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Simple Summary: Triple negative breast cancer (TNBC) is the most aggressive subtype of breast
cancer, with a higher mortality rate when compared to the other subtypes. Because of the absence
of a molecular target and the heterogeneity of TNBC molecular subtypes, the development of
targeted therapies is limited. Protein tyrosine kinases (TKs), in particular, have emerged as important
molecular targets and biomarkers in cancer. Thus, we identified the signature TK of individual
TNBC subtypes by analyzing RNA-seq-based transcriptome data of TNBC patients from The Cancer
Genome Atlas database and validated this finding against other TNBC patients and cell line datasets.
Our discovery of the signature TK for TNBC subtypes can be used as actionable targets for anti-cancer
therapies, as well as subtype-specific biomarkers for TNBC.

Abstract: Triple negative breast cancer (TNBC) shows impediment to the development of targeted
therapies due to the absence of specific molecular targets. The high heterogeneity across TNBC
subtypes, which can be classified to be at least four subtypes, including two basal-like (BL1, BL2), a
mesenchymal (M), and a luminal androgen receptor (LAR) subtype, limits the response to cancer
therapies. Despite many attempts to identify TNBC biomarkers, there are currently no effective
targeted therapies against this malignancy. In this study, thus, we identified the potential tyrosine
kinase (TK) genes that are uniquely expressed in each TNBC subtype, since TKs have been typically
used as drug targets. Differentially expressed TK genes were analyzed from The Cancer Genome
Atlas (TCGA) database and were confirmed with the other datasets of both TNBC patients and cell
lines. The results revealed that each TNBC subtype expressed distinct TK genes that were specific
to the TNBC subtype. The identified subtype-specific TK genes of BL1, BL2, M, and LAR are LYN,
CSF1R, FGRF2, and SRMS, respectively. These findings could serve as a potential biomarker of
specific TNBC subtypes, which could lead to an effective treatment for TNBC patients.

Keywords: triple negative breast cancer; tyrosine kinase; cancer marker identification

1. Introduction

Breast cancer is a heterogeneous group of diseases. Expression of hormone receptors,
such as estrogen receptor (ER) and progesterone receptor (PR), or human epidermal growth
factor receptor 2 (HER2), can indicate the probability of responsiveness to therapies target-
ing these receptor proteins. Triple negative breast cancer (TNBC), which is approximately
15–20% of all breast cancer cases, shows an impediment to the development of targeted
therapies due to the absence of molecular targets [1,2]. TNBC displays transcriptional
diversity with four tumor-intrinsic subtypes, including two basal-like (BL1, BL2), a mes-
enchymal (M), and a luminal androgen receptor (LAR) subtype [3]. Each subtype displays
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unique biology that affects treatment efficacy in different ways; for example, only a subset
of TNBC patients respond to the standard-of-care chemotherapy [4–6] or the immune
checkpoint blockade treatment, which is one of the most effective current treatments for
TNBC patients [7,8]. Because of the heterogeneity of TNBC, it is challenging to understand
the underlying disease mechanisms and design targeted treatments. Further analysis of
the molecular basis for differences among TNBC subtypes will help to uncover actionable
targets to improve the treatment outcome.

A potential target that is generally used for the prognostic marker, as well as cancer
therapy, is a protein kinase because of its association with human cancer initiation and
progression [9,10]. Among over 500 protein kinases, the human genome contains approxi-
mately 90 protein tyrosine kinases (TKs), which can regulate cellular proliferation, survival,
differentiation, function, and mobility [10]. TKs can be classified into the receptor tyrosine
kinase (RTK), which consists of transmembrane proteins with a ligand-binding extracel-
lular domain and a catalytic intracellular kinase domain, and the non-receptor tyrosine
kinase (NRTK), which is found in the cytosol. Examinations of genomic, transcriptomic,
and proteomic profiling, as well as immunohistochemistry of TNBC cohort and cell line
samples, revealed that TKs could be potential prognostic and/or therapeutic targets for
TNBC. The majority of reported TKs that are highly expressed in TNBC are RTKs, such
as the ErbB family (e.g., EGFR, ERBB4) [11–14], C-Kit [15,16], PTK7 [17], VEGFR2 [18],
PDGFRα [18], and the EPH-receptor family (e.g., EPHA1, EPHA4, EPHA7, EPHB4, and
EPHB6), FLT1, ALK, and PTK2B [19]. In addition to RTKs, the cytoplasmic TKs belonging
to the SRC family kinases (e.g., SRC and FYN) and immune-related genes (e.g., ITK and
ZAP70) were found to be highly expressed in TNBC [20].

Over the past three decades, the FDA has approved at least 24 new therapeutic drugs
for breast cancer, including 18 small molecules, three monoclonal antibodies (mAbs), and
three antibody-drug conjugates (ADCs) [21–23]. Each one is specific to stages and subtypes
of breast cancer. The majority of them are prescribed to patients diagnosed with hormone
receptor-positive breast cancers (i.e., ER- and/or PR-positive breast cancers) and HER2-
positive breast cancer. Only three drugs received accelerated approval for the first therapies
of metastatic TNBC, including two mAbs and an ADC [24]. Atezolizumab (in combination
with paclitaxel) and pembrolizumab (in combination with chemotherapy) are mAbs that
target the programmed cell death protein 1 (PD-1), whereas sacituzumab govitecan-hziy is
an ADC that combines an antibody targeting the human trophoblast cell-surface antigen
2 (Trop-2) and a cytotoxic drug, SN-38. In addition, targeting protein kinases with small
molecules or antibodies for the treatment of various types of cancer, including breast
cancer, has been successfully proven in clinical trials. EGFR is typically used as a potential
therapeutic target for TNBC since it is frequently overexpressed in TNBC compared to
other breast cancer subtypes [25]. However, the clinical trials of EGFR inhibitors, including
small molecules and mAbs, have not been satisfactory due to low response rates from
the genetic heterogeneity of TNBC subtypes [25,26]. Inhibiting multiple kinases against
a variety of growth factor receptors, including platelet-derived growth factor receptor
(PDGFR), fibroblast growth factor receptors (FGFRs), vascular endothelial growth factor
receptor (VEGFR), as well as the proto-oncogenes RET, FLT3, and SRC, with anti-angiogenic
activity, nintedanib has shown efficacy in early clinical trials for TNBC [27].

Although TKs are commonly activated in cancers and serve as important targets for
anti-cancer therapies, as well as predictive markers for therapeutic response [9], there are
currently no effective therapies associated with TKs for TNBC. Given the distinct genomic
alterations and clinicopathological characteristics of different TNBC subtypes, investigation
of subtype-specific TK changes could reveal molecular vulnerabilities within TNBC that
potentially lead to novel therapeutic targets. Differential expression analysis of kinase genes
expressing in TNBC has been studied using RT-PCR, microarrays, or RNA-seq [3]; however,
the unique TKs in each TNBC subtype have not been reported. In this study, the RNA-
seq data from TCGA of TNBC cohorts [28] were analyzed to illustrate the transcriptome
profile in TNBC, with a focus on TK genes. We discovered TK genes that are differentially
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expressed (DE) in different TNBC subtypes. The gene and kinase enrichment analyses,
including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses, were performed to reveal distinct biological mechanisms and
functions of each subtype, and Kinase Enrichment Analysis 3 (KEA3) was used to further
predict the upstream kinases based on the DE genes. Our findings were validated by other
RNA expression datasets from TNBC patients and cell lines. Overall, this study provides
in-depth transcriptomic-based TK profiles of TNBC and identifies subclass-specific TKs of
each TNBC subtype that could lead to the improvement of antitumor efficacy, as well as
novel TK targets for clinical exploration and therapeutic application.

2. Materials and Methods
2.1. RNA-Seq Datasets

We performed analysis on publicly available transcriptomic data from TCGA [28]
(UCSC XENA Project—https://xenabrowser.net/, accessed on 17 July 2022). The tran-
scripts per million (TPM) RNA-seq data of TNBC patients were selected based on the
TCGA-BRCA project [28] and further classified into four subtypes [3]. The classification of
the subtype was performed using the TNBCtype web-based tool (http://cbc.mc.vanderbilt.
edu/tnbc/, accessed on 17 July 2022), based on the highest positive centroid correlation
and p-value on normalized mRNA expression of TNBC samples. In total, 183 TNBC sam-
ples were assigned to either BL1 (64 samples), BL2 (37 samples), M (54 samples), or LAR
(28 samples) subtypes.

2.2. Gene Expression Analysis

Differential gene expression analysis of RNA-seq data, excluding long noncoding
RNAs (lncRNAs), was performed using R package DESeq2 (version 1.30.1) [29]. To iden-
tify subtype-specific genes in each TNBC subtype, we performed differential gene ex-
pression analysis using a subtype of interest versus the remaining three TNBC subtypes
(subtype/TNBC). Identified genes with adjusted p-value < 0.05 were considered statisti-
cally significant and further used to quantify their expression based on log2 fold change
(log2FC). The criteria to select the DE gene specific to each TNBC subtype was set as
|log2FC| ≥ 1, where upregulated and downregulated genes were defined as the genes
with log2FC ≥ 1 and log2FC ≤ −1, respectively. We also employed Venn, the online
tool (http://bioinformatics.psb.ugent.be/webtools/Venn/, accessed on 30 July 2022), to
generate a Venn diagram to show the relation of DE genes among TNBC subtypes.

2.3. Gene Ontology and KEGG Pathway Enrichment Analysis

To further investigate DE genes in each TNBC subtype, GO enrichment analysis
and KEGG pathway analyses were performed. Upregulated DE genes from each TNBC
subtype (p-value < 0.05 and log2FC ≥ 1) were analyzed using the functional annotation
tool, that is, the Database for Annotation, Visualization, and Integrated Discovery (DAVID,
https://david.ncifcrf.gov/, accessed on 30 July 2022) [30]. The default parameters with
medium stringency were implemented and computed over the background of the whole
human genome. The results from GO and KEGG with Fisher’s exact p-values < 0.05 were
selected for further analysis.

2.4. Kinase Enrichment Analysis

Upregulated DE genes in each TNBC subtype were converted into protein. Then,
these proteins were used as the input to Kinase Enrichment Analysis 3, KEA3 (https:
//maayanlab.cloud/kea3, accessed on 13 August 2022), which is a web server application
that infers overrepresentation of upstream kinases of which putative substrates are in a
user-inputted list of proteins [31]. The kinases were ranked using the MeanRank score, and
the top 20 kinases were reported. These kinases were then grouped into kinase families
using KinMap, which is a web-based tool (http://www.kinhub.org/kinmap/, accessed on
13 August 2022) [32].

https://xenabrowser.net/
http://cbc.mc.vanderbilt.edu/tnbc/
http://cbc.mc.vanderbilt.edu/tnbc/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://david.ncifcrf.gov/
https://maayanlab.cloud/kea3
https://maayanlab.cloud/kea3
http://www.kinhub.org/kinmap/
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2.5. Gene Expression Validation

Other publicly available transcriptomic data of TNBC patients and cell lines from the
following datasets were analyzed to validate the TCGA results. The Clinical Proteomic
Tumor Analysis Consortium (CPTAC) dataset [33] includes mass spectrometry-based pro-
teomics with next-generation DNA and RNA sequencing profiles from
122 treatment-naive primary breast cancer patients, in which 27 samples were classified as
BL1 (11 samples), BL2 (3 samples), M (9 samples), and LAR (4 samples) TNBC subtypes [3].
The MET500 dataset [34] contains gene expression profiles of 500 cancer patients with
metastatic cancers from more than 30 primary sites and biopsied from over 22 organs,
in which 39 breast cancer samples were classified as BL1 (11 samples), BL2 (10 samples),
M (8 samples), and LAR (10 samples) TNBC subtypes [3]. The Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC) dataset [35] consists of normalized
RNA microarray profiling on 1981 fresh-frozen primary breast cancer specimens, in which
325 samples were specified as BL1 (119 samples), BL2 (63 samples), M (65 samples), and
LAR (78 samples) TNBC subtype [3]. The Cancer Cell Line Encyclopedia dataset (CCLE,
from DepMap Public 22Q2) [36] consists of gene expression profiles of 1406 cell lines, 83 of
which are breast cancer cell lines. Only 20 TNBC cell lines were then selected for this
study and classified as BL1 (5 samples, i.e., HCC1599, HCC1937, HCC38, HCC1143, and
HCC2157), BL2 (5 samples, i.e., HCC1187, HCC1806, HCC70, CAL-85-1, and SUM149PT),
M (5 samples, i.e., CAL-120, BT-549, MDA-MB-436, MDA-MB-157, and MDA-MB-231), and
LAR (5 samples, i.e., BT-20, CAL-148, MDA-MB-453, SUM185PE, and MFM-223) TNBC
subtypes. In total, we validated our findings with 391 TNBC patients and 20 TNBC cell
lines, including 146 BL1, 81 BL2, 87 M, and 97 LAR samples.

To validate the results, the mRNA expression z-score of TK genes of interest in each
dataset was used to compare the expression across all TNBC subtypes. Furthermore, the
receiver operating characteristic (ROC) curve of those TK genes was used to illustrate the
performance of identified TK genes in classifying the TNBC subtype from TNBC patient
and cell line datasets. The ROC curve is made up of sensitivity (y-axis) and 1–specificity
(x-axis). In addition, the area under the ROC curve (AUC), which ranges from zero to one
(one indicating perfect performance), was used to represent the overall performance of
identified TK genes as signature genes to classify TNBC subtypes.

2.6. Statistical Analysis

All data analyses were performed in R (version 4.0., R Foundation for Statistical
Computing, Vienna, Austria). The statistical details of all experiments were reported within
the text, in the figure legends, and in figures, including statistical analysis performed and
statistical significance.

3. Results
3.1. Differentially Expressed Genes among TNBC Subtypes

The TCGA RNA-seq dataset of TNBC patients was analyzed with DESeq2 to identify
DE genes [28,29]. Using genomic data guided by the expression distribution of clinically
defied ER, PR, and HER2 tumors, about 17% of TCGA breast cancer patients were classified
as TNBC. These TNBC samples were then further categorized into four subtypes, including
BL1 (64 samples, 35%), BL2 (37 samples, 20%), M (54 samples, 30%), and LAR (28 samples,
15%) [3]. The results using principle component analysis showed the heterogenicity of
TNBC subtypes on the transcriptome level (Figure 1A). Other principal components also
illustrated the unclear differentiation of TNBC subtypes (Figure S1). However, LAR showed
the most distinct separation from other subtypes (Figure 1A).
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Figure 1. Differential gene expression analysis of TNBC samples from TCGA dataset. (A) Principal
component analysis of mRNAs expression in each subtype, including BL1, BL2, M, and LAR. Each
dot represented one TNBC cohort. (B) Volcano plot showing the gene expression differences between
particular TNBC subtypes and the remaining subtypes. Gray dots represented genes with adjusted
p-value < 0.05, whereas those with the plus sign (+) represented DE genes encoding protein tyrosine
kinases. DEGs: differentially expressed genes. (C) Heatmap of the expression levels (z-score TPM) of
top 50 upregulated DE genes in each subtype of TNBC. Rows were ascendingly ranked according
to the adjusted p-value from the differential gene expression analysis (more to less significant),
and columns represented individual cases. Red indicated overexpression, while blue indicated
underexpression. (A–C) The BL1, BL2, M, and LAR subtypes were indicated in blue, pink, orange,
and green, respectively.

The DE genes of a particular TNBC subtype were defined when changes in gene
expression levels of that particular subtype were higher than the remaining subtypes.
Overall, 4217, 2602, 3902, and 5749 genes were differentially expressed with adjusted
p-value < 0.05 in BL1, BL2, M, and LAR, respectively. Among these, there were 138 (BL1),
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341 (BL2), 344 (M), and 966 (LAR) upregulated genes, and 970 (BL1), 341 (BL2), 1020 (M),
and 1043 (LAR) downregulated genes (Figure 1B). Only upregulated DE genes were in-
cluded for further analysis. The expression of the top 50 upregulated DE genes ranked
based on the adjusted p-value in each TNBC subtype were illustrated in the heatmap
(Figure 1C). Majority of TNBC patients showed similarity in RNA expression levels of
those DE genes within the same subtype but difference across subtypes. This indicated
the potential to identify the molecular signature of each TNBC subtype, regardless of the
heterogenicity of TNBC patients.

3.2. Signature TK Genes Identification of Each TNBC Subtype

The signature TK gene was identified from differentially expressed TK genes by
comparing a certain subtype to the remaining TNBC subtypes. Only upregulated TK genes
were considered as subtype-specific signature TK genes (Figure 2A).
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Figure 2. Differentially expressed TK genes showing signature TKs in each TNBC subtype. (A) Volcano
plot showing the TK gene expression differences between a specific subtype and the rest of TNBC patient
cohorts. Heatmap displaying the log2FC of the (B) NRTKs and (C) RTKs. Row represented DE TK genes
with the adjusted p-value: * < 0.05, ** < 0.01, *** < 0.001, and column represented the TNBC subtype. The
color bar from blue to red illustrated the level of fold change from low to high, where non-significant DE
TK genes (adjusted p-value > 0.05) were highlighted in gray.
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The log2FC distribution of NRTK genes revealed differences among TNBC subtypes
(Figure 2B). Eighteen DE TK genes with positive fold change were found in BL1 (2 TKs),
BL2 (9 TKs), M (1 TK), and LAR (6 TKs). Among these, the expression of NRTKs with
log2FC > 1 was only observed in BL2 and LAR. We found that TXK had the highest fold
change among upregulated TK genes in BL2, followed by the kinases of the Tec family (i.e.,
BTK and ITK) and the Janus family (i.e., JAK1, JAK2, and JAK3). In LAR, the kinases of
the PTK6 family, including SRMS and PTK6 (breast tumor kinase, BRK), were found to be
upregulated, followed by BMX from the Tec family. On the other hand, upregulated kinase
genes of the SRC family, such as LYN and SRC, were detected in BL1 and M, respectively.

Similar to NRTK, changes in RTK gene expression levels in each TNBC subtype were
also unique (Figure 2C). Thirty-eight DE TK genes with positive fold change were found in
BL1 (1 TK), BL2 (11 TKs), M (15 TK), and LAR (12 TKs), with EPHA4 overlapping between
BL2 and M. In BL1, only EPHA10, which is a class of Eph receptor RTKs, was found to
be upregulated. In BL2, the top-upregulated kinase gene with the highest FC was CSF1R.
Several RTKs of Eph family dominantly involved in BL2 in both upregulation (EPHA2,
EPHA4, EPHB2) and downregulation (EPHA7, EPHB1, and EPHB3). Furthermore, EGFR
was found to be significant in BL2. A variety of RTKs from different families, such as the
Eph, DDR, FGFR, and NTRK families, were positively or negatively involved in the M
subtype. In addition, EPHA7, EPHB1, EPHB3, FGFR1, FGFR2, FGFR3, IGF1R, and NTRK3
were found to be upregulated, especially EPHA7 and NTRK3, which showed the highest FC
in M but the lowest in the BL2 and LAR subtypes. In LAR, seven RTKs, e.g., ERBB2, ERBB4,
FGFR4, FLT3, LMTK3, RET, and TEK, were upregulated where ERBB4 and FGFR4 had the
highest FC compared to the rest of TNBC subtypes. We also found that the expression of
ERBB2 (or HER2), which is typically used to classify one of the major types of breast cancer,
was found to be upregulated in LAR.

Combining TK gene expression results from both NRTKs and RTKs, the top three
TKs with the most significant and the highest FC in each subtype were EPHA10, LYN, and
PTK2 for BL1; CSF1R, EPHB2, and TXK for BL2; EPHA1, FGFR2, and NTRK3 for M; ERBB4,
FGFR4, and SRMS for LAR. These identified TKs could potentially be subtype-specific
signature TK genes of the particular TNBC subtype.

3.3. Kinase Enrichment Analysis of DE Genes

To infer the potential upstream kinases in accordance with the upregulated DE genes in
each TNBC subtype, we performed kinase enrichment analysis using KEA3 [31]. Searching
through kinase-substrate databases covering more than 500 unique protein kinases, the
top 20 upstream kinases based on the MeanRank of KEA3 were selected. These enriched
kinases were then mapped in the phylogenetic tree of the human kinome using KinMap
to categorize kinases into eight typical groups (AGC, CAMK, CK1, CMGC, STE, TK, TKL,
Other) and 13 atypical families among the human kinome [37]. The distribution of enriched
kinases revealed that the majority of kinase groups found in all TNBC subtypes was TK
which appeared at 35% in BL1, 70% in BL2, 85% in M, and 55% in LAR (Figure S2).

To further investigate the relation of TKs on different subtypes of TNBC, only the top
10 TKs were investigated (Figure 3A,B). We found that the majority of TKs in BL1 were
NRTKs with only one RTK (i.e., EGFR), while all TKs in LAR were RTKs. On the contrary,
both NRTKs and RTKs can be found in BL2 and M (Figure 3B). These results indicated that
DE genes encoding kinase proteins in BL2, M, and LAR were mainly involved in the signal
transduction of the RTKs, but opposite to BL1. Considering the classes of TKs for all TNBC
subtypes, only three were dominant, including the SRC family (i.e., FYN, HCK, LCK, LYN,
and SRC), the ErbB family (i.e., EGFR or ERBB1, ERBB2, ERBB3, and ERBB4), and the FGFR
family (i.e., FGFR1, FGFR2, FGFR3, and FGFR4), with different distribution in each TNBC
subtype (Figure 3B).
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Figure 3. Kinase enrichment analysis. (A) Top ten predicted TKs from KEA3 based on MeanRank
score. (B) Distribution of non-receptor (NRTKs) and receptor TKs (RTKs). TKs from (A) were grouped
into subclass of the TK family. (C) Venn diagram of the top ten predicted TKs of each TNBC subtype.
The information on TKs of TNBC subtypes was illustrated in the table.

The most enriched kinases in each TNBC subtype were relatively unique with a small
number of TKs overlapping between any two subtypes (Figure 3C). In BL1, NRTKs such as
LCK, CSK, ZAP70, HCK, and PTK2B (PYK2), which are mainly involved in the regulation
of the immune system, were enriched. In BL2, several enriched TKs were similar to those
in BL1, including SYK, LYN, JAK2, and EGFR, which were reported to be associated with
the aggressiveness of TNBC [25,38–40]. EGFR was found to be associated with BL2 more
than BL1 based on the MeanRank score. The candidate signature TKs for BL2 were ITK, SRC,
KIT, and KDR (VEGFR2). For M and LAR, unique TKs generally act as cell–surface receptors
with different functions. Three major types of enriched RTKs in M were the FGFR family (i.e.,
FGFR1, FGFR2, and FGFR3), the DDR family (i.e., DDR1 and DDR2), and Lemur tyrosine
kinase-3 (LMTK3). In LAR, diverse RTKs were identified, such as the ErbB family (i.e., ERBB3
and ERBB4), the insulin/insulin-like receptor family (i.e., INSR and IGF1R), the TIE receptor
family (i.e., TIE1 and TEK (TIE2)), and ROS proto-oncogene 1 (ROS1).

Comparing the results of predicted upstream kinases and subtype-specific TK genes of
the TNBC subtype, we found that 10%, 40%, 60%, and 50% of TKs inferred by KEA3 were
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identity to the subtype-specific TK genes of the BL1, BL2, M, and LAR subtype, respectively.
These overlapping TKs could also be used as the subtype-specific signature TKs of each
TNBC subtype.

3.4. KEGG and GO Analysis of DE Genes

To investigate the unique biological functions of DE genes, functional enrichment
analyses were performed using KEGG and GO analysis on unique and upregulated DE
genes (Figure 4A). Only those with Fisher’s exact p-values < 0.05 were selected for further
analysis. The top 10 pathways for KEGG and GO analyses were displayed in Figures 4B
and S3.
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KEGG pathway analysis of DE genes revealed differences between TNBC subtypes
(Figure 4B). The basal-like subtype of TNBC, BL1 and BL2, had enrichment of genes mainly
associated with the immune system and infectious disease with a few overlapping path-
ways, such as IL-17 signaling pathway, viral protein interaction with cytokine and cytokine
receptor, and cytokine–cytokine receptor interaction. However, the pathway in BL1 was
also related to cell growth and death, whereas that in BL2 was involved in the inflamma-
tory immune response. In M, enriched signaling pathways were related to intracellular
processes, and cellular functions, through several pathways, such as calcium, PI3K-Akt,
oxytocin, Ras, and Rap1 signaling pathways, and the extracellular processes, such as focal
adhesion and ECM-receptor interaction. In LAR, the DE genes were mostly associated
with metabolism pathways, such as peroxisome, drug metabolism, tyrosine metabolism,
glutathione metabolism, tryptophan metabolism, and metabolism of xenobiotics. Besides,
the DE genes were in response to external cues, such as drugs or chemicals, through the
PPAR signaling pathway, ABC transporters, and chemical carcinogenesis. Interestingly,
even though the DE genes were enriched in diverse pathways, only the M subtype was
found to be related to the breast cancer pathway.

GO analysis, including biological process (BP), cellular component (CC) and molecular
function (MF) analysis, revealed distinct characteristics of each TNBC subtype (Figure S3).
BP analysis showed that BL1 TNBC cancer exhibited a strong association with the immune
system process and immune response to stimulus. Besides the immune system process,
BL2 was found to be associated with the cell development process, including epidermis
development, keratinization, and keratinocyte differentiation. The M subtype was linked
with cell development, communication, and response to stimulus, while the LAR subtype
was mainly involved in metabolic processes, such as drug metabolism. For CC analysis,
the upregulated DE genes in BL1, BL2, and M were mainly enriched in the membrane,
followed by the extracellular region. In contrast, the cytoplasm part was the dominant
subcategory for LAR. Moreover, the changes in MF of BL1 were significantly enriched in
serine hydrolase activity and carbohydrate binding. In BL2, functions related to signaling
receptor activity, chemokine receptor binding, and signaling receptor binding were detected.
In contrast, the dominant functions in M were protein TK activity, protein binding, and
structural molecule activity. In LAR, on the other hand, the changes in MF were mainly
associated with catalytic activity and ion binding.

3.5. Retrospective Validation of Signature TK Genes

To validate the potential signature TKs for each TNBC subtype, we compared our
findings to the RNA expression of TKs in other TNBC patient and cell line datasets. Three
datasets are from TNBC patients, including CPTAC (27 patients), MET500 (39 patients),
and METABRIC (325 patients). Another dataset is from CCLE, including 20 TNBC cell
lines. These datasets were then subcategorized into BL1, BL2, M, and LAR, according to
previous reports [3,4,41]. Two assessment methods were used to validate our discovered
subtype-specific TK genes in retrospect.

The mRNA expression z-score of the top three subtype-specific signature TK genes of
each TNBC subtype was used to compare the changes in the expression level of selected
kinases within the same dataset, as well as to compare the trend across datasets (Figure 5).
We found that the changes in expression of TK genes in each TNBC subtype were overall
consistent to all datasets. TK genes with slightly positive FC in BL1, including EPHA10, LYN,
and PTK2, could possibly be involved in this subtype since their RNA expression was the
highest in BL1. Furthermore, the z-score of the top three kinases, including TXK, EPHB2,
and CSF1R for BL2, NTRK3, EPHA7, and FGFR2 for M, and ERBB4, FGFR4, and SRMS for
LAR, were consistently the highest value in BL2, M, and LAR, respectively. We found that the
RNA-expression of TKs from TCGA, CPTAC, MET500, METABRIC, and CCLE were mostly
consistent, except for certain kinases, including EPHA10, LYN, TXK, and FGFR2, of which the
z-score from METABRIC and CCLE did not agree well with the rest. The differences could be
possibly due to the heterogenicity of TNBC, as well as experimental methods, such as TNBC



Cancers 2023, 15, 403 11 of 18

microarray from METABRIC or small sample space of TNBC cell lines. Interestingly, signature
TK genes in the LAR subtype showed distinguished RNA expression than other subtypes,
indicating the promising unique signature of this specific subtype.
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Figure 5. The comparison of the mRNA expression z-score of signature TK genes of each TNBC
subtype. The heatmap displayed the mRNA expression z-score of the top three TKs that were
unique in each TNBC subtype comparing among four TNBC datasets including TCGA, CPTAC,
MET500, METABRIC, and CCLE. Each row represented DE TK genes, and each column represented
the individual TNBC subtypes from different datasets. The color bar from blue to red showed the
level of the mRNA expression z-score ascendingly.

In addition, the sensitivity and specificity of our TNBC subtype-specific signature TK
genes were evaluated using ROC analysis (Figure 6A–D). The AUC of the ROC curve was
used to assess the performance of these TKs as a biomarker for identifying a specific TNBC
subtype (Figure 6E). In BL1, the average AUC values of EPHA10, LYN, and PTK2 were
0.633 ± 0.129, 0.747 ± 0.031, and 0.702 ± 0.063, respectively, where the individual AUC
values of LYN and PTK2 were similar across all four datasets. In BL2, the average AUC
values of TXK, EPHB2, and CSF1R were 0.500 ± 0.167, 0.705 ± 0.076, and 0.708 ± 0.029,
respectively. The individual AUC values of EPHB2 and CSF1R were consistent across all
datasets, while TXK performed poorly in CCLE, CPTAC, and METABRIC datasets. In M,
the average AUC values of EPHA7, FGFR2, and NRTK3 were 0.637 ± 0.128, 0.675 ± 0.237,
and 0.599 ± 0.075, respectively. These M subtype-specific TK genes performed better in
CPTAC and MET500 compared to METABRIC and CCLE datasets. Particularly, the AUC
of FGFR2 from CPTAC and MET500 datasets were 0.849 and 0.875, respectively. This
indicated that FGFR2 could be a potential biomarker for the M subtype. TK genes in LAR
had the highest AUC values, especially SRMS and FGRF4, with average AUC values of
0.822 ± 0.095 and 0.813 ± 0.122, respectively, whereas ERBB4 had a lower AUC value
of 0.641 ± 0.135 due to inconsistent performance in CCLE and METABRIC datasets. In
summary, eight out of 12 candidate subtype-specific TK genes could be potential biomarkers
to classify TNBC subtypes, including LYN and PTK2 for BL1, CSF1R for BL2, EPHA7 and
FGFR2 for M, and SRMS, ERBB4, and FGFR4 for LAR (average AUC > 0.700 from RNA-seq
data of TNBC patients (CPTAC and MET500)). Among these TK genes, FGFR2 for M and
SRMS for LAR achieved the highest average AUC at 0.862 and 0.874, respectively.
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Figure 6. ROC analysis of signature TK genes in four datasets, including (A) CPTAC, (B) MET500,
(C) METABRIC, and (D) CCLE. The blue, pink, orange, and green displayed the candidate signature
TK genes in the BL1, BL2, M, and LAR subtypes, respectively, while grey lines illustrated the
remaining TK genes. The area under the ROC curve (AUC) of each TK gene was shown in the
lower right corner (TK gene:AUC). (E) The average AUC across the four datasets was summarized
(mean ± standard deviation) with color and symbol according to the subtypes and datasets.
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4. Discussion

Tyrosine kinases are commonly involved in cancers and serve as important targets for
anti-cancer therapies, as well as predictive markers for therapeutic response [9]. Because
TNBC is currently treated as a single disease, identification of a TNBC subtype-specific
signature TK gene could greatly improve the efficacy of the targeted treatment. Here,
we focused on the expression of TKs in each TNBC subtype, including BL1, BL2, M, and
LAR, to identify signature TKs that could be used as a prognostic marker and targeted
therapy. We explored the TNBC TCGA RNA-seq dataset and discovered that each TNBC
subtype expressed distinct TKs. Comparing our findings with other datasets of TNBC
patients and cell lines, we found that the expression of these identified TKs among the
TNBC subtypes had a similar trend across datasets. Moreover, the majority of these TKs
exhibited good performance in classifying the TNBC subtypes as a result of the ROC
analysis (AUC > 0.700). Thus, our findings can be used to create the TK mapping of TNBC
subtypes, which will be important for both diagnosis and therapeutics. To investigate the
subtype-specific TKs, two aspects of TK genes were considered, including the signature TK
genes identified from upregulated differentially expressed TK genes and the upstream TKs
predicted from the kinase enrichment analysis.

For the DE TK genes, we found that the expression of these genes was unique in
each subtype; therefore, they could be used as the predictive marker to distinguish the
TNBC subtype. Although several evidences supported the high expression of our identified
TKs in TNBC, and some of them have been under the clinical study [42], the signature
TKs expressed in each TNBC subtype have not been reported. This information could
be important for identifying a proper cancer therapy because each subtype responds to
the drug differently. Overexpression of EPHA10, LYN, and PTK2 (BL1 subtype-specific
TK genes) is linked to the severity of breast cancer and can be used as the biomarker
for TNBC [38,43–45]. LYN has been used as a potential drug target for TNBC reported
by several studies [39,46]. Interestingly, LYN and PTK2 were found in the majority of
TNBC cell lines classified as the BL1 subtype, which is consistent with our findings [38,47].
However, the signature TK genes in BL2 were still ambiguous. Only CSF1R and EPHB2 (BL2
subtype-specific TK genes) were reported as having similar expression in different types of
breast cancer, including TNBC [48,49]. Even though our study revealed that TXK has the
highest FC of RNA-expression in BL2 among TNBC subtypes, the ROC analysis showed
the opposite. Thus, the activity of TXK on breast cancer requires further investigation [50].

In addition, overexpression of NTRK3, EPHA7, and FGFR2 (M subtype-specific TK
genes) has been linked to a worse prognosis in breast cancer and could promote TNBC
formation [51–54]. In the case of ERBB4, FGRF4, and SRMS (LAR subtype-specific TK
genes), overexpression of ERBB4 and FGRF4 was reported to be associated with poor
prognosis in TNBC [55,56]. Apart from ERBB4, another RTK in the ErbB family, ERBB2
(HER2), was upregulated in the LAR subtype, which is expected to be HER2-negative.
This finding was consistent with the previous report that the occurrence of this breast
cancer oncogene, ERBB2, is accompanied by overexpression of ERBB4 [57]. Moreover,
the expression of ERBB4 and FGFR4 was detected in the LAR subtype of TNBC, which
agrees well with our findings [58,59]. On the other hand, the non-receptor SRMS has not
been reported on TNBC, but there is evidence supporting that it may serve as a biomarker
for metastatic breast cancer [60]. Overall, some of our identified signature TK genes of
each TNBC subtype have been reported by several studies as the potential biomarker for
TNBC, but with limited information on the relationship to the TNBC subtype. Thus, more
investigation of these TKs on an individual subtype of TNBC patients is needed.

Upregulated DE genes in each TNBC subtype were also used to predict the up-
stream kinases responsible for the observed differential phosphorylation. Out of more
than 500 protein kinases, we found that TKs were dominant in the top-ranked predicted
kinases of the TNBC subtype. This suggests that TKs could play an important role in the
phosphorylation activities that contribute to signal transduction in TNBC. The basal-like
subtype of TNBC showed the similarity to the enriched TKs. About half of them in BL1
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and BL2 were overlapping, such as LYN, JAK2, SYK, and EGFR, which were reported to
be associated with the aggressiveness of breast cancer, particularly in TNBC [25,38–40].
Interestingly, EGFR which is typically used as the marker for TNBC was significantly up-
regulated in BL2. Our results agreed well with previous studies that BL2 is highly involved
in growth factor signaling pathways such as EGFR, while BL1 is involved in several cell
activities [58]. In BL1, the enriched kinases, such as LCK and PTK2B, were associated with
tumorigenesis, as well as invasion of breast cancer [61–63], whereas ZAP70 was reported
to be related to drug resistance in TNBC [64]. In BL2, the predicted SRC and KIT have
been recognized as proto-oncogenes and could be exploited as the targetable molecule for
TNBC [65–67]. KDR (or VEGFR2) and PTK2 (or FAK) were observed in TNBC patients
and could promote angiogenesis in TNBC cells [68]. Furthermore, the inhibition of ITK by
Ibrutinib was reported to inhibit tumor development and metastasis in breast cancer [69].

For M and LAR, all unique TKs generally acted as cell–surface receptors with different
functions. Three major types of enriched RTKs in M were FGFR, DDR, and LMTK3.
The amplification of FGFR1, FGFR2, and FGFR3 was found in TNBC with variations
associated with poor prognosis and overall survival [70,71]. DDR1 was revealed to control
TNBC growth, while DDR2 overexpression could be a potential target for TNBC [72].
LMTK3 expression levels were implicated in cancer cell invasion, endocrine resistance,
poor prognosis, and overall tumor progression in different types of malignancies [73], and
its high expression has been observed in TNBC [74]. In addition, we found that other
kinases from the ErbB family, such as ERBB3 and ERBB4, were uniquely expressed in the
LAR subtype [57]. Particularly, ERBB4 expression could serve as a possible prognostic factor
in advanced-stage TNBC [56]. Other TKs, such as TIE1 and TEK (or TIE2), were enriched
in TNBC [4], and a proto-oncogene ROS1 was a regulator of cellular signal transduction
pathway that mediates cell proliferation and migration and cell-to-cell communication.
Again, although several studies have reported the association of these TKs to TNBC, no
subtype-specific TKs of each TNBC have been revealed.

Despite about 40% correlation between expression levels of mRNA and protein, genes
with differentially expressed mRNA have significantly higher correlations between mRNA
and protein than those with non-differentially expressed mRNA [75,76]. Our findings
revealed the correlation between the subtype-specific TK genes and the predicted upstream
TKs. However, those kinases in BL1 showed a contradiction due to the low expression of
BL1 subtype-specific TK genes in comparison to the rest of TNBC subtypes. In addition,
our result showed the relationship between signature TKs and the biological functions in
each TNBC subtype. We discovered that the identified subtype-specific kinases, predicted
upstream kinases, and the outcome of the functional enrichment analysis are mainly
coherent. The change in RNA expression of those TKs relatively agreed well across all
validation datasets from both patients and cell lines. Furthermore, ROC analysis on RNA-
seq data from TNBC patients showed excellent performance of our identified signature TKs
in classifying TNBC subtypes, especially FGFR2 for M and SRMS for LAR, with the highest
average AUC > 0.860. However, the results from CCLE were particularly inconsistent.
This is likely due to the difference in the microtumor environment surrounding TNBC
cells between the cell line and the tumor cells within the patient’s body. Besides the
heterogenicity of TNBC patients, the differences in experimental methodologies, such as
RNA-seq (TCGA, CPTAC, MET500) and microarray (METABRIC), cause inconsistency in
gene expression where we found that the results from TCGA, CPTAC, MET500 datasets
were mainly consistent. Although TKs appear as potential candidates for personalized
medicine, the plasticity and redundancy of the kinome present key challenges for drug
development. Targeting this TK may result in the upregulation and system-wide changes
in multiple TK expressions and activities. More investigation is still required to better verify
these identified TKs prior clinical practice.
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5. Conclusions

Analyzing transcriptomic TK profiles of TNBC from TCGA datasets and validating
the findings with the other TNBC patient datasets reveals potential signature TKs of TNBC
subtypes, which are uniquely and highly expressed, for future investigation. These subtype-
specific TKs could serve as novel targets for clinical exploration and therapeutic application.
Moreover, these identified TKs could be adapted as an additional staining procedure to
distinguish the TNBC subtype.
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