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Simple Summary:  Various nanoparticles have been developed over the last few decades for tar-

geted drug delivery to cancerous tumors while reducing toxicities. Thermosensitive liposomes 

(TSL) belong to the category of triggered nanoparticle delivery systems, where drug release occurs 

in response to hyperthermic temperatures (typically, >40 ºC). After administration, the TSL-encap-

sulated drug circulates for extended duration (hours) in the blood stream. Localized hyperthermia 

of the targeted tissue results in localized drug release, enabling up to 25x tumor drug uptake com-

pared to administration of unencapsulated drug. Here, we review the delivery kinetics of TSL and 

discuss how the interaction between drug, TSL and hyperthermia device affects drug delivery. 

Thus, this review provides guidelines on how to improve drug delivery by optimizing the combi-

nation of TSL, drug, and hyperthermia method. Many of the concepts discussed are applicable to a 

variety of other triggered nanoparticle delivery systems. 

Abstract: Thermosensitive liposomes (TSL) are triggered nanoparticles that release the encapsulated 

drug in response to hyperthermia. Combined with localized hyperthermia, TSL enabled loco-re-

gional drug delivery to tumors with reduced systemic toxicities. More recent TSL formulations are 

based on intravascular triggered release, where drug release occurs within the microvasculature. 

Thus, this delivery strategy does not require enhanced permeability and retention (EPR). Compared 

to traditional nanoparticle drug delivery systems based on EPR with passive or active tumor target-

ing (typically <5%ID/g tumor), TSL can achieve superior tumor drug uptake (>10%ID/g tumor). Nu-

merous TSL formulations have been combined with various drugs and hyperthermia devices in 

preclinical and clinical studies over the last four decades. Here, we review how the properties of 

TSL dictate delivery and discuss the advantages of rapid drug release from TSL. We show the ben-

efits of selecting a drug with rapid extraction by tissue, and with quick cellular uptake. Furthermore, 

the optimal characteristics of hyperthermia devices are reviewed, and impact of tumor biology and 

cancer cell characteristics are discussed. Thus, this review provides guidelines on how to improve 

drug delivery with TSL by optimizing the combination of TSL, drug, and hyperthermia method. 

Many of the concepts discussed are applicable to a variety of other triggered drug delivery systems. 

Keywords: thermosensitive liposomes; hyperthermia; cancer; nanoparticles; drug delivery systems; 

chemotherapy 

1. Introduction

Thermosensitive liposomes (TSL) belong to the category of triggered nanoparticle 

drug delivery systems (DDS) where a drug associated with the DDS is released in re-

sponse to an external trigger [1–4]. TSL are triggered by heat and release the encapsulated 

drug when exposed to mild hyperthermia (HT), typically ~40–43 °C. TSL were first de-

scribed more than four decades ago [5–8]. Since then, numerous TSL formulations com-

bined with various drugs have been described, as summarized in prior reviews [9–15]. 

TSL are most often administered systemically, e.g., by intravenous infusion, and then cir-

culate in the blood stream for an extended duration. Combined with localized 
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hyperthermia, TSL enable loco-regional drug delivery (Figure 1). This enables the delivery 

of a large drug dose to a targeted tissue region (e.g., tumor) while reducing systemic tox-

icities. Therefore, TSL are attractive as a therapeutic strategy in cancer patients where loco-

regional drug delivery is beneficial, but less useful in metastatic cancer patients that re-

quire systemic therapy. While TSL have been most widely investigated for drug delivery 

in cancer therapy, additional potential clinical applications include the delivery of antibi-

otics [16,17], the treatment of inflammatory diseases [18], and the treatment of blood clots 

[19]. 

TSL enable two different delivery approaches: extravascular triggered release, and 

intravascular triggered release (Figure 2) [14,20–23]. Extravascular triggered release re-

quires the extravasation of the TSL, followed by HT-triggered release of the encapsulated 

agent [14,24]. This extravasation is based on TSL accumulation within the tumor interstit-

ium facilitated by enhanced permeability and retention (EPR) [14,25–28]. Several recent 

papers described the limitations of the EPR effect, such as high intra- and inter-tumor 

variability, and an apparent upper delivery limit [14,27,29]. Recent reviews highlight the 

need for delivery strategies that do not rely on EPR [14,27,29]. 

 

Figure 1. Localized drug delivery with thermosensitive liposomes (TSL). Following the administra-

tion of TSL-encapsulated doxorubicin (Dox), a subcutaneous mouse tumor was heated by a surface 

heating probe to 43 °C. Fluorescence imaging during hyperthermia visualizes the localized delivery 

of the fluorescent drug (Dox). Drug delivery takes place as long as hyperthermia is applied, here 

visualized by a fluorescence increase over the 60 min heating duration. Figure reproduced from [30] 

(published under Creative Commons CC BY license). 

Intravascular triggered release is a strategy where drug release occurs in the micro-

vasculature while the TSL pass through the heated tumor, and does not require the EPR 

effect (Figure 2a) [6,20–23]. Many of the more recent TSL formulations are based on intra-

vascular triggered release, and such TSL have demonstrated superior delivery efficacy, 

with up to 25× higher drug delivery compared to unencapsulated drugs [31]. Compared 

to non-triggered nanoparticle drug delivery systems, TSL based on intravascular trig-

gered delivery demonstrate superior tumor drug uptake (Figure 3). In addition, the direct 

comparison of TSL with extra- versus intra-vascular triggered delivery strongly suggests 

that the latter is superior [22,24,32,33] (Figure 2b). Therefore, in the remainder of this re-

view, we will focus on drug delivery by TSL via intravascular triggered release. 
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Figure 2. Extra- and Intra-vascular triggered release. (a) (1) Traditionally, nanoparticle DDS have 

been based on passive tumor targeting due to enhanced permeability and retention (EPR), where 

drug is released following extravasation of the DDS. (2) For TSL with intravascular triggered release, 

EPR is not relevant: TSL enter the tumor microvasculature of the target region where the release 

trigger (i.e., hyperthermia) is present, and release the contained drug within the vasculature. The 

released drug extravasates rapidly into tissue and is then taken up by cancer cells. (b) Top graph: 

Concentration dynamics in plasma, interstitial, and intracellular compartments during extravascu-

lar triggered release. TSL were allowed to accumulate for 24 h in the tumor based on EPR, followed 

by hyperthermia triggered release. Bottom graph: Concentration dynamics during intravascular trig-

gered release. Hyperthermia (30 min) was applied immediately after TSL administration. Concen-

tration increases in plasma due to drug release. Released drug then extravasates into interstitium 

(extravascular extracellular space), where it is taken up by cells. Figure 3a reproduced from [20] 

(published under CC BY 4.0 license). Figure 3b reproduced from [22] (published under CC0 license). 

 

Figure 3. Delivery efficacy of intravascular triggered TSL compared to other nanoparticle DDS. A 

prior review compared the efficacy of 117 nanoparticle DDS studies published between 2005–2015 

[27], and we combined data from this prior review to include studies published between 2016–2022 

based on the same search algorithm [30–32,34–114]. (a) Plot showing the delivery efficacy (%injected 

dose per gram tumor (%ID/g tumor)) based on the combined data [27,30–32,34–114]. Each marker 

represents a published study, and dashed lines indicate the annual median for DDS with passive 

and active targeting. (b) The means of all prior studies in each category between 2005–2022 are com-

pared, suggesting superior delivery efficacy of intravascular triggered TSL (* indicates statistical 

significance (p<0.05)). 
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Tissue Transit Time 

For TSL based on intravascular triggered release, the dynamics of blood flow through 

the tumor vasculature is of primary relevance. Blood/plasma with TSL enter a tumor seg-

ment through a supplying artery, pass through tumor capillaries, and exit the tumor seg-

ment through a draining vein. The average time that plasma spends within a tumor seg-

ment is termed the ‘tissue transit time’ (TT) (compared to plasma, red blood cells move 

significantly slower through capillaries, and thus remain for longer within the tumor seg-

ment [115]). The drug release from TSL, and drug extraction by tumor tissue, can only 

occur during this tissue transit time. Figure 4 visualizes the transit time between supply-

ing artery and draining vein of a small mouse tumor segment. In human tumors, the mean 

transit time through a tumor has been measured for various tumor types. This mean tu-

mor transit time varies widely, and is ~2 s for primary hepatocellular carcinoma [116], ~3 

s for head and neck and prostate tumors [117,118], ~11 s for renal cell carcinoma [119], ~25 

s for metastases to the liver [116], and ~30 s for breast cancer [120]. Furthermore, transit 

time and perfusion vary spatially within tumors such that transit time can be locally 

within a tumor considerably higher or lower than these mean values that were averaged 

over the whole tumor. 

 

Figure 4. Tumor plasma transit time. Tumor (green fluorescent labeled cancer cells) was imaged by 

intravital fluorescence microscopy. A red fluorescent contrast agent was injected as bolus. The time 

at left upper corner of each image indicates timing relative to plasma first entering the tumor seg-

ment; plasma exits the tumor segment again within ~4 s (note: red blood cells move slower than 

plasma and remain longer in the tumor segment). In the final image (right lower corner), the main 

supplying artery (MSA), and main draining vein (MDV) of the imaged tumor segment are labeled. 

Figure reproduced with permission from [115]. 

As plasma with TSL enters capillary vessels within a heated tumor region, the TSL 

start releasing the drug and the drug is then extracted by the tumor (Figure 5b,c). There-

fore, the plasma drug concentration varies along the vasculature as plasma flows between 

the supplying artery and draining vein of a tumor segment—in other words, a concentra-

tion gradient develops along the tumor microvasculature between the supplying artery 

and draining vein. Figure 5 illustrates schematically this microvascular concentration gra-

dient along a representative capillary connecting the supplying artery and the draining 

vein of a tumor segment. For free (unencapsulated) drug, plasma drug concentration de-

creases as drug is extracted (Figure 5a). For TSL, drug is first released by hyperthermia, 
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and then the released (free) drug is extracted (Figure 5b,c). Ideally, TSL completely release 

the encapsulated drug during the transit time to maximize tumor drug uptake—i.e., TSL 

that release their drug within seconds are preferable (Figure 5b). 

 

Figure 5. Microvascular concentration gradient. Plasma flows within a representative capillary be-

tween the supplying artery and draining vein of a tumor segment. Plasma concentration of unen-

capsulated/released drug (blue bar), and TSL-encapsulated drug (black bar) are shown, with red 

arrows indicating tumor drug uptake (i.e., drug extraction). Three cases are presented: (a) Unen-

capsulated drug infusion into supplying artery, (b) TSL with complete release during transit, and 

c) TSL with incomplete release during transit. In (b,c), drug is first released from TSL, followed by 

tissue uptake. Note that all figures show first pass where no drug is yet present in the tissue inter-

stitium. Figure reproduced from [20] (published under CC BY 4.0 license). 

2. Impact of TSL Properties on Drug Delivery 

The methods for preparation and loading of various TSL formulations with different 

agents has been reviewed extensively in prior reviews [9–15]. Additionally, the factors 

and mechanisms that affect drug release from TSL have been summarized in detail in 

earlier publications [9,11,12]. Here, we focus on reviewing how TSL properties such as 

release kinetics and plasma stability affect drug delivery. These properties depend both 

on the TSL formulation and the drug. For example, the same formulation will have vary-

ing release kinetics depending on which drug is encapsulated [121]. In addition, the buffer 

used to measure release affects release kinetics [121], highlighting the importance of se-

lecting an appropriate buffer (e.g., plasma) (Figure 6d). 

2.1. TSL Release Kinetics 

The early TSL formulations had comparably slow release (within minutes to hours) 

[122,123]. In addition, heating to >42 °C was required to achieve substantial release. This 

is disadvantageous since temperatures above 43 °C may result in reduced blood flow [124] 

that would also reduce the inflow of TSL-encapsulated drug. The first fast-release TSL 

formulations were published in the early 1990s, demonstrating substantial release within 

a few seconds after heating to >41 °C [125,126]. Such rapid release is required to take full 

advantage of the intravascular triggered release paradigm, as discussed above. The first 

fast-release formulation with substantial release at lower temperatures (40 °C) was pre-

sented around the year 2000 [31,127,128], and formed the basis for the first commercial 

TSL formulation (ThermoDox® ) that has been employed in several human clinical trials 

[129–135]. Several additional fast-release TSL formulations encapsulating various agents 

have been presented within the last two decades [136–138]. Recent studies confirm that 

fast-release TSL that release within a few seconds can deliver substantially higher drug 

amounts compared to slower releasing formulations [20–22]. However, for most of these 

TSL formulations, release kinetics is not known within the time scale relevant for intra-

vascular triggered release (e.g., within the first few seconds), owing to limitations of con-

ventional methods used for measuring the release kinetics. 

The most widely used method for measuring TSL release kinetics employs a buffer 

pre-heated to the desired temperature, where a small volume of TSL is added, typically 

(a) (b) (c) 
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under stirring [113,123,137,139–143]. Release is quantified usually using spectrophotome-

try, since optical properties (e.g., fluorescence) change when the drug is released from 

TSL. Due to the time required for mixing of the TSL with the buffer, the first reported time 

points are typically between 8–20 s. This time is substantially longer than many typical 

tumor transit times, making these measurements of limited value. 

There have been two methods presented to measure TSL release kinetics at short 

(second) time scales. The first method employed a small-diameter tube within which TSL 

solution was passed through heated water for a specific time, and the released drug was 

quantified in the sample exiting the tube [125]. An advantage of this method is that vari-

ous quantification methods can be employed on these samples. In a second method, a 

glass capillary tube was heated by a Peltier element, and release was quantified by meas-

uring fluorescence along the tube by either microscopic or macroscopic fluorescence im-

aging (Figure 6a) [121,144]. This method provides data at high temporal resolution not 

possible with other methods (Figure 6b–d), but is limited to fluorescent agents. In both 

methods, it is important to select thin-walled tubes and to validate sufficiently rapid heat-

ing of the solution passing though the tube to target temperature [121]. 

 

Figure 6. Measuring release kinetics of fast-release TSL formulations. (a) Millifluidic release assay sche-

matics. A TSL solution (TSL + buffer) is pumped through a capillary tube that has been heated to the 

desired temperature by a Peltier element. Once the TSL solution enters the heated region, TSL begin 

to release the fluorescent drug/dye, resulting in a fluorescence gradient along the tube (upper graph). 

The Peltier temperature is measured by a thermocouple, and a control algorithm regulates the power 

applied to the Peltier element to control temperature. (b) Release of carboxyfluorescein (CF) from fast-

releasing TSL (DPPC:MSPC:DSPE-PEG2000 = 85:10:5) between 37 and 45 °C during the first 8 s. Re-

lease within seconds is required to take advantage of the intra-vascular triggered release paradigm. (c) 

Release depends on the encapsulated compound, shown for four compounds for the same TSL formu-

lation. Release in (a–c) was measured using fetal bovine serum (FBS) as buffer. (d) Release kinetics 

vary between buffers. CF release is shown for 4 buffers: phosphate buffered saline (PBS), 10% bovine 

serum albumin (BSA) solution, fetal bovine serum (FBS), and human plasma. TSL formulation used in 

(b–d) was identical. Figures reproduced with permission from [121]. 

(b) (a) 

(c) (d) 
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To compare the release kinetics of TSL formulations, a recent study suggested using 

a characteristic release time based on a linear approximation of the TSL release kinetics 

[20]. As noted earlier, TSL only spend a few seconds within a tumor (=transit time), and 

for most TSL, the release kinetics within those first seconds can be adequately represented 

by a linear approximation (Figure 7). Ideally, this release time would be smaller than the 

transit time to maximize release and tissue drug uptake (Figure 5). The amount of drug 

released during tumor transit (Figure 5) can be estimated by the ratio of transit time to 

release time (see Supplementary Material File S1, Equation (S2)). A recent study demon-

strated that TSL with rapid release (i.e., short release time) can deliver substantially more 

drug to tissue than TSL with slow release (Figure 8) [20]. Table 1 summarizes the release 

times of published fast-release TSL formulations. In most cases, the exact release times 

could not be determined owing to limitations of methods used to quantify the release ki-

netics, as described above. 

 

Figure 7. TSL release time. Release of two TSL formulations encapsulating a fluorescent drug ana-

log (carboxyfluorescein) with slow (sTSL) and fast (fTSL) release is plotted, based on data from a 

prior study [20]. The dotted lines indicate a linear approximation of the release kinetics. TSL only 

spend a few seconds within the heated tumor (see black double arrow indicating ‘Transit Time’). 

Thus, in most cases, a linear approximation adequately represents release within those few sec-

onds that TSL spend within the tumor vessels. Based on this linear approximation, a characteristic 

‘release time’ is determined (indicated by red and blue double-arrows at the top) that enables the 

comparison of different TSL formulations. This release time was 8.2 s for fTSL, and 63.0 s for sTSL. 

The fraction of drug released during transit can be estimated by the ratio of transit time to release 

time (see Supplementary Material File S1, Equation (S2)). 
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Figure 8. TSL delivery kinetics. (a) Drug concentration in plasma and interstitium (extracellular-

extravascular space, EES) was determined from intravital microscopy data. Hyperthermia (42 °C) 

for 10 min was applied following the administration of either slow- (sTSL) or fast-release TSL (fTSL) 

encapsulating a fluorescent drug analog (carboxyfluorescein) (see Figure 7 for release kinetics of 

sTSL and fTSL). Plasma concentration increases during hyperthermia due to drug release. Released 

drug is then extracted by tissue, indicated by increasing interstitial (EES) concentration. A plateau 

(peak) concentration is approached towards the end of hyperthermia. This plateau concentration is 

substantially higher for fTSL compared to sTSL. Error bars indicate standard deviation (n = 3 ani-

mals/group). (b) Computer simulation of drug delivery kinetics based on in vivo measured tumor 

properties reproduces the delivery kinetics observed in (a). Error bars indicate computer model un-

certainty due to uncertainty of model parameters. Figures reproduced from [20] (published under 

CC BY 4.0 license). 

(a) (b) 
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Table 1. Fast-release TSL formulations. Release times (see Figure 7) were estimated if possible, or an upper limit was provided (e.g., <20 s); in the latter cases, 

release at the first measured time point is shown in brackets. Buffer used for release measurement is indicated, since buffer affects release kinetics [121]. 

TSL Composition (Molar Ratio) Drug Release Time [Temp.] Buffer In Vivo Plasma Half-Life (Species) Refs. 

DPPC:MSPC:DSPE-PEG2000 (86:10:4) Doxorubicin 3 s [40 °C] human plasma 
0.96 h (human);  

1–2 h (rabbit); 4.8 h (pig) 
[127–129,140,145–147] 

DPPC:MSPC:DSPE-PEG2000 (85.3:9.7:5) Doxorubicin 4 s [41 °C] PBS 0.93 h (mouse); 0.96 h (rat); 0.75 h (dog) [30,148,149] 

DPPC:DSPC:DSPE-PEG2000 (70:25:5) Doxorubicin ~5–10 s [42 °C] FBS >1 h (mouse) [105] 

DPPC:DSPE-PEG2000:Ch:mELP Doxorubicin <5 s [41–42 °C] FBS + culture media 2.0 h (mouse) [150] 

DPPC:DSPC:DPPG1 (50:20:30) Doxorubicin 
<20 s [42 °C]  

(92.2% release @ 20 s) 
HEPES buffered saline 1.4 h (rat) [151] 

DPPC:DSPC:DPPG2 (50:20:30) Doxorubicin 
<20 s [42 °C]  

(~75% release @ 20 s) 
HEPES buffered saline 

~1 h (pig); 1.6–2.4 h (rat);  

0.4–0.7 h (cat) 
[151–155] 

EYPC:Chol:Peg-PE:poly(EOEOVE-OD4) (50:45:4:2) Doxorubicin ~1 min [43 °C] HEPES buffered saline - [156] 

DPPC:Brij78 Doxorubicin ~1 min [42 °C] FBS 0.5 h (mouse) [157] 

DOPE:EPC:chol-pHPMAlac (70:25:5) Doxorubicin ~2 min [42 °C] HEPES buffered saline - [158] 

DPPC:DSPC:DSPE-PEG2000 (60:35:5) Idarubicin <1 s [42 °C] FBS >1 h (mouse) [105] 

DPPC:DSPC:DSPE-PEG2000 (80:15:5) Gemcitabine 
<2 min [42 °C]  

(90% release @ 2 min) 
FBS ~2 h (mouse) [143] 

DPPC:MSPC:DSPE-PEG2000 (86:10:4) Gemcitabine ~30–60 s FBS:saline (1:1) - [34] 

DPPC:Brij78 Gemcitabine ~30–60 s FBS:saline (1:1) ~2 h (mouse) [34] 

DPPC:Brij78 Oxiplatin ~30–60 s FBS:saline (1:1) ~1 h (mouse) [34] 

DPPC:DSPC (90:10) Cisplatin 3–5 s [43 °C] rat plasma ~1 h (mouse) [125,126,159] 

DPPC:DPPG:MSPC:DSPE-PEG2000  

(57.7:28.9:9.6:3.8) 
Cisplatin 

<5 min [42 °C]  

(90% release @ 5 min) 
0.9% saline ~1.5 h (mouse) [113] 

DPPC:MSPC:DSPG:DSPE-PEG2000 (82:8:10:4) Epirubicin ~4 min [41–43 °C] PBS 0.2 h (rat) [160] 

DPPC:MSPC:DSPE-PEG2000 (86:10:4) Alvespimycin 
<30 s [42 °C]  

(90% release @ 30 s) 
BSA in PBS 0.2 h (mouse) [80] 

 DPPC: 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine; DSPC: 1,2-distearoyl-sn-glycero-3-phosphocholine; MSPC: 1-stearoyl-2-hydroxy-sn-glycero-3-phosphati-

dylcholine; DPPG: 1,2-dipalmitoyl- sn-glycero-3-phosphoglycerol; PE: poly ethylene; PEG: polyethylene glycol; Ch: Cholesterol; EYPC: egg yolk phosphatidyl-

choline; EOEOVE: 2-(2-ethoxy)ethoxyethyl vinyl ether; mELP: modified elastin-like polypeptide; Brij78: proprietary surfactant (main component: eicosaethylene 

glycol octadecyl ether); pHPMAlac: 2-Hydroxypropyl methacrylamide mono/dilactate polymers; PBS: phosphate buffered saline; FBS: fetal bovine serum; BSA: 

bovine serum albumin. 
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2.2. Plasma Stability 

Plasma stability describes how long TSL-encapsulated drug remains in the systemic 

circulation after administration and can be quantified by the initial plasma half-life of a 

TSL formulation. Similar to the TSL release kinetics, plasma stability depends both on TSL 

formulation and encapsulated drug, but also varies with species (Table 1). During hyper-

thermia, circulating TSL-encapsulated drug continuously enters the heated tissue volume, 

with subsequent intravascular drug release (Figures 2 and 5). The plasma concentration 

of TSL-encapsulated drug represents the amount available for intravascular triggered re-

lease. Thus, the AUC (area under the concentration vs. time curve) of the plasma concentra-

tion calculated during hyperthermia correlates with the total amount of TSL-encapsulated 

drug subjected to hyperthermia [161,162]. As a result, this AUC directly correlates with the 

amount of drug released in the heated tumor (see Supplementary Material File S1, Equation 

(S5)). This AUC also correlates with tumor drug uptake, as initially demonstrated in a com-

puter modeling study [161] and later confirmed by several experimental studies (Figure 9) 

[149,162,163]. A higher plasma stability would therefore increase this AUC, resulting in 

larger amount of drug being released—assuming that the kinetics of TSL release is not 

different (e.g., increased plasma stability of a TSL formulation may be disadvantageous if 

it is associated with slower release). Similarly, one approach to enhance drug delivery is 

to adjust the timing of hyperthermia as to maximize the plasma AUC during heating 

[161,163]. 

Note however that such comparisons based on AUC are only appropriate for differ-

ent studies with the same TSL formulation, and the same or similar hyperthermia meth-

ods (i.e., with similar tumor temperature). The AUC indicates the total amount of TSL-

encapsulated drug that passes through the heated tissue during hyperthermia. If two dif-

ferent heating devices with different temperature profiles and heating volumes are used, 

the amount of drug released from TSL will differ. Similarly, if two different TSL formula-

tions are used, the amount of drug released will differ due to varying TSL release kinetics. 

Thus, even if the AUC is identical ( = total amount of TSL-encapsulated drug passing 

through heated tissue), the amount released from these two TSL formulations will vary, 

resulting in different tumor drug uptake. 

TSL plasma stability depends on several factors, and one major contributor is drug 

leakage from TSL at body temperature (37 °C)—i.e., drug slowly leaks from TSL while in 

systemic circulation [164]. Unfortunately, the release rate at body temperature is usually 

tied to the release rate at hyperthermic temperatures—i.e., slow release at 37 °C and rapid 

release at hyperthermia represent conflicting requirements for TSL formulations. 

The peak plasma concentration after administration of TSL-encapsulated drug (Fig-

ure 9a) naturally correlates with the administered dose. Often, the administered dose is 

close to, or at the maximum tolerated dose (MTD) for that particular TSL–drug formula-

tion in the studied species. In rodents, the MTD relative to body weight is often substan-

tially higher compared to humans [165]. This higher administered dose in rodents results 

in higher plasma concentration (Figure 9a) and higher tumor drug uptake compared to 

large animals [147,149,155] and humans [129,133]. This issue may be relevant when ex-

trapolating results on tumor drug uptake and therapeutic response from rodent studies 

to human patients. 
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Figure 9. Plasma-AUC during hyperthermia correlates with tumor drug uptake. (a) AUC of plasma 

Dox concentration was calculated during heating, for either 15 or 60 min hyperthermia (HT) as in-

dicated by shaded regions. (b) Plasma-AUC during HT correlated well with Dox fluorescence in the 

tumor region-of-interest measured following HT (R2 = 0.63). Tumors were exposed to hyperthermia 

(43 °C) for either 15 min (blue dots) or 60 min (red dots). Data reproduced from [162] (published 

under CC BY 4.0 license). 

3. Impact of Drug Properties on Drug Delivery 

In addition to TSL properties, the properties of the encapsulated drug have a major 

impact on drug delivery facilitated by TSL. As discussed earlier, both the TSL release ki-

netics and plasma stability are impacted by the selected drug (Figure 6c; Table 1). Thus, 

delivery is indirectly affected by the interaction between drug and TSL. In addition, the 

properties of the unencapsulated drug (i.e., once released) have a substantial impact. 

3.1. Tissue Extraction (Vascular Permeability) 

TSL based on the intravascular triggered release paradigm are equivalent to the di-

rect infusion of unencapsulated drug into the tumor-feeding vessels (Figures 2 and 5). 

This delivery paradigm is similar to intra-arterial drug infusion—a clinically used deliv-

ery strategy where the drug is directly infused into tumor-feeding vessels through cathe-

ters. It is well known that the drugs optimal for intra-arterial delivery are not necessarily 

identical to those optimal for systemic delivery, and that rapidly extracted drugs are pref-

erable [166]. The parameter ‘extraction fraction’ (EF) (or ‘extraction ratio’) indicates the 

drug fraction extracted by tissue when infused via a supplying artery, during a single 

pass. This extraction fraction varies widely between drugs, and is in the range of ~0.2–1 

for many chemotherapy agents (Table 2). 

Table 2. Extraction fraction (EF) of chemotherapy agents that have been encapsulated in TSL. 

Drug Extraction Fraction (EF) Source 

Idarubicin ~1 [167] 

Gemcitabine 0.55–0.89 [168] 

Oxaliplatin 0.47 [169] 

Doxorubicin 0.45–0.5 [166] 

Cisplatin 0.24 [170] 

A recent study evaluated how tumor drug uptake varies depending on drug extrac-

tion fraction (EF), concluding that drugs with high extraction fraction are preferable for 

triggered DDS such as TSL [20]—similar to intra-arterial drug infusion [166]. In addition, 

the EF of the selected drug determines optimal TSL release kinetics (i.e., release time) for 

(a) (b) 
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maximum delivery. For highly permeable drugs that are completely extracted (EF~1), a 

release time equal to or below the tumor transit time is sufficient. For drugs with lower EF, a 

much more rapid release time of less than 10% of transit time (release time << 1 s ) is ideal 

(Figure 10). This may explain why prior studies with TSL-encapsulated cisplatin—a drug 

with comparably low EF (Table 2), that is, in addition, taken up slowly by cells [171]—has 

achieved limited delivery efficacy. Prior studies demonstrated a limited drug uptake en-

hancement of 2- to 4-fold (or ~1–5%ID/g) for TSL–cisplatin combined with hyperthermia, 

compared to control animals where free cisplatin was administered with hyperthermia 

[113,114,125,159].  

 

Figure 10. Drug extraction fraction (EF) and TSL release time dictate delivery efficacy. A parametric 

study was conducted based on an in vivo-validated computer model. The parametric study exam-

ined the interaction of two parameters that affect the maximum drug concentration achievable 

within the tissue interstitium (=plateau concentration (cplateau); see Figure 8): 1) TSL release time (see 

Figure 7), and 2) drug extraction fraction (EF). Delivery efficacy is indicated by the plateau concen-

tration relative to maximum (cplateau/cmax), and is visualized by a color scale. The dotted horizontal 

lines indicate EF for four common chemotherapy agents, and for a common fluorescent drug analog 

(carboxyfluorescein). In a prior in vivo study, carboxyfluorescein was encapsulated in two TSL for-

mulations: a fast-release (fTSL) and a slow-release formulation (sTSL) (compare Figure 7). The two 

vertical dotted lines indicate the release times for fTSL (release time = 8.2 s) and for sTSL (release 

time = 63.0 s). The intersections of the horizontal dotted line corresponding to carboxyfluorescein 

and the vertical dotted lines indicate the location of experimental in vivo results for fTSL and sTSL 

in this map. The color inside the gray crosshairs corresponds to the measured in vivo plateau con-

centration. For highly permeable drugs (e.g., idarubicin, EF~1), a release time in the range of seconds 

is sufficient for near optimal delivery. For lower permeable drugs (e.g., cisplatin, EF~0.2), about 10× 

faster release (<0.1 s) is ideal. This study assumed a tumor transit time of 5.0 s based on in vivo 

measurements [20]. Figure reproduced from [20] (published under CC BY 4.0 license). 

3.2. Cell Uptake Kinetics 

During drug delivery with TSL based on the intravascular triggered release para-

digm, the drug is released from the TSL within the vasculature and then diffuses across 

the vessel wall into the interstitial space (Figures 2 and 5). This interstitial drug is then 

available for cellular uptake. The cell uptake kinetics depend on the drug (Figure 11), and 

may also vary with cell type. One recent study compared two anthracycline chemother-

apy agents (doxorubicin and idarubicin) in mouse tumors. In vitro experiments in this 

prior study indicated much more rapid cell uptake of idarubicin compared to doxorubi-

cin, which presumably contributed to the much higher tumor uptake of idarubicin [105]. 

Another recent study evaluated four anthracycline chemotherapy agents in computer 
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models, where cell uptake kinetics were based on in vitro experiments with each drug in 

three cancer cell lines [172]. This study demonstrated that tumor drug uptake is signifi-

cantly affected by cell uptake kinetics, and that drugs with rapid cell uptake (Figure 11) 

resulted in highest tumor drug uptake (Figure 12). 

Interestingly, the drugs with rapid cell uptake also produced a steep radial concen-

tration gradient surrounding the capillaries (Figure 12c–e). This is because drug uptake 

by cells close to the capillaries depletes drug amount available for cell uptake further dis-

tant from the vessels. For drugs with slower uptake, radial diffusion dominates, resulting 

in a more uniform radial concentration gradient (Figure 13a). For drugs with rapid cell 

uptake, cellular uptake dominates, resulting in a steeper gradient (Figure 13b). The radial 

concentration gradient thus depends on the competition between cellular uptake and ra-

dial drug diffusion. This more pronounced gradient for drugs with rapid cell uptake has 

been also demonstrated in the earlier mentioned prior in vivo study for idarubicin (rapid 

cell uptake) and doxorubicin (slow cell uptake) (Figure 13c) [105]. 

 

Figure 11. Cell uptake kinetics depend on drug. In vitro drug uptake of SVR (angiosarcoma) cells 

for (a) doxorubicin (DOX), (b) idarubicin (IDA), (c) pirarubicin (PIR), and (d) aclarubicin (ACLA) at 

extracellular concentrations of 1, 5 and 10 µg/mL. Uptake is shown for 60 min, which is a typical 

time used for hyperthermia-triggered delivery by TSL. Figure reproduced from [172] (published 

under CC BY license). 
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Figure 12. TSL delivery depends on drug. (a) Computer model simulated TSL-based drug delivery 

to SVR cancer cells surrounding a tumor capillary. Drug concentration after 60 min hyperthermia is 

shown for (b) doxorubicin (DOX), (c) idarubicin (IDA), (d) pirarubicin (PIR), and (e) aclarubicin 

(ACLA). Tumor drug uptake in (b–e) is largely dictated by cell uptake kinetics of the drug (see 

Figure 11). Drugs with fast cell uptake (ACLA, IDA) also result in highest tissue uptake. Figure 

reproduced from [172] (published under CC BY license). 

 

 

 

 

 

 

 

 

Figure 13. Rapid cell uptake produces steep radial drug concentration gradient. A competition be-

tween radial drug diffusion and cellular uptake dictates the radial drug concentration gradient. (a) 

Schematics indicating transport kinetics for a drug with slow cell uptake (e.g., DOX). Diffusion is 

dominating over cell uptake, allowing drug penetration distant from the capillary. Blue arrows in-

dicate drug transport, red circles represent cancer cells. (b) For a drug with rapid cell uptake (e.g., 

ACLA, IDA), the uptake by cells close to the capillary depletes drug available for more distant cells. 

(c) A prior in vivo study demonstrated a steeper radial concentration gradient for IDA (rapid up-

take) compared to DOX (slower uptake), shown after 60 min hyperthermia [105]. Figures repro-

duced from [172] (published under CC BY license). 

4. Impact of Hyperthermia Method on Drug Delivery 

Various hyperthermia methods and devices have been used in clinical and preclinical 

studies in combination with TSL. Each heating device induces a different temperature 

profile in tissue, has varying penetration depth and different heating dynamics. Thus, the 

choice of the hyperthermia device will have substantial impact on the drug delivery from 

(c) 
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TSL. Depending on anatomic location and size of the targeted tumor(s), the hyperthermia 

device needs to be carefully selected and heat delivery optimized. 

4.1. Temperature 

Ideally, the target tissue volume (e.g., tumor) is uniformly exposed to temperatures 

within the optimal range of ideal drug release from TSL. For the more recent TSL formu-

lation, that corresponds to minimum tissue temperatures of ~40 °C. In addition, maximum 

temperatures should be limited to avoid reduced blood perfusion. Reduced perfusion 

takes place above ~43–45 °C in animal tumors [124]. Thus, ideally the target tissue volume 

is heated to a narrow temperature range of 40–42 °C [173]. While this may be feasible for 

small rodent tumors, for large human tumors such uniform heating is technically quite 

challenging [14].  

In addition to temperature of the target tissue, body temperature can have a signifi-

cant impact on drug delivery with TSL. Plasma stability is in part due to drug leakage 

from TSL in systemic plasma at body temperature. A slightly increased body temperature, 

even if still within the physiological temperature range of the animal or human (e.g., 38–

39 °C), may result in premature drug leakage within systemic circulation [30,149]. This 

can substantially reduce drug delivery as less drug is available for release. Adequate mon-

itoring and control of core body temperature is therefore important. 

4.2. Hyperthermia Duration and Timing 

The hyperthermia duration used in past studies with TSL varies widely, between 2–

60 min [30,161]. Multiple more recent studies have demonstrated that longer hyperther-

mia duration enhances tumor drug uptake (Figure 14) [30,161,162,174,175]. We described 

earlier that the AUC of the plasma concentration calculated during hyperthermia corre-

lates with the amount of drug released during heating, and therefore predicts tumor drug 

uptake (Figure 9; Equation (S5)) [149,161–163]. This also explains why longer hyperther-

mia duration enhances drug delivery, since a longer heating duration results in a larger 

AUC. At some time point, there will however be limited additional benefit of extending 

the heating duration—i.e., when plasma concentration of TSL-encapsulated drug has de-

creased substantially. 

 

Figure 14. Extended hyperthermia duration increases drug uptake. Tumor drug concentration (dox-

orubicin) was quantified for tumors receiving hyperthermia for 15, 30 or 60 min (red bars), and for 

contralateral tumors with no hyperthermia (blue bars) in mice. A regression analysis identified hy-

perthermia duration as significant predictor of tumor drug uptake (p = 0.02). * indicates significance 

(p < 0.05). Figure reproduced from [30] (published under CC BY license). 

In addition to hyperthermia duration, the timing of hyperthermia in relation to the 

administration of TSL-encapsulated drug impacts drug delivery. A past study showed 

that timing of hyperthermia while keeping duration constant impacts drug delivery [161]. 

Another recent study demonstrated in vivo that the optimization of hyperthermia timing 
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relative to TSL administration as to maximize plasma AUC also maximizes tissue drug 

delivery [163]. 

In many cases, substantial amounts of encapsulated drug will remain in systemic cir-

culation after completion of hyperthermia (Figure 9a, Figure 15). Since no further tumor 

delivery occurs after completion of heating (Figure 2b) [22,30], this systemically remaining 

drug does not contribute therapeutically. A recent study presented an approach that re-

moves this remaining encapsulated drug from systemic circulation to reduce systemic 

toxicities [148]. 

4.3. Volume of Hyperthermia 

The hyperthermia volume (volume where significant drug release occurs, e.g., total 

volume of tissue heated to >40 °C) varies between hyperthermia methods. A recent study 

demonstrated that the hyperthermia volume can have a substantial impact on the amount 

of drug delivered to tumors [162]. When a large tissue volume relative to the total body 

volume is exposed to hyperthermia, large amounts of TSL-encapsulated drug are re-

leased. As result, the available encapsulated drug in systemic circulation can be depleted 

quite rapidly (Figure 15). In such cases, extending the hyperthermia duration beyond the 

time when all the encapsulated drug has been released does not enhance tumor drug up-

take. For example, one prior study showed no difference in tumor uptake between 15 min 

and 60 min water bath hyperthermia [162]. 

 

 

 

 

 

 

 

 

 

 

Figure 15. Volumetric heating rapidly depletes systemically available TSL-encapsulated drug. (a) 

Plasma pharmacokinetics of mice injected with TSL-Dox is shown, for three heating modalities. The 

focal heating modalities (heating probe, laser) have little impact on plasma concentration (e.g., 

plasma half-life was similar to a prior study in the same animal model without heating [30]). In 

contrast, water bath heating—where the whole limb is exposed to heat rather than just the tumor—

rapidly depletes encapsulated drug in systemic plasma. (b) Pharmacokinetic model shows similar 

results at higher temporal resolution, and includes results in unheated mice (‘no HT’). Figures re-

produced from [162] (published under CC BY license). 

Two animal studies where water bath heating was employed to heat the entire tumor 

bearing leg demonstrated significantly lower drug delivery to tumors compared to focal 

hyperthermia methods such as infrared lasers [162,176]. In both studies, the more focused 

infrared laser hyperthermia resulted in 2–3 times higher tumor drug uptake compared to 

volumetric hyperthermia from a water bath. Notably, water bath hyperthermia has been 

very widely used in TSL studies with rodents [7,8,21,112,128,151,172,176–178], and tumor 

uptake may have been suboptimal in some of these prior studies due to large volumetric 

heating. The plasma level of TSL-encapsulated drug after hyperthermia completion com-

pared to unheated control animals provides information on how much encapsulated drug 

has been released during heating (Figure 15b). 

While the described mechanism has only been established more recently, there are 

multiple earlier studies that reported a substantially reduced plasma concentration of 

TSL-encapsulated drug following hyperthermia, compared to unheated control animals 

[6,105,112,151,155,176]. In all these studies, it is likely that the amount of drug delivered 

to tumors was reduced due to large-volume hyperthermia. By how much the delivery was 

(a) (b) 
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reduced could be estimated by comparing the plasma AUC during heating between ani-

mals with and without hyperthermia (Figures 9 and 15). 

These observations also have clinical relevance, since various HT devices have been 

employed in combination with TSL in human patients [129,131–133,135,173,179,180]. Ad-

ditionally, in some cases—such as for the treatment soft tissue sarcoma or for chest wall 

recurrences after breast cancer—large tissue volumes may be exposed to HT. This could 

rapidly deplete TSL-encapsulated drug, similarly to the discussed preclinical studies. 

4.4. Review of Available Hyperthermia Devices 

Below, we briefly review hyperthermia devices that have been used in combination 

with TSL. Table 3 provides an overview of devices. The various hyperthermia devices for 

human and preclinical application have been reviewed in greater detail in prior publica-

tions [181–183]. 

4.4.1. Hyperthermia Devices for Human Use 

All clinical studies in humans listed below used the same commercial formulation of 

thermosensitive liposomal doxorubicin (TSL-Dox), ThermoDox®  [135]. 

Tumor ablation is a clinically used cancer therapy where the cancerous tumor is di-

rectly killed by heat, generally at temperatures above 50 °C. In clinical trials, patients with 

primary liver cancer have been treated with a combination of tumor ablation (specifically, 

radiofrequency ablation) and TSL-Dox [129,135,173,179,180]. The rationale for this combi-

nation is to kill central tumor regions by heat alone and release a therapeutic chemother-

apy dose in the margin where temperatures are not adequate for complete cell kill 

[135,147,161]. Unfortunately, past Phase III trials combining radiofrequency ablation and 

TSL-Dox in humans with liver cancer have been unsuccessful [173,180]. There are multiple 

possible reasons for these failures, including selection of patients and drug selection, 

among others [173,184]. 

For recurrent chest wall cancer in human patients, microwave hyperthermia has been 

employed to expose large skin regions and underlying tissue to hyperthermic tempera-

tures [131]. 

Finally, high-intensity focused ultrasound (HIFU) has been employed in Phase I tri-

als: for targeted drug delivery to patients with liver tumors [133]; in solid pediatric tumors 

[132]; and in an upcoming trial for pancreatic cancer [173]. HIFU employs ultrasound fo-

cused non-invasively into deep tissue regions and enables spatial targeting with millime-

ter accuracy. Often, HIFU is guided by MR thermometry, enabling real-time monitoring 

of tissue temperature and accurate temperature control [185]. 

4.4.2. Hyperthermia devices for animal use 

Below, we briefly review those devices that have been used in animal studies in com-

bination with TSL. Two trials in privately owned companion animals—one in dogs and 

one in cats—used microwave hyperthermia devices. The feline trial employed a micro-

wave applicator for human use to treat sarcomas with a DPPG2-based TSL-Dox formula-

tion [155]. The canine trial used a proprietary microwave hyperthermia applicator to treat 

sarcoma and carcinoma with the commercial TSL-Dox formulation ThermoDox®  [186]. 

Some studies used tumor ablation devices for humans, either without modification 

in porcine studies [147,161], or adapted for canine and mouse models [149,187]. One study 

in normal porcine bladder used irrigation of warm water inside the bladder [188]. 

Likely the most widely used heating method in rodents—in part due to its simplic-

ity—is the water bath, where the limb including tumor is immersed in heated water 

[7,8,21,112,128,151,172,176–178]. As noted above, while heating is very uniform, a disad-

vantage of water bath hyperthermia is that a comparably large tissue volume is exposed 

to heat that likely results in rapid depletion of the available TSL-encapsulated drug in 

systemic circulation [162]. 
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A few studies used focused light sources to induce localized hyperthermia such as 

infrared lasers [113,114,162,176,189] and cold light lamps [176,190]. Such light sources are 

attractive for heating subcutaneous tumors since they can be easily targeted and provide 

often adequate heat penetration for small rodent tumors (Figure 16e). 

HIFU has been widely used in combination with TSL in both large and small animal 

models [17,141–143,145,146,163,174,175,191–204]. Similar to human studies with HIFU, it 

is often combined with MR thermometry to provide non-invasive monitoring and control 

of temperature. 

Intravital microscopy has been used in several studies to monitor drug delivery from 

TSL at the microscopic level, where custom-designed heating systems based on heating 

elements, radiofrequency hyperthermia, or microwave hyperthermia have been em-

ployed [205]. 

Finally, a few studies have used custom-designed heating probes applied directly to 

tumors [30,162,206], though such applicators provide very limited heat penetration (Fig-

ure 16d). 

The type of device used and resulting temperature distribution significantly impact 

drug delivery from TSL, as visualized in a recent computer modeling study (Figure 16) 

[162]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Effect of hyperthermia device on drug delivery. A prior study presented 3-D computer 

model results on three hyperthermia (HT) devices, assuming a subcutaneous tumor on a mouse 

hindlimb. The temperature profile after 15 min HT (=steady state profile) is shown for a heating 

probe, an infrared laser, and water bath heating on the hindlimb surface (a–c), and in a tumor cross 

section (d–f). The resulting drug concentration is shown after 15 min HT for the three devices, again 

on the limb surface (g–i), and in a tumor cross section (j–l). The resulting drug concentration is 

shown after 60 min HT on the limb surface (m–o), and in a tumor cross section (p–r). Figures repro-

duced from [162] (published under CC BY 4.0 license). 
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Table 3. Heating devices used in human and animal studies with TSL. 

 Heating Device 
Tem-

Perature 

Target  

Tissue 

Heating  

Duration 

Device  

Advantages 

Device  

Limitations 
Refs. 

Clinical 

human 

trials 

Radio-frequency 

ablation 

Up to  

~100 °C 

Primary liver 

tumors (Phase III 

trial) 

Variable (multiple 

sequential 

applications) 

Central tumor kill 

by cytotoxic 

temperatures  

>50 °C 

Drug delivery 

limited to margin 

of heating zone 

(~40–45 °C) 

[129,135,173

,179,180] 

Microwave 

hyperthermia 
40.0–42.0 °C 

Recurrent chest 

wall breast cancer 

(Phase I trial) 

60 min 

Hyperthermia of 

large tissue 

volume 

 [131] 

High-intensity 

focused 

ultrasound (HIFU) 

42 °C 

Primary liver 

tumors (Phase I 

trial); Pancreatic 

cancer; Pediatric 

solid tumors 

(Phase I trial) 

30 min 

Non-invasive 

heating of deep 

tissue regions; 

excellent spatial 

targeting 

HIFU cannot 

penetrate air or 

bone; 

thermometry is 

technically 

complex, and/or 

expensive (MR 

thermometry) 

[132,133,173

] 

Animal 

studies 

Radio-frequency 

ablation 

Up to  

~100 °C 

Normal porcine 

liver; mouse 

tumors 

5, 12 min and 30 

min (porcine liver; 

3 min (mouse 

tumors) 

Central tumor kill 

by cytotoxic 

temperatures  

>50 °C 

Drug delivery 

limited to margin 

of heating zone 

(~40–45 °C) 

[147,161,187

] 

Water bath 40–43 °C 
Subcutaneous 

tumors 
60 min 

Simplicity; 

Uniform heating 

Large heating 

volume 

(see [162]) 

[7,8,21,112,1

28,151,172,1

76–178] 

Laser (Red or 

Near-Infrared  

(760–1000 nm)) 

40–43 °C 
Subcutaneous 

tumors 
15–60 min 

Non-contact; 

spatially targeted 

Penetration depth 

limited to ~1–2 cm 

[113,114,162

,176,189] 

High intensity 

focused 

ultrasound (HIFU) 

40–43 °C 
Subcutaneous 

tumor 
2–40 min 

Non-invasive 

heating of deep 

tissue regions; 

excellent spatial 

targeting 

HIFU cannot 

penetrate air or 

bone; 

Most studies use 

MR thermometry 

(expensive) 

[17,141–

143,145,146,

163,174,175,

191–203] 

 

Microwave 

hyperthermia 
40–44 °C 

Sarcomas (feline, 

canine); 

carcinomas 

(canine); 

subcutaneous rat 

tumors 

90 min (canine);  

60 min (feline);  

15 min (rat 

tumors) 

Microwave 

antenna with 

directional heating 

(rat tumors) 

 [148,173] 

Custom heating 

probes 

45 °C at 

probe 

surface 

Subcutaneous 

tumors 
30–60 min  

Heating 

penetration 

limited 

[30,206] 
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5. Impact of Tumor Properties 

5.1. Tumor Perfusion and Transit Time 

We described earlier that tissue transit time is of primary relevance for drug delivery 

with TSL based on the intravascular triggered release paradigm. Tissue transit time de-

scribes the time that plasma spends within the vasculature of the target tissue segment 

(note that red blood cells typically spend longer than plasma within the same vasculature 

due to interaction with the small-diameter capillaries [115]). This transit time is the dura-

tion available for TSL to release the encapsulated drug (Figures 4 and 5). We discussed 

earlier how TSL release time impacts delivery (Figure 10); in this prior figure, a certain 

tumor tissue transit time (=5 s) was assumed. However, it is not just the TSL release time 

that is relevant; to be more exact, it is the ratio between TSL release time and transit time 

that is relevant. This ratio determines the amount of drug released while TSL pass through 

the capillaries of the target tissue (Supplementary Material File S1, Equation (S2)) [20]. For 

example, delivery to tumors with short transit times of ~2 s will therefore be less efficient 

compared to tumors with longer transit times. 

Tumor perfusion describes the volume of blood or plasma passing through tissue 

(e.g., mL plasma per g tissue per minute). Tumor perfusion and transit time are inversely 

related [20], i.e., a higher perfusion is typically associated with a shorter transit time. In 

addition, perfusion and transit time vary spatially within tissue (e.g., tumors). This spatial 

heterogeneity will therefore contribute to heterogenous drug delivery within tumors. 

5.2. Tumor Microenvironment 

The tumor microenvironment includes cancer cells, stromal cells, immune cells, 

blood vessels and the extracellular matrix. The tumor microenvironment is highly heter-

ogenous, and here we will focus on microenvironmental aspects that affect TSL delivery. 

The extracellular matrix (ECM) (i.e., dense stroma) is known to represent a barrier for 

drug delivery [14,207], and a prior study identified high collagen content (a major com-

ponent of the ECM) as contributing to poor treatment response following TSL-based de-

livery [114]. This prior study also identified a second factor of the microenvironment as 

contributing factor to poor response: hypoxia. Hypoxia is the result of low vascular den-

sity. The low vascular density results in large distances between neighboring capillaries, 

with limited penetration of oxygen into regions distant from any capillary. Hypoxia is 

generally assumed as contributing towards poor tumor response to drug-based therapies 

[207–209]. In addition, drug penetration into hypoxic regions is lower, since the large dis-

tance from neighboring capillaries limits drug penetration in addition to oxygen penetra-

tion [209] (see also Figure 12). 

In addition, several biophysical parameters dependent on the tumor microenviron-

ment impact drug delivery. These include for example the vascular fraction, extravascular 

fraction, and vascular permeability [20,207]. The latter depends both on the drug and on 

vascular biology, and determines in part the drug extraction fraction (EF) discussed ear-

lier. 

Finally, the microenvironment also indirectly affects transit time and perfusion of 

tumors, e.g., due to variations in vascular geometry and vessel density. 

5.3. Cancer Cell Properties 

The varying therapeutic response of different tumor types is further affected by prop-

erties of the cancer cells. It is we well known that different cancer cell types have varying 

sensitivity to a particular drug [111,172,210]. Further, we described earlier that cell uptake 

kinetics varies as well between cancer cell types [171,172,211]. This varying uptake kinet-

ics impacts delivery to cancer cells, and may impact efficacy of therapy as well. In addi-

tion, proliferative properties of cancer cells can affect treatment response. A prior study 

with five tumor types analyzed in vitro cancer cell properties and in vivo tumor response 
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after treatment with TSL-Dox. The in vitro doubling time was identified as significantly 

correlating with in vivo tumor response (i.e., tumor growth time) [111]. 

6. Other Hyperthermia Effects 

Hyperthermia induces a variety of biological effects that impact both drug transport 

and cytotoxicity, and therefore hyperthermia also indirectly impacts delivery and efficacy 

of TSL-based therapies. Hyperthermia has been widely used as cancer therapy in human 

clinical trials with limited side effects, usually in combination with chemo- or radiation-

therapy [212,213]. Relevant for TSL-encapsulated chemotherapeutics, hyperthermia is a 

well-known chemosensitizer that enhances the efficacy of many chemotherapy agents. In 

part, this is due to enhanced cellular uptake of drugs at elevated temperatures [214]. In 

addition, hyperthermia inhibits multiple DNA repair mechanisms, providing a synergis-

tic cytotoxicity with agents that cause DNA damage [215]. In addition, hyperthermia tran-

siently enhances vascular permeability which can improve transvascular transport of 

macromolecules [216], or can enable drug transport across the blood–brain barrier [149]. 

Furthermore, hyperthermia improves tumor perfusion, which is particularly helpful in 

poorly perfused, often hypoxic tumor regions. There, re-oxygenation can improve therapy 

response, while enhanced perfusion can improve drug delivery [214]. Finally, hyperther-

mia locally stimulates the immune system, which can improve anti-tumor response 

[214,217]. Most of these effects depend on both temperature and heating duration, and 

thus may require additional consideration when devising heating algorithms to take ad-

vantage of these effects while also providing optimal TSL drug delivery. 

7. Recommendations for Preclinical TSL Studies 

Below, we provide some guidelines based on our review of preclinical TSL studies in 

rodents that may be helpful for future studies: 

• Measure in vitro TSL release kinetics at early time points, with the first measurement 

ideally within 5 s or less. In addition, a physiologically relevant buffer should be used 

(e.g., plasma or serum), since the buffer affects drug release (Figure 6d) [121]. 

• Initiate hyperthermia (HT) either before bolus administration of TSL, or as soon as 

practical after administration. This is to maximize the plasma-AUC, which correlates 

with tumor drug uptake (Figure 9) [149,161–163]. Pre-heating is particularly advan-

tageous in cases when heating of the tumor requires some time (depending on heat-

ing method). 

• Use a heating method that ensures heating of the whole tumor while avoiding exten-

sive exposure of normal tissues. To ensure adequate tumor heating for subcutaneous 

tumors, at minimum, temperature at the distal edge of a subcutaneous tumor should 

be measured to confirm that the whole tumor is exposed to hyperthermic tempera-

tures where the employed TSL have optimal release (~40–43 °C in most cases). While 

MR thermometry or ultrasound thermometry are often not available, such methods 

would be ideal to ensure targeted tumor heating. As discussed above, water bath 

hyperthermia is not ideal for rodent studies and can result in reduced delivery [162]. 

• Obtain a blood sample after completion of HT, to quantify drug concentration and 

ensure that available encapsulated drug has not been depleted. A comparison to a 

non-heated control group confirms if any depletion is due to HT, rather than from 

systemic TSL elimination/leakage. An additional blood sample following TSL admin-

istration and before HT would be valuable (e.g., for estimating the plasma-AUC as 

in Figure 9). While the required HT duration for therapeutic effect depends on many 

factors such as drug, tumor model, etc., in general, extending the HT duration en-

hances tumor drug uptake assuming that TSL-encapsulated drug is still in circula-

tion. 

• Provide optimal thermal support and monitor the core temperature of animals dur-

ing studies. Due to anesthesia, rodents are not able to regulate their core temperature 
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and require thermal support. However, extensive thermal support may elevate core 

temperature above normal. Prior studies have shown that elevated core temperature 

(>37 °C) resulted in premature drug leakage from TSL, even though thermal support 

was at 37 °C [30]. Conversely, a reduced core temperature will make it more difficult 

to raise tumor temperature to ranges required for release. Thus, ideally the core tem-

perature should be continuously monitored and regulated to ~36–37 °C by adjusting 

thermal support as necessary. 

8. Conclusions 

Drug delivery by TSL depends on complex interactions between the liposomes, the 

drug, the hyperthermia device, and tumor physiology/biology (Figure 17). Optimal deliv-

ery by TSL requires rapid drug release from liposomes, ideally combined with a drug that 

is quickly taken up by tissue and cancer cells. In addition, selection of an adequate hyper-

thermia device that can expose the target tissue to temperatures of ~40–42 °C with limited 

exposure of non-targeted tissues is of importance. Many of the discussed concepts are 

applicable to other heat-activated nanoparticles, and triggered drug delivery systems in 

general. 

 

Figure 17. Interactions between TSL, drug, hyperthermia device, and tumor physiology/biology. 

The properties listed inside the arrows result from interactions between specific components (e.g., 

TSL and drug). These interactions must be carefully considered when designing TSL–drug-device 

combinations for optimal delivery. 
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