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Simple Summary: Despite considerable improvements in immunotherapy of cancers, how to pre-
dict and enhance the anti-tumor immune response remains unknown. As a new emerging player
identified in tumor immunology, tertiary lymphoid structure (TLS) has been shown to play critical
roles in local tumor immune microenvironments. TLS serves as a guardian located nearest to tumors
by providing an arena for lymphocyte maturation and anti-tumor immune responses. Accumulating
evidence has shown numerous aspects of TLS, which not only includes its cellular composition and
formation process, but also includes how it exerts local anti-tumor immune responses. Our review
summarizes recent findings in the characteristics of TLS in gastrointestinal tumors and also gives a
brief introduction on how to manipulate TLS formation and anti-tumor immune responses to benefit
tumor treatment in the future.

Abstract: Tertiary lymphoid structures (TLSs) are ectopic lymphocyte aggregation structures found in
the tumor microenvironment (TME). Emerging evidence shows that TLSs are significantly correlated
with the progression of gastrointestinal tumors, patients’ prognosis, and the efficacy of adjuvant
therapy. Besides, there are still some immunosuppressive factors in the TLSs that may affect the anti-
tumor responses of TLSs, including negative regulators of anti-tumor immune responses, the immune
checkpoint molecules, and inappropriate tumor metabolism. Therefore, a more comprehensive
understanding of TLSs’ responses in gastrointestinal tumors is essential to fully understand how
TLSs can fully exert their anti-tumor responses. In addition, targeting TLSs with immune checkpoint
inhibitors and vaccines to establish mature TLSs is currently being developed to reprogram the
TME, further benefiting cancer immunotherapies. This review summarizes recent findings on the
formation of TLSs, the mechanisms of their anti-tumor immune responses, and the association
between therapeutic strategies and TLSs, providing a novel perspective on tumor-associated TLSs in
gastrointestinal tumors.

Keywords: tertiary lymphoid structure; gastrointestinal tumors; immune microenvironment;
therapeutic targets; prediction

1. Introduction

The tertiary lymphoid structures (TLSs) are ectopic agminated lymphoid structures
formed in sites that are normally devoid of canonical lymphoid organs. They are similar to
the secondary lymphoid organs (SLOs), such as lymph nodes, the spleen, tonsils, Peyer’s
patches, and mucosa-associated lymphoid tissues. The aggregate lymphoid structures are
mainly formed by B cells, T cells, dendritic cells (DCs), follicular dendritic cells (FDCs),
and high endothelial venules (HEVs). TLSs are most commonly found in the regions
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associated with chronic inflammation, infectious diseases, autoimmune diseases, trans-
planted organs, and tumor sites [1–5]. Emerging evidence has shown the importance of
TLSs in anti-tumor immune responses. Recent studies reported the association of TLSs in
cancer lesions with improved prognosis in several human malignancies, suggesting that
the TLSs may play an important role in the antitumor immune microenvironment [6,7]. In
recent years, gastrointestinal tumors posed a serious burden on people around the world
due to their high morbidity and mortality. In 2018, there were an estimated 4.8 million
new cases of gastrointestinal malignancy and 3.4 million disease-related deaths world-
wide. Gastrointestinal tumors account for 26% of global cancer incidence, and 35% of all
cancer-related deaths [8]. The presence of TLSs has been observed in gastrointestinal tu-
mors, such as gastric cancer [9], colorectal cancer [10], and gastrointestinal stromal tumors
(GISTs) [11]. Emerging evidence has also shown that TLSs were significantly correlated
with the progression of gastrointestinal tumors, patients’ prognosis, and the efficacy of
adjuvant therapy. Therefore, TLSs may be crucial in the gastrointestinal tumor microenvi-
ronment. It is important to deeply understand the molecular processes that lead to TLS
formation in gastrointestinal tumors, the types of gastrointestinal tumors-associated TLSs,
and the consequences of their presence for the generation or maintenance of tumor-specific
immunity, which may benefit the development of therapeutic strategies targeting TLSs and
also predicting the prognosis of patients with gastrointestinal tumors based on TLSs.

2. Process of Tumor-Related TLSs Formation and Maturation

The formation of SLOs, such as the spleen, lymph nodes, tonsils, Peyer’s patches,
and mucosa-associated lymphoid tissue, are formed by the interaction of hematopoietic
precursor lymphoid tissue-induced cells (LTi) and stromal-forming cells. The formation of
TLSs is similar to SLOs, where certain pathological conditions, such as antigen-presenting
cells (APCs), recognize tumor-exposed antigens and then present them to adaptive im-
mune cells, causing activation of immune cells and secretion of cytokines [12]. These
activated lymphocytes and DCs express lymphotoxin-α (LT-α), enabling them to interact
with the corresponding receptor (lymphotoxin-β receptor LT-βR) expressed on stromal
cells (i.e., endothelial cells, fibroblasts, and epithelial cells). LT-α can induce the expression
of a variety of chemokines, including the chemokine (C-C motif) ligand 19 (CCL19), CCL21,
the chemokine (C-X-C motif) ligand 12 (CXCL12), and CXCL13 [13]. The presence of
CXCL13 and interleukin-7 (IL-7) can recruit lymphoid tissue-induced cells (LTi) to the
lesion sites [14]. The surface of the LTi expressed the lymphotoxin-α1β2 ligand (LT-α1β2),
which binds to its respective receptor LT-βR, expressed on the surface of stromal cells. After
binding, it promotes stromal cells to secrete vascular endothelial growth factor C (VEGFC)
that induces HEV formation and also facilitates the secretion of adhesion molecules used
to recruit immune cells, such as the vascular cell adhesion molecule 1 (VCAM1) and the
intercell adhesion molecule 1 (ICAM1) [15]. In an animal model of colorectal cancer, the
process of TLS formation driven by bacteria-specific follicular helper T cells is similar to
the process of the above [16].

In addition to the aforementioned LTi-dependent formation pathway of TLSs, CCL21
and CCL19 induce LTα1β2 expression in T cells, and CXCL13 stimulates LTα1β2 secre-
tion expression in B cells, which both can recruit lymphocytes into TLSs via the LTβR
signaling-dependent pathway from nearby HEVs [17,18]. Some other immune cells, such
as macrophages, endothelial cells, immune fibroblasts, bone marrow mesenchymal stem
cells (MSCs), and adipocytes, also play an important role in the formation and maturation
process of TLSs [19]. Macrophages and endothelial cells secreted the cytokine IL-36γ, up-
regulated the expression of VCAM-1 and ICAM-1 in stromal cells and vascular endothelial
cells, and promoted lymphocyte-recruitment capacity of HEVs through chemokines IL-8,
CCL2, and CCL20, thus promoting TLS formation and maturation in human colorectal
cancer [20,21]. Therefore, there may exist classical and non-classical TLS formation modes
mentioned above in gastrointestinal tumors (Figure 1).



Cancers 2023, 15, 367 3 of 14

Cancers 2023, 15, 367  3  of  15 
 

 

IL‐8, CCL2, and CCL20, thus promoting TLS formation and maturation in human colo‐

rectal cancer [20,21]. Therefore, there may exist classical and non‐classical TLS formation 

modes mentioned above in gastrointestinal tumors (Figure 1). 

 

Figure 1. The process of tumor‐related TLSs formation and maturation. The process of tumor‐re‐

lated TLS formation and maturation have similarities with that of SLOs. When the tumor‐associated 

antigens exposed to the TME caused an anti‐tumor immune response, adaptive immune cells were 

activated, and then secreted lymphotoxin‐α (LT‐α) enabled them to interact with the corresponding 

receptor (lymphotoxin‐β receptor, LT‐βR) expressed on stromal cells (i.e., endothelial cells, fibro‐

blasts, epithelial cells, monocytes, and dendritic cells). The secretion of CXCL13 and IL‐7 can recruit 

the LTi to the lesion sites. The surface of the LTi expressed LT‐α1β2, which can bind to LT‐βR. After 

the binding, it promotes stromal cells to secrete vascular endothelial growth factor C (VEGFC)‐in‐

duced HEV formation. It can also facilitate the secretion of adhesion molecules used to recruit im‐

mune cells, such as the vascular cell adhesion molecule 1 (VCAM1) and the intercell adhesion mol‐

ecule  1  (ICAM1). CCL21  and CCL19  induce  LTα1β2  expression  in  T  cells, CXCL13  stimulates 

LTα1β2 expression in B cells, and it can recruit lymphocytes into TLS via the LTβR signaling‐de‐

pendent pathway from nearby HEVs. Besides, the cytokine IL‐36γ secreted by macrophages and 

endothelial cells contributes to TLS formation and maturation in gastrointestinal tumors. 

3. Recognition of the Characteristics of Tumor‐Related TLSs in Gastrointestinal   

Tumors 

In 1967, the infiltrating of nonspecific lymphocytes into tumor tissue was observed 

by the use of hematoxylin and eosin staining [22]. In 1987, lymphocyte aggregates with a 

“Crohn‐like response” structure were found in the tumors of colorectal cancer patients by 

Graham et al. [23]. In 1992, as researchers studied the chronic inflammatory process, the 

concept of ‘tertiary’ lymphoid tissues was proposed due to the already existing presence 

of primary (including the bone marrow and thymus) and secondary lymphoid tissues (in‐

cluding  lymph nodes,  the spleen,  tonsils, Peyer’s patches, and mucosa‐associated  lym‐

phoid tissue [24]). Afterward, the description ‘tertiary lymphoid tissue’ was further used 

Figure 1. The process of tumor-related TLSs formation and maturation. The process of tumor-related
TLS formation and maturation have similarities with that of SLOs. When the tumor-associated
antigens exposed to the TME caused an anti-tumor immune response, adaptive immune cells were
activated, and then secreted lymphotoxin-α (LT-α) enabled them to interact with the corresponding
receptor (lymphotoxin-β receptor, LT-βR) expressed on stromal cells (i.e., endothelial cells, fibroblasts,
epithelial cells, monocytes, and dendritic cells). The secretion of CXCL13 and IL-7 can recruit the
LTi to the lesion sites. The surface of the LTi expressed LT-α1β2, which can bind to LT-βR. After the
binding, it promotes stromal cells to secrete vascular endothelial growth factor C (VEGFC)-induced
HEV formation. It can also facilitate the secretion of adhesion molecules used to recruit immune
cells, such as the vascular cell adhesion molecule 1 (VCAM1) and the intercell adhesion molecule
1 (ICAM1). CCL21 and CCL19 induce LTα1β2 expression in T cells, CXCL13 stimulates LTα1β2
expression in B cells, and it can recruit lymphocytes into TLS via the LTβR signaling-dependent
pathway from nearby HEVs. Besides, the cytokine IL-36γ secreted by macrophages and endothelial
cells contributes to TLS formation and maturation in gastrointestinal tumors.

3. Recognition of the Characteristics of Tumor-Related TLSs in Gastrointestinal Tumors

In 1967, the infiltrating of nonspecific lymphocytes into tumor tissue was observed
by the use of hematoxylin and eosin staining [22]. In 1987, lymphocyte aggregates with a
“Crohn-like response” structure were found in the tumors of colorectal cancer patients by
Graham et al. [23]. In 1992, as researchers studied the chronic inflammatory process, the
concept of ‘tertiary’ lymphoid tissues was proposed due to the already existing presence of
primary (including the bone marrow and thymus) and secondary lymphoid tissues (includ-
ing lymph nodes, the spleen, tonsils, Peyer’s patches, and mucosa-associated lymphoid
tissue [24]). Afterward, the description ‘tertiary lymphoid tissue’ was further used in a
variety of diseases [2]. They have been observed in autoimmune diseases (Hashimoto’s
thyroiditis, rheumatoid arthritis, myasthenia gravis, Sjogren’s syndrome, and multiple scle-
rosis), chronic microbial infection (hepatitis C, Helicobacter pylori, and Lyme disease), and
chronic allograft rejection [3–5]. Soon, some researchers found similar structures in cancers.
Structures similar to SLOs were found as TLS in melanoma [25] and non-small cell lung
cancer (NSCLC) [26]. Afterward, TLSs were observed in gastrointestinal tumors [9–11].

With the development of pathological techniques and attention to the tumor microen-
vironment, the types of TLSs have gradually been revealed, which may vary between
different cancer types and even in the different regions of same cancer. Currently, the
maturity classification of TLSs is described as follows [27]: (i) aggregation (AGG): am-
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biguous lymphoid clusters; (ii) primary follicles (FL-I): circular lymphoid clusters without
germinal centers; and (iii) secondary follicles (FL-II): follicles formed by germinal centers
(GC). Usually, the AGG is considered the initial level of the TLSs. However, the FL-I and
FL-II are considered to be the more mature TLSs. We can observe three different maturity
levels of TLS in gastrointestinal tumors, and aggregations are the highest proportion of
the three different maturity levels of TLSs in the gastrointestinal tumor [9–11,28,29]. The
histological images of TLSs were showed in Figure 2.
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Figure 2. The maturity classification of tertiary lymphoid structures. Representative images of
tertiary lymphoid structures (TLSs) detected in formalin-fixed paraffin-embedded tumor sections
by haematoxylin and eosin (H&E) staining. (A) Aggregation (AGG) (The region of red dotted line);
(B) Primary follicles (FL-I) (The region of red dotted line); (C) Secondary follicles (FL-II) (The region of
red dotted line with a germinal center) (The region of the yellow dotted line represents the germinal
center). These histological images are original, unpublished images from the authors’ examination of
tumors with gastric neuroendocrine neoplasms.

To further recognize cellular compositions of TLSs, immunohistochemistry staining
has been used to detect markers of specific lymphocytes, combined with computer quan-
titative image analysis to determine the expression of immune markers in the tumors,
which further provide a theoretical basis for evaluating the relationship between TLS dis-
tribution, cellular components, and patient’s prognosis. In 2006, investigators began to
analyze the cellular components of tumor-infiltrating lymphocytes (TILs), as well as the
type, density, and location of immune cells in human colorectal tumors, to predict the clini-
cal outcome [30]. Now, more and more research concentrates on the cellular components
of TLSs. Yu et al. [31] found that CD4+ and CD8+ T cells were mainly distributed in the
parafollicular cortex, with CD4+ T cells being more infiltrated than CD8+ T cells. Most
CD20+ B cells were located in the follicular center, while CD11c+ DCs and CD45RO+ mem-
ory T cells were mainly located in the T cell region, partially dispersed into the follicular
center. Only sporadic anti-NCR1+ NK cells were found, and CD68+ TAMs were rarely
observed. FOXP3+ regulatory T cells (Tregs) were rare in both TLSs and tumor tissues. The
distribution and composition of TLSs in gastric cancer [32,33] and colorectal cancer [29] are
similar to those found in pancreatic neuroendocrine tumors by Yu. Park et al. [34] showed
that the HEVs expressing characteristic peripheral node addressing protein (PNAd) and
vascular addressing protein (MECA79) were located in the periphery of TLSs in gastric
cancer (Table 1).
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Table 1. Characteristics of tumor-related TLS in different gastrointestinal tumors.

Characteristic
Detecting Markers Subpopulation Markers Prognoses Reference

Gastric cancer

B cell zone CD20+ B cells Favorable [9,32,33,35–37]

GC B cells (Bcl-6+ CD20+) Favorable [35]

FDCs (CD21+) No evaluation [32,33,35]

Macrophage (CD68+) Unfavorable [37]

T cell zone CD3+ T cells Favorable [32,35,37]

Help T cells (CD4+) No evaluation [33,35]

Th1 (CD4+ T-bet+) Favorable [9]

Tregs (CD4+ FOXP3+) Unfavorable [9]

Cytotoxic T cells (CD8+) Favorable [32,35,37]

Memory T cells (CD45RO+) No evaluation

HEVs PNAd or MECA79 PNAd or MECA79 Favorable [33,35]

Colorectal cancer

B cell zone CD20+ B cells Tfh cells (CD3+ CD8- Bcl-6+) No significance [10]

FDCs (FDC+) No significance [10,29]

GC B cells (Bcl-6+ CD20+) No significance [10]

Macrophage (CD68+) Unfavorable [10,29]

T cell zone CD3+ T cells CTL (CD8+) No significance [10]

Th1 (CD3+ T-bet+) No significance [10]

Th2 (CD3+ GATA3+) Unfavorable [10]

Th17(CD3+ ROR-γT+) No significance [10]

Tregs (CD3+ FOXP3+) Unfavorable [10,38]

Memory T cells (CD45RO+) No evaluation [29]

Other immune cells NCR1+ NK cells No significance [29]

CD15+ TAN cells No significance [29]

HEVs PNAd or MECA79 PNAd or MECA79 Unfavorable [27]

Gastrointestinal
Stromal Tumors
(GIST)

B cell zone CD20+ B cells Naive B cells (Bn) (CD20+

CD27− IgM+) No evaluation [11]

IgM+ memory B cells (IgM+

Bm) (CD20+ CD27+ IgM+) No evaluation [11]

CD27− isotypeswitched
memory B cells (CD27− Sw
Bm) (CD20+ CD27− IgM−)

No evaluation [11]

CD27+ isotype-switched
memory B cells (CD27+ Sw
Bm) (CD20+ CD27+ IgM−)

No evaluation [11]

Plasma cells (PCs)
(CD20-CD24−CD27hiCD38hi) No evaluation [11]

T cell zone CD3+ T cells CTL (CD8+) No significance [11]

Th1 (CD4+ T-bet+) No significance [11]

Th2 (CD4+ GATA3+) No significance [11]

Th17(CD4+ ROR-γT+) No significance [11]

Tregs: (CD4+ FOXP3+) Unfavorable [11]

Other immune cells Tissue-resident
memory T cells CD103+ Trm No evaluation [11]

HEVs PNAd or MECA79 PNAd or MECA79 No detected

Buisseret et al. [39] demonstrated that sections using H&E staining were less repro-
ducible among pathologists, so gene array and single-cell profiling were used for detecting
TLSs. For example, Coppola et al. [40] demonstrated the application of a 12-chemokine
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gene signature for TLS detection and identified unique ectopic lymph node-like structures
in human primary colorectal cancer by immune gene array profiling. Jia et al. [41] detected
the cell composition of TLSs by using single-cell profiling and proposed that natural killer T
(NKT) cells mainly exist in gastric cancer tissues accompanied by mature TLSs. Due to the
emergence of new technologies, we have an increasing number of means to evaluate TLSs
in gastrointestinal tumors so that we can better identify TLSs in gastrointestinal tumors.

4. Anti-Tumor Mechanisms and Influencing Factors of the Tumor-Associated TLSs
4.1. Anti-Tumor Mechanisms of the Tumor-Associated TLSs

As previously described, the human immune system contains primary lymphoid
organs, secondary lymphoid organs, and tertiary lymphoid organs (i.e., TLSs). Because
they are anatomically similar to the SLOs, it has been suggested that the TLSs recapitulate
the function of the SLOs in the TME [5]. Lymph nodes foster the encounter of antigen-
laden APCs from tissues and naïve lymphocytes from the blood by providing a specialized
niche that maximizes cell–cell contacts and thereby enables the generation of adaptive
immune responses [42]. Compared with SLOs, the biggest difference in structures between
TLSs and SLOs is that there is no membrane surrounding for TLSs, or a small amount of
membrane [43], which provides a more convenient place for the movement of immune
cells. Various active lymphocytes and immunoglobulin effector molecules in TLSs can
more quickly move through HEVs or move freely into and out between lymphoid tissues
and surrounding tissues [44] to exert the corresponding anti-tumor immune response.
Meylan et al. [35] found that IgG-and IgA-producing plasma cells (PCs) spread along the
tumor bed of fibroblasts, suggesting a mode of movement in which immune cells in TLS
migrate to the surrounding tumor cell region in renal-cell carcinoma (RCC). This may
exist the same way in gastrointestinal tumors because B cells in TLSs are associated with a
favorable prognosis in gastric cancer [36].

TLSs are sites for lymphocyte induction and maturation, and they also provide a
living place for follicular dendritic cells. FDCs are important antigen-presenting cells,
which can present the exposed tumor-specific antigen (TSA) and tumor-associated antigen
(TAA) to B cells and T cells in TLSs, driving them to become functional subsets. TLSs also
provide a necessary place for effector T cells and effector B cells to exert anti-tumor immune
responses [42]. When normal T and B cells mature, DCs timely present antigens to them
and promote the immunoglobulin generation and effector T cell responses. In addition,
B cells in TLS can also be used as antigen-presenting cells, which can present antigens to
CD8+ T cells and further strengthen their immune responses [38]. As a result, the TLSs are
considered as a local immune and anti-tumor micro battlefield, similar to a ‘local military
academy’, providing a nearby location to fight against tumor cells.

4.2. Influencing Factors of the Tumor-Associated TLSs

A few studies have indicated that TLSs have a negative impact on prognosis in
patients with gastrointestinal tumors. As previously mentioned, the cellular components
of TLSs include anti-tumor immune cells and also inhibitory immune cells. Schweiger
et al. detected large numbers of regulatory T cells in patients with colorectal cancers, which
might attenuate anti-tumor immune response [45]. Li et al. [46] proved that regulatory
T cells were found in resected tumor samples of ovarian cancers and could significantly
suppress the activation of CD8+ T cells in an IL-10- and TGF-β-dependent manner. The
mechanism of immunosuppression by regulatory T cells in TLS of gastrointestinal tumors
may be similar to this. Other immune inhibitory cells were also reported in TLSs of
gastrointestinal tumors. Yamaguchi et al. [10] demonstrated that GATA3+ T helper 2 cells
and CD68+ macrophages significantly increased in the recurrence group when assessing
the influence of different subsets of TLSs in patients with curatively resected stage II/III
colorectal cancers. In addition, Bento et al. found that HEVs of TLSs were rare in colorectal
cancer but accumulate in extra-tumoral areas with disease progression and tumor cells may
transfer via HEVs [47], which is different from the anti-tumor response of HEVs found in
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gastric cancer [34]. Therefore, TLS-associated Tregs and HEV presence may exert a negative
influence on the capacity of TLSs to generate anti-tumor immune responses, although the
detailed mechanism concerning how TLSs balance their immune responses based on these
cellular components are still largely unknown.

Apart from the inhibitory immune cells, such as regulatory T cells and HEVs in TLSs,
Chen et al. [48] reported that the immune checkpoint molecules were also expressed in
cells of TLSs. They found that the high expression of programmed death ligand 1 (PD-
L1) or impaired human leukocyte antigen-I (HLA-I) expression in TLSs decreased the
infiltration of B cells in the TME in esophageal adenocarcinoma. High expression of TIGIT
on CD20 + B cells of TLSs was associated with poor prognosis in gastric cancer [49]. This
may suggest that the upregulation of the immune checkpoint molecules in cells of TLSs can
reverse their anti-tumor responses, so further studies to elucidate the expression patterns
of immune checkpoint molecules in different cells of TLSs are urgently needed.

Interestingly, tumor metabolism not only has an impact on locally infiltrated immune
cells but also may influence the anti-tumor immune responses of TLSs [50,51]. It was found
that cancer cells need to take in far more glucose from their internal environment than
normal cells to produce energy. This phenomenon is known as the “Warburg effect” [37].
Effector T cells have a selective requirement for glucose, while Tregs have a less glucose-
dependent requirement. Therefore, tumor metabolism may be more favorable for Tregs. As
previously mentioned, Tregs are an important suppressive cellular component of TLSs, and
therefore tumor metabolism may lead to a decrease in the anti-tumor immunity of TLSs.

5. Prognostic and Predictive Potential of TLSs in Gastrointestinal Tumors

Based on the importance of TLSs in anti-tumor immune responses in gastrointestinal
tumors, studies have also tried to assess their values in predicting the prognosis of patients
with tumors. The favorable effects of TLSs on patients’ overall survival and recurrence-free
survival have been observed in colorectal cancer [52], gastric cancer [53], and gastrointesti-
nal stromal tumors [11]. Not only do the numbers of TLSs surrounding the tumors have
an impact on patients’ outcomes, but also the cellular components of TLSs play a role in
assessing patients’ prognosis.

5.1. Relationship between Cellular Components of TLSs and Prognosis

Based on the cellular components, Yamaguchi et al. [10] analyzed 353 TLSs found in
67 colorectal cases and divided TLSs into five types: germinal center-TLS type, B-cell-
enriched-TLS type, FDC-rich-TLS type, Th-cell-enriched TLS type, and CTL/B/Th-TLS
type. They found that auxiliary T cell-enriched TLSs were significantly associated with
disease relapse in patients with advanced colorectal cancer, and Th2 cells were the major
responsible cell subsets. Hong [34] proposed that high endothelial micro veins (HEVs)
were the most important immune prognostic factors of RFS and OS in gastric cancer, while
different results were found in colorectal cancer and liver cancer [27,47], and they found a
negative impact of HEVs on patients’ prognosis. In gastric cancer, CD8 + T cells located
in TLS are associated with improved prognosis [33]. As mentioned above, the presence of
regulatory T cells in TLSs in patients with colorectal cancer may negatively affect the ability
of TLSs to generate effector and memory T cells and was also proven to be negatively
correlated with patients’ prognosis. Therefore, cellular components in TLSs influence
their values in predicting the prognosis of patients, depending on the balance between
anti-tumor subsets and inhibitory immune subsets.

5.2. Relationship between the Spatial Distribution of TLSs and the Prognosis

In a study of TLSs in hepatocellular carcinoma, Julien Calderaro et al. [54] found that
TLSs within the tumor were associated with a low risk of early recurrence (less than two
years after surgery), and they had no correlation with the risk of late (more than two years)
recurrence. In contrast, TLSs in tumor-adjacent liver tissue had no prognostic value for
early and late recurrence, which highlighted the prognostic impact of TLS location in the
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prediction of patients’ outcomes. TLSs located in the non-tumor liver only contributed to lo-
cal inflammation, while TLSs within the tumor core region truly reflect effective anti-tumor
immunity. Ding et al. [55] also showed that the spatial distribution and abundance of TLSs
were significantly correlated with patient’s prognosis in intrahepatic cholangiocarcinoma.
Sofopoulos et al. [56] defined the TLS around breast tumors as an area within 5 mm from the
invasive margin and subdivided the TLS into adjacent and distal TLS based on the distance
and interval between the normal breast tissue and the invasive margin. Adjacent TLSs
are thought to be TLSs located on the surface of the invasive margin, and the distal TLSs
are thought to be a class of TLSs in which normal breast tissue is inserted between it and
the invasive margin of the tumor. The proximal high density of TLSs was associated with
reduced disease-free survival (DFS) but not overall survival (OS), and distal TLS density
was negatively associated with both patients’ DFS and OS. Almost no study revealed the
prognostic significance of TLS location in gastrointestinal tumors. Most of the TLSs with
good prognoses in gastrointestinal tumors are located at the edge of tumor invasion and
in the tumor stroma. Only Wang et al. found that TLSs at the edge of tumor invasion are
positively related to prognosis, while TLS within the tumor is not related to prognosis [29].
All these results suggested the different locations of TLSs in gastrointestinal tumors may
associate with different prognoses.

5.3. Prognostic Role of TLSs in Combination with Other Indicators

The prognostic factors of tumor patients are multifaceted, and a single TLS index
sometimes does not accurately predict the prognosis of patients. In recent years, there
has been more and more research on the prediction model of the combined nomogram.
Yu et al. [31] identified TNM stage, WHO grade, and TLS as independent prognostic factors
and combined these factors to draw a nomogram, which greatly improved the predictive
power of the prediction model. Similarly, Yamakoshi et al. found that the combination
of neutrophil-to-lymphocyte ratio (NLR) and TLSs were useful for the stratification of
patient prognosis of gastric cancer [57]. Wang et al. [29] also proposed that combining
TLSs and tumor stroma percentage (TSP) can better predict the prognosis of patients with
non-metastatic colorectal cancer. All these reveal that the combination of TLSs and other
indicators may be useful for the stratification of patient prognosis in gastrointestinal tumors.

5.4. Prediction Values of TLSs in Immune Therapy

At present, adjuvant therapies for tumors include radiotherapy, chemotherapy, tar-
geted therapy, and immunotherapy, which all have an impact on immune cells in the TME.
In recent years, immune checkpoint blocking (ICB) treatment is getting hotter and hotter,
but the effectiveness of ICB treatment in gastrointestinal tumors is not totally satisfying and
still needs improvement [58–71] (Table 2). It is urgent to find an index that can predict the
response of immunotherapy. One recent study [28] reported that 13 patients with gastric
cancer had a higher TLS score after receiving programmed cell death 1 (PD1) blockade
therapy, suggesting that the generation of TLSs could occur after immune therapy which
was also shown to be a biomarker for good responsiveness of immune therapy. Similar con-
clusions have been found in tumors of other systems. For instance, Solinas et al. [72] found
that the high level of TILs and TLSs were correlated with the high expression of immune
checkpoints in human breast cancer, and proposed TLSs may predict the effectiveness of
immunotherapy. Helmink et al. demonstrated that the presence of B cells and TLSs can
make predictions for the good effects of ICB treatment in patients with melanoma and renal
cell carcinoma [73]. Therefore, we have reason to believe that TLSs may be a good indicator
to predict the effectiveness of immunotherapy for gastrointestinal tumors.
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Table 2. The main outcomes of immune checkpoint blocking treatment in different
gastrointestinal tumors.

Tumor Type Medication Plan Key Outcome Effectiveness Reference

Gastric cancer and
Gastroesophageal
junction cancer

GC Pembrolizumab +
lenvatinib ORR 69% Positive [68]

GC/GEJC Pembrolizumab + SOX ORR 72.2% Positive [58]

GEJC Margetuximab +
pembrolizumab ORR 18% No significance [67]

GC/GEJC Pembrolizumab ORR 25.8% No significance [64]

GC/GEJC Pembrolizumab ORR 14.5% No significance [63]

GC/GEJC Nivolumab + CapeOX ORR 76.5% Positive [59]

Colorectal cancer

MSI-H
mCRC Pembrolizumab ORR 54% Positive [65]

MSS
mCRC Pembrolizumab ORR 0% Failed [65]

Advanced CRC Nivolumab ORR 32% No significance [66,70]

Advanced CRC Nivolumab+
Ipilimumab ORR 55% Positive [66,70]

MSS
CRC

Regorafenib+
Nivolumab ORR 36% No significance [60]

Gastrointestinal
Stromal Tumors (GIST)

Advanced GIST Nivolumab+Ipilimumab CR 6.7% No significance [61]

Advanced GIST Dasatinib+Ipilimumab ORR 53.8% Positive [71]

Gastrointestinal
neuroendocrine
neoplasms (GE-NEN)

Recurrent or
Metastatic
GNENs

Toripalimab ORR 20% No significance [69]

NENs
(GNENs47%) Ipilimumab +nivolumab ORR 25% No significance [62]

ORR: objective response rate. CR: complete response. MSI—H: microsatellite instability—high. mCRC: metastatic
colorectal cancer. MSS: microsatellite stability. CRC: colorectal cancer.

6. Therapeutic Strategies for Inducing TLS Formation in Gastrointestinal Tumors

The favorable correlation of TLSs with gastrointestinal tumors has led the investigators
to propose one innovative immunotherapy strategy for inducing TLS formation in the TME.
DG et al. [74] observed newly formed tumor-associated TLSs in a preclinical mouse model
(gp130F/F) of gastric cancer, where tumorigenesis is dependent on hyperactive STAT3
signaling through the common IL-6 family signaling receptor, gp130. This may be a possible
way to induce TLSs formation in immunotherapy of gastric cancer. Weinstein et al. [75]
found that direct injection of dendritic cells (DC, expressing T-cell-specific transcription
factor T-bet) into a mouse colorectal cancer xenograft model promoted lymphocyte infiltra-
tion and TLSs generation and slowed tumor growth. This antitumor effect is dependent on
IL-36γ and can be blocked by IL-36 receptor antagonists or IL-36 receptor defects. Chimeric
antigen receptor T (CAR-T) cells infusion is an important method in the therapy of some
solid tumors. Tamada [76] has developed IL-7 and CCL19-expressing CAR-T cells to form
T cell zone-like structures (i.e., TLSs) in tumor tissues.

Furthermore, it has been reported that immune checkpoint inhibitors (ICIs) can induce
TLSs formation with an anti-tumor function in the TME [77], such as a post-treatment
examination of tumor resections from 20 patients with NSCLC who were treated in phase II
clinical trial of neoadjuvant nivolumab (anti-PD-1), which showed the occurrence of TLSs,
while in the specimens of non-responsive patients’ TLSs de novo were either absent or
rare [78].
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In addition, evidence that TLSs can be therapeutically induced by tumor vaccine, for
instance, in patients with high-grade cervical intraepithelial neoplasia (CIN2/3), is ob-
served, where TLS formation and clonal expansion of TLSs could be observed in regressing
lesions after vaccination against the human papillomavirus oncoproteins [79]. Similarly,
one latest clinical result also supports this treatment strategy by recruiting immune cells to
the TME and the formation of TLSs. Among 39 patients with pancreatic ductal adenocar-
cinomas (PDACs), 33 of 39 patients with excised PDAC tissue showed vaccine-induced
TLS occurrence. Immunotherapy-inducing TLS generation turned a “non-immunogenic”
tumor into an “immunogenic” tumor after two weeks of treatment, further proving that
immunotherapy can orchestrate infiltrating T cells to form TLSs, which in turn contributes
to the formation of the anti-tumor microenvironment [80]. Other strategies have utilized
biomaterials to induce TLSs. These materials can support the formation of TLSs by locally
and controllably releasing chemokines and providing cellular support. In one study, col-
lagen sponge scaffolds embedded with sustained-release gel beads containing LT-α1β2
and many chemokines were transplanted into the subcapsular space of mice to establish
TLSs, recruiting memory T cells and B cells to induce a strong antigen-specific immune
response [81].

Lastly, neoadjuvant chemotherapy can also lead to the regeneration of TLSs. For exam-
ple, a study reported the presence of numerous intra-tumoral TLSs and antigen-presenting
cells (DC-LAMP) in 11 hepatoblastoma patients receiving cisplatin-based neoadjuvant
chemotherapy [82].

Therefore, associated signaling pathways, therapeutic cells, immune checkpoint in-
hibitors, tumor vaccines, biomaterials, and neoadjuvant chemotherapy may all drive the
generation of TLSs, which led to a better anti-tumor immune response in the therapy of
gastrointestinal tumors.

7. Conclusions and Future Perspectives

In conclusion, gastrointestinal tumor-related TLSs exist in the local area of tumor
regions and are an important part of anti-tumor immunity in TME. The presence of TLSs is
usually an indicator of a good prognosis for gastrointestinal tumors. Further studies on
exploring the existence of TLSs in other types of gastrointestinal tumors, such as gastric
neuroendocrine neoplasms (G-NENs), which are usually considered as ‘immune cold
tumors’, will help to better understand the role of TLSs in tumor immunity. In addition,
with an increased and effective application of adjuvant therapy and immunotherapy, it is
also urgently needed to elucidate whether TLSs are the major local immune response sites
or even the only existing regions for the generation and maturation of effector immune
cells, especially under the condition that the number of lymph nodes may decrease or even
disappear after adjuvant therapy. Based on the complex cellular components in TLSs, it is
also crucial to further address how to exert proper anti-tumor immune responses of TLSs in
the presence of inhibitory immune subsets in TLSs. Therapeutic strategies targeting TLSs
have provided promising results in animal models, which also need to be translated into
clinical trials in the future.
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