDH status prediction, the ResNet model com-
bining multi-shell dMRI and cMRI achieved an average accuracy of 81% 4= 5%, higher than
the other two models. The cMRI-based and multi-shell dMRI-based networks individually
achieved an average accuracy of 74 + 5% and 73 £ 6%, respectively (Table 5). Besides
accuracy, precision and MCC also indicated that the model combining cMRI and multi-shell
dMRI achieved the best performance. Among the patients with IDH-wildtype glioma, all
the networks had high sensitivity in the test set for grade 4 (GBM), which were correctly
diagnosed in most of the cases (c(MRI+dMRI: 88%; cMRI: 84%; dAMRI: 84%) (Figure 4A).
However, lower sensitivities were obtained for molecular GBMs (cMRI+dMRI: 55%; cMRI:
40%; dMRI: 35%), which were often incorrectly diagnosed as IDH-mutant gliomas. The
ResNet model combining multi-shell dMRI and cMRI had the highest sensitivities among
the networks for both IDH-wildtype subgroups (Figure 4A), as well as for IDH-mutant
gliomas (c(MRI+dMRI: 89%; cMRI: 84%; dMRI: 84%) (Table 5 and Figure 4A).
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Figure 4. Individual molecular subtype prediction performance of the networks using different
MR images as inputs for two tasks in the second round of analysis that included glioblastomas:
(A) IDH status prediction and (B) three-group molecular subtype prediction. The numbers within the
coloured bars are the average sensitivities over the five test sets in the outer loop and the vertical black
bars represent the corresponding standard deviations. cMRI = conventional MRI; dMRI = diffusion
MRI; IDH-wt = IDH-wildtype; GBM = glioblastoma; IDH-mut = IDH-mutant; 1p/19q-cod = 1p/19q-
codeleted; 1p/19q-uncod = 1p/19q-uncodeleted.
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Table 5. IDH status classification performances in adult-type gliomas (WHO CNS5).

cMRI and

Classification Metrics cMRI Multi-Shell dMRI Multi-Shell dMRI

Overall performance

Accuracy 74 £ 5% 73 £ 6% 81 £ 5%

Precision ! 0.77 £ 0.04 0.77 £ 0.09 0.83 £ 0.04

MCC 0.52 £ 0.08 0.52 £0.18 0.64 £ 0.06
Individual group sensitivity

IDH mutant 84 + 6% 84 + 6% 89 + 8%

IDH wildtype 64 + 9% 62 + 6% 73 + 13%

Classification performance of ResNet on the unseen test sets with different MRI inputs to diagnose IDH mu-
tation status on the whole cohort of 146 patients with low- and high-grade gliomas. Data are reported as
average + standard deviation over the five test sets in the outer loop. ! Computed as the macro-average
of the precisions for the IDH-mutant group and the IDH-wildtype group. IDH = isocitrate dehydrogenase;
cMRI = conventional MRI; dMRI = diffusion MRI; MCC = Matthews correlation coefficient.

For the direct prediction of the three molecular subtypes, the ResNet model had an
overall accuracy of 60 + 5% when cMRI and multi-shell dMRI were combined. Both
the cMRI-based and multi-shell dMRI-based networks had lower accuracies: 57 + 8%
and 56 + 7%, respectively (Table 6). Besides accuracy, precision and MCC indicated that
the model combining cMRI and multi-shell dMRI achieved the best performance also
for this task. Of note, the patients with grade 4 IDH-wildtype GBM were all diagnosed
correctly in the test set when multi-shell dMRI was used in combination with cMRI and
with lower sensitivities when cMRI and dMRI were used alone (Figure 4B). In contrast,
low sensitivities were obtained for molecular GBMs (ctMRI+dMRI: 47%; cMRI: 60%; dMRI:
47%), which were often incorrectly classified as IDH-mutant gliomas (Figure 4B). As for
the two subgroups with IDH-mutant glioma, all the networks had higher sensitivities for
the IDH-mutant 1p/19g-codeleted oligodendroglioma than the IDH-mutant uncodeleted
astrocytoma subtype (Table 6 and Figure 4B).

Table 6. Subtype classification performances in adult-type gliomas (WHO CNS5).

¢cMRI and

Classification Metrics cMRI Multi-Shell dMRI Multi-Shell dMRI

Overall performance

Accuracy 57 £ 8% 56 £ 7% 60 + 5%

Precision ! 0.60 +0.14 0.59 &+ 0.07 0.65 £ 0.05

MCC 0.37+0.14 0.354+0.10 0.43 £ 0.06
Individual group sensitivity

IDH-mutant 1p/19q-codeleted 60 £+ 19% 53 £ 18% 63 + 18%

IDH-mutant 1p/19q-uncodeleted 37 £ 22% 43 + 9% 43 +22%

IDH wildtype 73 £19% 70 £ 7% 73 £15%

Classification performance of ResNet on the test sets with different MRI inputs to diagnose glioma molecular
subtype according to WHO CNS5 on the whole cohort of 146 patients. Data are reported as average + standard
deviation over the five test sets in the outer loop. ! Computed as the macro-average of the precisions for the three
groups. WHO CNS?5 = fifth edition of the WHO classification of the central nervous system tumours; IDH = isocitrate
dehydrogenase; cMRI = conventional MRI; dMRI = diffusion MRI; MCC = Matthews correlation coefficient.

4. Discussion

To the best of our knowledge, this is the first time that a deep learning-based model
using a combination of conventional and multi-shell diffusion MRI has been designed and
validated to classify gliomas. The classification accuracies were reliably estimated through
a nested cross-validation procedure and fairly compared among networks by keeping
the same training, validation, and held-out testing sets for all different combinations of
modalities in every single classification task. Adding multi-shell dMRI to conventional
MRI improved the prediction of IDH status, 1p/19q codeletion status, and diagnosis of the
three molecular subtypes of adult-type gliomas according to WHO CNS5.

The results of this study provide additional evidence that deep learning models based
on multi-modal MRI perform better than those adopting only one MRI modality. Specifi-
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cally, by showing that the addition of advanced multi-shell dMRI sequences increased the
molecular subtype diagnostic accuracy of deep-learning algorithms, we extend previous
results that demonstrated a gain in accuracy only considering standard single-shell dMRI
data (i.e., ADC maps). In particular, Cluceru et al. [37] performed a study in 384 patients
with low- and high-grade glioma (including eight molecular GBMs) and showed that
adding ADC maps to cMRI (i.e., T2-FLAIR and post-contrast T1w) in a deep convolu-
tional neural network (namely VGG) improved the molecular subtype classification results
from 82% to 86%. Another study performed by Matsui et al. [35] in 217 LGG patients
(including 49 molecular GBMs) and using ResNet, achieved 69% accuracy by extracting
multimodal features (i.e., cMRI including T1-w, T2-w, and FLAIR images, along with PET
and CT images, but not diffusion imaging), higher than the accuracy obtained with cMRI
alone (58%).

Our findings are in agreement with several prior studies showing that the diffusion
metrics evaluated in this study (i.e., MD, KA, and {R) capture microstructural features that
can predict IDH mutation and 1p/19q codeletion with good accuracy. The majority of prior
studies employing dMRI for molecular subtype diagnosis in gliomas have used standard
methods of ROI analysis [19,24,39-49], while a few used machine learning methods based
on handcrafted (radiomic) features [15,50-59] and only one deep learning algorithms [37].

Deep-learning approaches are flexible in the choice of features, as they automatically
learn discriminative high-level features directly from images, although they typically
require more samples (i.e., subjects) than standard machine learning models. In contrast,
machine learning methods based on radiomic features can work well also on relatively
small sample sizes but are limited by the fact that features are pre-determined and subject
to the personal choice of the researcher and meaningful features may be missed. Prior
studies applying machine learning models based on radiomic features also found that
multimodal datasets encompassing dMRI data may improve classification accuracies.
In a study performed to predict the IDH status in 357 patients with adult-type glioma,
Yan et al. [15] found that a model incorporating radiomic features extracted from post-
contrast T1-w images and ADC maps led to an area under the curve of 0.884 for predicting
IDH-mutation status, higher than that obtained with post-contrast MRI alone (0.869).
Similarly, Kihira et al. [53] reported that combining radiomic features extracted from dMRI
(i.e., DWI with b = 1000 and ADC maps) and cMRI (i.e., FLAIR and post-contrast T1-w
images) improved the prediction of the IDH status from 76% (cMRI alone) to 79% (cMRI
combined with ADC) accuracy in a cohort of 111 patients. In another study on 168 LGG
patients, Park et al. [56] found that combining radiomic features derived from ADC and FA
with those of conventional MRI reached 0.900 area under the curve, which is significantly
higher than 0.835 obtained by using only radiomic features from conventional imaging.

Studies applying standard ROI analyses of ADC maps [42,44-46,48] and additional
metrics derived from multi-shell dMRI [19,43,47,49] have also shown good accuracy in val-
idation/test sets up to 86% for IDH mutation prediction. These studies have the advantage
to provide direct biological interpretation of the results, while in contrast deep-learning
studies have the reputation to be “black-boxes”. However, ROI analysis studies suffer from
similar limitations of machine learning and radiomic-based studies, because they inves-
tigate only a small number of predefined features and they usually require more human
intervention in several steps of the analysis than that required by deployed deep-learning
models. The choice of the imaging features by an expert introduces biases and it is a major
limitation to the reproducibility, the automation, and the degree of integration into clinical
practice that can be reached.

The wide range of accuracy values obtained in the three tasks of our deep learning
study deserve further attention, especially when we compare them with those of the
aforementioned studies. The comparison of the results obtained by studies using different
methods of analysis is always difficult and it may also depend on differences in the patient
population. To investigate this issue further, we examined group sensitivities to determine
which were the glioma subtypes more often misclassified by the network in the three tasks.
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The first task was to predict the IDH status. In the most recent 2021 WHO classification,
the subtype “IDH-wildtype glioblastoma” includes not only GBMs but also molecular
GBMs, while in the 2016 WHO classification these tumours were classified as LGG. The
diagnosis by means of MRI of these rare IDH-wildtype tumours would be very important
for personalised medicine; however, it remains particularly challenging because they
imitate IDH-mutant gliomas. Molecular GBMs exhibit clinical features similar to GBM with
short PFS and OS but, viewed with histopathology and conventional MRI (Figure 1B), they
show a relatively benign appearance resembling LGG, with a low proliferative index, low
cellular density, and no necrosis nor enhancement after intravenous contrast injection. To
better understand how the network performance was influenced by considering molecular
GBM alone or together with IDH-wildtype GBM, we conducted two rounds of analysis.
In the first round, we investigated the classification performances of our models in the
subset of 100 patients with LGGs. In the second round, we considered all the glioma
patients including GBMs. Not surprisingly, the accuracy of IDH status prediction was
lower in the first than in the second round (75% vs. 81%). This stems from the exclusion
of GBMs in the first round. In contrast to molecular GBM, IDH-wildtype GBMs can be
easily distinguished from IDH-mutant gliomas by radiologists due to their remarkable
intra-tumour heterogeneity with areas of necrosis, blood-brain barrier breakdown, and
extensive perifocal edema (Figure 1A). These distinct radiologic features likely helped
the network in the second round of analysis to find relevant MR image features able to
correctly identify IDH-wildtype GBM with high sensitivity (up to 88%). In addition, the
majority of our LGG patients, as expected, had the IDH mutation (~80%), therefore the
deep learning network may have had difficulties to find relevant features for the rarer
subgroup of molecular GBMs.

Indeed, all our networks had low performances in identifying patients with molecular
GBMs, consequently reducing the sensitivity for the whole IDH-wildtype group and, with
that, the overall accuracy. This important issue may have been overlooked in several
previous studies, in part due to the low incidence of molecular GBMs in those studies. In
contrast, the number of these patients was relatively large in our study. Moreover, the
prediction performance of a model in the IDH-wildtype class depends on the proportion
of IDH-wildtype GBMs and molecular GBMs. In our second round of analysis, we took
into account this crucial aspect by maintaining the balance between molecular GBMs and
IDH-wildtype GBM in test and validation sets. Of note, if the molecular GBM patients
had not been included in that analysis, the accuracy of the best performing network in
predicting IDH mutation would have increased from 81% to 88%.

The second task was to predict 1p/19q codeletion status: the network made more er-
rors when identifying IDH-mutant (uncodeleted) astrocytomas than IDH-mutant (codeleted)
oligodendrogliomas. Two critical issues may have resulted in lower accuracy for the former
class. First, as suggested by Cluceru et al. [37], the power of deep learning models to dis-
criminate the 1p/19g-codeletion status may be still limited. Second, similar to other authors
that investigated 1p/19q status prediction, we included IDH-mutant and IDH-wildtype
gliomas in the LGG cohort to replicate a real clinical scenario where no molecular informa-
tion of the tumour is available before surgery. However, IDH-wildtype are different from
IDH-mutant tumours and the 1p/19g-codeletion status has uncertain clinical significance
for them. Therefore, their inclusion might have caused the identification of image features
able to characterize and discriminate 1p/19q-codeletion status to be more difficult, thus
decreasing the performance of the models.

The third task was to predict the three molecular glioma subtypes according to WHO
CNS5. We obtained the highest accuracy when cMRI and multi-shell dMRI were combined
(60% =+ 5%), while the models using cMRI or multi-shell dMRI data alone had lower
performances (56% =+ 7% and 56% =+ 6%, respectively). These values are significantly lower
than those obtained in the previous two tasks because here we addressed a three-group
and not a simpler two-group classification task, as was the case for IDH and 1p/19q status
predictions. Once again, the molecular GBMs were diagnosed with lower sensitivity than
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IDH-wildtype GBMs, reducing the overall accuracy since for this task we also kept an
equal sample size of molecular GBMs and IDH-wildtype GBM during validation and
testing. Although our dataset was relatively small for a three-subtype classification, the
network could identify the IDH-wildtype group (73%) with higher sensitivity than the
IDH-mutant 1p/19g-codeleted oligodendrogliomas (63%) and IDH-mutant astrocytomas
(43%). This result was not surprising because of the peculiar MRI features of GBMs as
discussed above. Additionally, in this case, if we had not included patients with molecular
GBM in the IDH-wildtype group, the overall accuracies would have increased from 60% to
69%. Cluceru et al. [37] conducted a three-group classification analysis and they obtained
higher sensitivity for the IDH-wildtype group (95%) compared to IDH-mutant astrocytoma
(89%) and IDH-mutant 1p/19g-codeleted oligodendroglioma (60%). The authors recruited
143 GBMs and only eight low grades in the IDH-wildtype cohort: this difference in the
population may explain the difference in accuracy between their study and ours. These
results emphasize that the distribution of the different glioma subtypes in a study cohort is
important and it can have a profound effect on the accuracy of the study. Our study confirms
that molecular GBM is the most difficult class of glioma to predict. Deep learning methods
as well as machine learning and ROI-analysis based methods appear to underperform
when molecular GBMs are represented in larger numbers in the cohort.

Some limitations of this study should be acknowledged. First, this study was retro-
spective and the data were collected in a single centre. A larger multi-centre study would
be required to assess the generalizability of our findings. Second, we had a relatively
modest and, similar to the majority of studies in this field, imbalanced dataset. Imbalanced
classification poses a challenge for predictive modelling and results in poor predictive
performance, specifically for the minority class because the model may focus on learning
the features of the majority class and neglect the few samples of the minority class. Hence,
the accuracy and precision can be biased due to the presence of imbalanced classes in
the training and test sets, contributing to different performances for different studies as
discussed above. To mitigate this issue, we applied the oversampling technique for the
training dataset and kept the balance between class distribution in validation and test
sets. Third, we focused on MD, KA, and {R as multi-shell dMRI-derived input for all the
classification tasks based on the results of a previous study [24] that had shown these
indicators of microstructural features were the most useful to differentiate the molecular
subtypes. However, different tasks might have different sensitivity to different diffusion
metrics. In future studies, a comprehensive evaluation of other diffusion models such as
IVIM [60], VERDICT [61], or DIVIDE [62] should be tested.

5. Conclusions

The preoperative diagnosis of molecular subtypes with deep learning is feasible
and may help surgeons and oncologists to make treatment decisions, including surgery,
radiotherapy, chemotherapy, or immunotherapy. We demonstrated that a deep learning-
based model using a combination of conventional and multi-shell diffusion MRI data
provided more accurate predictions of IDH, 1p/19q status and diagnosis of the three
molecular subtypes of adult-type gliomas than a model based only on one modality. The
accuracy of the models in three tasks with two rounds of analysis depended on the size of
the population and the appropriate balance among the number of patients included in each
subtype group. The differences in class accuracies outlined in this study emphasize the
importance of using a balanced set of patients with all glioma subtypes equally represented
during model training and testing. Future studies on glioma molecular subtype prediction
should take into consideration this important aspect in the experimental design.
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