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Simple Summary: Breast cancer (BC) is the leading cause of cancer deaths among adult women in
Ethiopia. The death toll associated with breast cancer is high among women of African ancestry. The
cause of the disparity in mortality is unclear. Recently, studies conducted in the United States and
other high-income countries highlighted the role of microbial dysbiosis in breast cancer initiation,
growth and treatment outcome. However, whether differences in abundance and composition of
microbiota are associated with clinical and histopathological parameters in Ethiopian women has
not been studied. The aim of our study was to conduct microbial profiling on breast tumor and
normal adjacent tissues of the same donor. Further, the study aimed to identify the association of the
differences in microbial composition and abundance with clinicopathological factors in Ethiopian
women with breast cancer. This is the first study to report an association between breast microbial
dysbiosis and clinicopathological factors in Ethiopian women.

Abstract: Breast cancer (BC) is the leading cause of cancer mortality among women in Ethiopia. Over-
all, women of African ancestry have the highest death toll due to BC compared to other racial/ethnic
groups. The cause of the disparity in mortality is unclear. Recently, studies conducted in the United
States and other high-income countries highlighted the role of microbial dysbiosis in BC initiation,
tumor growth, and treatment outcome. However, the extent to which inter-individual differences in
the makeup of microbiota are associated with clinical and histopathological outcomes in Ethiopian
women has not been studied. The goal of our study was to profile the microbiome in breast tumor
and normal adjacent to tumor (NAT) tissues of the same donor and to identify associations between
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microbial composition and abundance and clinicopathological factors in Ethiopian women with BC.
We identified 14 microbiota genera in breast tumor tissues that were distinct from NAT tissues, of
which Sphingobium, Anaerococcus, Corynebacterium, Delftia, and Enhydrobacter were most significantly
decreased in breast tumors compared to NAT tissues. Several microbial genera significantly differed
by clinicopathological factors in Ethiopian women with BC. Specifically, the genus Burkholderia more
strongly correlated with aggressive triple negative (TNBC) and basal-like breast tumors. The genera
Alkanindiges, Anoxybacillus, Leifsonia, and Exiguobacterium most strongly correlated with HER2-E
tumors. Luminal A and luminal B tumors also correlated with Anoxybacillus but not as strongly as
HER2−E tumors. A relatively higher abundance of the genus Citrobacter most significantly correlated
with advanced-stage breast tumors compared to early-stage tumors. This is the first study to report an
association between breast microbial dysbiosis and clinicopathological factors in Ethiopian women.

Keywords: breast microbiome; microbiota; Ethiopia; African ancestry; BC; PAM50 molecular intrinsic
subtypes

1. Introduction

Globally, female breast cancer (BC) is becoming the most common malignancy [1].
In Ethiopia, it is the leading cause of cancer-morbidity, attributable to one-third of the
total cancers occurring in women [2,3]. Annually, the incidence of BC accounts for a total
of 16,133 cases and approximately 9000 deaths in Ethiopia [4]. It has been shown that
more than 80% of cancer cases in Ethiopia are identified at an advanced stage, which has
been attributed to a lack of resources necessary for early BC detection and prevention
strategies [5]. Though there are additional unforeseen factors contributing to BC risk, the
increasing incidence of BC in sub-Saharan Africa may be associated with a dynamic change
in lifestyle behaviors, reproductive factors, and population aging [6–8].

Recently, scientific evidence demonstrated that microbial dysbiosis in the breast mi-
croenvironment may contribute to BC development [9–13]. Consequently, microbiota
inhabiting breast tissue and/or the tumor microenvironment (TME) have a potential biolog-
ical function in mediating carcinogenesis in breast tissue [10,14]. Variations in composition
and functionality of the microbiota among BC cases in relation to healthy controls encour-
age the potential development of microbiome-derived biomarkers and future targeted
interventions which ultimately have a central role in reducing the burden of BC [15].

Indeed, a combination of genetic, environmental, and lifestyle factors have been
linked to BC [14], in which bacterial communities within the host could be one additional
environmental factor associated with BC [16]. In general, supporting evidence from epi-
demiological studies confirms that various microbial species and/or their metabolites
contribute to at least 16% of malignancies that occur across the globe [17]. However, it is
unclear as to how microbial dysbiosis contributes to BC development. It is hypothesized
that microbiota may utilize different mechanisms to promote cancer development, such
as modulating inflammation via mediators and inflammatory response signaling path-
ways [18], triggering DNA damage [19], and/or releasing harmful gut microbiota-derived
metabolites that mediate tumorigenesis or tumor suppression [20,21].

Regardless of factors including sample collection site, age of patients with BC, geo-
graphical variation, history of pregnancy, presence/absence of breast malignancy, method
of DNA preparation, and sequencing technologies, the composition of mammary micro-
biota appeared diverse and different when compared with other body sites [13,22]. The
unique breast microbiota pattern of healthy women demonstrated that the predominant
phyla were Proteobacteria, Firmicutes, Actinobacteria, and Bacteriodetes in decreasing
order, respectively. Though evaluation of microbiota in breast tumor tissue has recently
received much attention, previous research works highlighted distinct microbiota in hu-
man milk which has already been established for several years. Similarity in composition
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between human milk and breast tissue microbiota were noted, and Proteobacteria was
identified as the most abundant phylum [18,19].

Furthermore, tumor microenvironment (TME) has become an important focus in un-
derstanding BC development and progression, and in determining responses to treatment
over the last couple of decades [23]. The breast tumor microbiome has been shown to
play an important role in modifying the TME, thereby potentially impacting treatment
outcome [24]. In fact, it is recognized that the TME is an integral component when in-
vestigating the tumor microbiome [25]. This is further highlighted in recent studies that
observed differences in breast microbial composition and density between NAT and breast
tumor tissues and/or healthy controls [12,26].

Although the microbiomes of populations from developed countries have been ex-
tensively characterized, evidence-based data using African populations to address this
topic remain limited [12,27–29], yet collecting such data has to be a high priority. Fur-
thermore, to our knowledge, no microbiome-based BC studies have been conducted in
Ethiopian women. It is critical for breast microbiome studies to be replicated in Africa
due to inter-individual and population variability in cultural behaviors, environmental
exposures, including infectious diseases, and genomic heterogeneity [30–34]. Therefore,
this study was carried out to investigate microbiota abundance among patients with BC
and explore its correlation with clinical and histopathological features in Ethiopian women
with BC.

2. Materials and Methods
2.1. Patient Enrollment and Tissue Collection and Processing

Pathologically confirmed BC patients (age 16 to 83) were enrolled into the study from
select hospitals in Addis Ababa, Ethiopia, according to the set inclusion and exclusion
criteria. All study participants who were taking antibiotics were excluded from this study.
BC patients were approached by physicians while attending for routine services and
informed about the objective and procedures of data collection. After securing the written
informed consent, we applied aseptic procedures and employed a standard protocol to
obtain a fresh frozen surgically resected breast tissue specimen from patients with BC who
underwent mastectomy. The specimens constituted a total of 100 surgically obtained tissues
composed of breast tumor (T) tissue and normal adjacent tissue (NAT) pairs from the same
donor (n = 50) and were included in this study for comparison from women of Ethiopian
descent. Normal breast tissue immediately adjacent (up to 5 cm) to the collected breast
tissue sample was evaluated and confirmed by a pathologist to be histologically free of
any tumor cells or lesions. Upon receipt, breast tissue samples (n = 100) were immediately
transferred to a sterile container containing liquid nitrogen and maintained at −80 ◦C
until further processing. Clinical and histopathological data about the donor breast tissue
specimen, including hormone receptor (HR) status, Ki-67 proliferation index, tumor grade,
and stage of BC was obtained via medical chart review and pathological evaluation. This
study was carried out according to the Declaration of Helsinki, and the research protocol
was ethically approved by the Institutional Review Board of the College of Health Sciences,
Addis Ababa University (IRB protocol #092/17/17), and at the University of Tennessee
Health Science Center (IRB #19-06743).

2.2. Immunohistochemistry (IHC) and Gene Expression Analysis

Samples of the fresh frozen tissues were embedded and analyzed for the expression
of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor
receptor 2 (HER2), and Ki-67 proliferation index using immunohistochemistry (IHC). IHC
analyses was carried out using specific antibodies directed against the respective proteins
as presented in Table 1.



Cancers 2023, 15, 4893 4 of 18

Table 1. IHC analysis with specific antibodies directed against ER, PR, HER2 and Ki-67.

Protein Clone Manufacturer Host Dilution

ER Clone Ab-11 Thermo Scientific; cat. no
MS-354-P1 (Waltham, MA, USA) mouse 1:150

PR Clone PgR 636 DAKO; cat. no M3569
(Santa Clara, CA, USA) mouse 1:100

HER2 Clone DG44 DAKO; cat. no SK001 rabbit RTU

Ki-67 Clone SP6 Thermo Scientific;
cat. no RM-9106-S mouse 1:250

Following the IHC analysis, the immune reactive score reading was recorded and the
status of ER and PR expression interpreted according to established guidelines [35].

In general, HR positivity was declared with IRS > 0 whereas negativity was defined as
IRS < 1. HR status was declared positive when either ER and/or PR tended to be positive.
ASC-CAP guidelines were employed to assess the status of HER2 [36]. On the other hand,
the Ki-67 proliferation index was scored as follows:

• ‘Low proliferation index:’ when Ki-67 staining was positive in <20% of tumor cells; or
• ‘High proliferation index’: when at least 20% of tumor cells stained positive [37,38].

Histological grading was performed using the Elston–Ellis grading system [39].

2.3. RNA Extraction, Gene Expression Profiling, Normalization, and Intrinsic Subtyping
2.3.1. RNA Extraction

First the pathologist identified the tumor-enriched area on HE-stained slides. Then,
multiple sections consisting of 10 µm breast tissue were utilized for RNA extraction. RNA
was extracted using the miRNeasy FFPE Mini Kit®(Qiagen) following the manufacturer’s
recommendations. Before and after extraction, we decontaminated the workbench with
disinfectant and chemicals to ensure a nuclease-free environment and to maintain the
quality of quality of RNA extraction and further downstream applications. After measuring
the concentration and the quality using a nanophotometer, the extracted RNA was stored
at −80 ◦C for further downstream applications.

2.3.2. NanoString and PAM50 Assay

To determine intrinsic subtypes, a NanoString nCounter® Analysis System (NanoS-
tring Technologies, Seattle, WA, USA) was employed. We measured the relative gene
expression using the PAM50 method, a multiplexed hybridization assay, where digital
readouts of fluorescent barcoded probes hybridize with each mRNA sequence of interest.
nCounter® Digital Analyzer was used for the acquisition of data. Importing data, verifying
quality control, and normalization of expression levels were performed using nSolver
software version 4. Furthermore, negative input controls were utilized for background
subtraction from raw transcript counts. A total of six reference-control genes were used to
perform reference-normalization by dividing the geometric mean of these genes. Thereafter,
the normalized mRNA counts were log2-transformed. Finally, the distinct intrinsic subtype
classification was estimated using the nearest PAM50 centroid algorithm in Bioclassifier
and NanoStringNorm implemented in R [40] and according to the classification method as
described previously [41].

2.4. DNA Extraction, PCR, and 16S rRNA Gene Sequencing and Processing

Using aseptic techniques, we isolated DNA from breast tissues under a sterile laminar
flow hood using the Qiagen DNA Isolation kit (Qiagen, Germantown, MD, USA). We
decontaminated the workbench with disinfectant and chemicals to ensure a nuclease-free
environment. DNA quality and quantity was measured using the Nanodrop and a Quant-
iT PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA). DNA samples were
then shipped off on dry ice to Microbiome Insights (Vancouver, BC, Canada) for further
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processing. Specimens were gently placed into a MoBio PowerMag Soil DNA Isolation
Bead Plate, which is needed for further extraction of microbial DNA and for the isolation
of nucleic acids without the binding of residual contaminants and purified on a KingFisher
robot following MoBio’s instructions. Bacterial 16S rRNA genes were PCR-amplified using
dual-barcoded primers that target the V4 region of the bacterial genome, as per the protocol
of Kozich et al. [42]. Amplicons were further sequenced using the 300-bp paired-end kit
(v.2) on an Illumina MiSeq instrument. The potential for contamination was addressed by
co-sequencing DNA amplified from specimens and from template-free negative controls
and DNA extraction kit reagents processed the same way as the specimens. A cloned
SUP05 DNA sample served as a positive control. Resulting sequences were filtered, then
trimmed and denoised, and used to infer amplicon sequence variants (ASVs) exactly
using the DADA2 sequencing data tool [43]. Subsequent ASVs were merged to create
a sequence table, then chimeras were removed and taxonomically classified using the
Ribosomal Database Project’s Training Set 16 (11.5 release) as the reference database by
the naive Bayesian classifier method implemented in DATA2. The Phyloseq program [44]
was further used to import, store, analyze, and graphically display complex phylogenetic
sequencing data.

2.5. Statistical Analysis

We estimated alpha diversity, defined as the observed richness or number of taxa of
each sample, using the Shannon index on raw ASV abundance tables after filtering out all
contaminants. The Simpson index is another indicator we used to further estimate microbial
diversity and to evaluate species evenness. We conducted a Kruskal–Wallis test or Wilcoxon
signed rank test to determine significant differences in diversity. To estimate beta diversity
across samples, we excluded ASVs occurring with a count of less than 5 (5% of number of
samples). We then computed Bray–Curtis indices. Beta diversity, defined as the variability
in community composition or identity of taxa observed among the samples, was visualized
using principal coordinate analysis (PCoA) ordination and emphasized differences across
samples. Variation in community structure was assessed with permutational multivariate
analysis of variance (PERMANOVA) with groups/subtypes as the main fixed factor and
using 999 permutations for significance testing [45]. All analyses were conducted in the
R environment.

3. Results
3.1. Clinicopathological Characteristics of the Study Participants

This study aimed to enhance our understanding of breast microbial abundance and
composition in Ethiopian women with BC. Our study included fresh frozen tumor tissue
and normal adjacent to tumor (NAT) specimens from 50 Ethiopian women diagnosed with
BC, for a total of 100 breast tissue samples analyzed. Table 2 presents the clinicopathological
characteristics of the study participants. The mean age of patients in this study was
46 ± 1.92 years. Of these women, 60% were premenopausal, 50% were with confirmed
early stage at the time of diagnosis, and almost equal proportions of the tumors were
intermediate to poorly differentiated (G2, G3). With regards to their IHC groups, 44 (88%)
were HR+. Of the breast tumor tissues, 26% were luminal A, and 17% were luminal B.

3.2. Breast Tumor Tissue Exhibits Distinct Microbiome Composition from NAT Tissue of the
Same Woman

In this study, we were able to sequence the 16s rRNA amplicon in 50 paired samples
from tumor tissue and in NAT tissue. We sequenced 16Sv4 amplicons generated from
human breast tissue samples and minimized the potential of bacterial contaminants by
using multiple controls alongside the tissue samples. After quality-filtering and inferring
amplicon sequence variants (ASVs), quality-filtered reads accounting for an average of
1569 were generated per sample and used for further analysis. Rarefaction curves relating
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number of sequencing reads compared to the number of ASVs or genera are shown in
Figure S1A,B.

Table 2. Patient and tumor characteristics.

Variable Frequency (%)

Mean age (yrs ± SE) 46 ± 1.92
Minimum 27
Maximum 83

Menopausal status
Pre 30 (60)
Post 17 (34)

Unknown 3 (6)
UICC stage
Early (0–2A) 25 (50)

Advanced (2B–4) 17 (34)
Unknown 8 (16)

Grade
1 0 (0)
2 24 (48)
3 26 (52)

IHC type
HR+/HER2− 30 (60)
HR+/HER2+ 14 (28)
HR−/HER2+ 3 (6)
HR−/HER2− 3 (6)

ER status (IHC)
Positive (≥1%) 44 (88)
Negative (<1%) 6 (12)
PR status (IHC)
Positive (≥1%) 29 (58)
Negative (<1%) 21 (42)

HER2 status (IHC)
Positive 17 (34)

Negative 33 (66)
Ki-67 proliferation index (IHC)

Low (≥20%) 16 (32)
High (<20%) 34 (68)

Intrinsic subtype
Luminal A 13 (26)
Luminal B 7 (17)

HER2-E 7 (14)
Basal-like 5 (10)
Unknown 18 (36)

In this study, alpha diversity was quantified to correlate the differences in breast
microbial diversity between the tumor and NAT breast tissues. Interestingly, the Shannon
index showed alpha diversity was not significantly different between tumor and NAT
tissues (p = 0.07) (Figure 1A); however, alpha diversity measured by the Simpson index
revealed slightly higher alpha diversity in tumors compared to NAT (p = 0.043). To deter-
mine differences in beta diversity, we visualized the overall differences between the breast
microbiome profile of tumor and NAT tissues using principal coordinate analysis (PCoA)
of Bray–Curtis dissimilarity (Figure 1B). The tumor tissue and NAT clustered significantly
differently between the two groups (R2 = 0.664; p = 0.049) with greater dissimilarity along
PC1 (23.1% variation). We also observed overlap between the two groups.

We then determined the taxonomic composition and abundance of breast microbial
profiles of tumor and NAT tissues. The 16S rRNA based sequencing identified 5 phyla,
7 classes, 16 orders, 16 families, and 16 genera across all the breast tissue samples. Across
all tissue types, the three predominant phyla were Proteobacteria (48.4%), followed by
Firmicutes (22.1%) and Actinobacteria (15.0%) as shown in Figure S2A. Alphaproteobacteria
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(41.5%), Bacilli (15.2%), Actinobacteria (15.0%), and Bacteroidia (7.33%) were the most
abundant classes among all tumor and NAT tissue samples (Figure S2B). Considering
all breast tissue samples, the most prevalent families were Sphingomonadaceae (20.78%),
Staphylococcaceae (13.2%), Beijerinckiaceae (13.1%), and Corynebacteriaceae (9.44%) (Figure
S2C). We also observed that 64.1% of microbial genera were shared between NAT and tumor
groups. However, 26.1% of genera were unique to NAT tissues, whereas approximately
10% were unique to tumors (Figure 1D). Genera most predominant in tumor compared to
NAT tissues included Sphingobium (p < 0.0001), Anaerococcus (p < 0.0001), Corynebacterium
(p = 0.0012), and Delftia (p = 0.0031) (Table S1).
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Figure 1. Breast bacterial community composition varies by patient BC status and normal adjacent
tumor (NAT) and tumor tissue types. (A) Violin plots show median and interquartile range in
bacterial alpha diversity as measured by Shannon and Simpson diversity indices within (tumor and
NAT) breast tissue from Ethiopian BC patients. p-values were obtained from Kruskal–Wallis tests.
(B) Principal coordinates (PC) plots show the clustering pattern of tumor and NAT based on un-
weighted UniFrac distance and are colored by sample types (red circles—NAT, teal—Tumor samples);
p = 0.049 and R2 = 0.664. (C) Taxonomic composition of the breast microbiome depicted as propor-
tional abundances at the genus level for NAT and corresponding tumor tissue of the same donor.
(D) Venn diagram showing the unique and shared bacterial genera between the tumor and normal
groups.

3.3. Breast Microbial Communities Differ by Breast Tumor IHC Types, PAM50 Intrinsic Subtypes,
and Stage of Disease

We next determined whether microbial composition and abundance were associated
with breast tumor prognostic features, including by IHC group and PAM50-based intrinsic
subtypes. The Shannon index (p = 0.717) and Simpson index (p = 0.748) did not differ
significantly by HR status, respectively (Figure 2A). Proteobacteria was the predominant
microbiota observed followed by Firmicutes (Figure 2B). The predominant bacterial phy-
lum, family, and genus across the four IHC breast tumor groups were Proteobacteria,
Sphingomonadaceae, and Sphingomonas, respectively, as shown in Figure 2B–D. The relative
abundances of these phyla differed by HR status, with TNBC tumors having the lowest
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abundance of Proteobacteria compared to the other tumor types. Microbial composition
at the lower taxonomic level (family and genus) were more abundant and/or diverse
in HR+ HER- and HR + HER2+ tumors compared to HR− and TNBC. We did further
analysis to understand differences in relative abundances of the bacteria at the genus
level among the different IHC types using a linear model. We found that Exiguobacterium
(p = 0.007), Varibaculum (p = 0.0087), and Leifsonia (p = 0.0016) were significantly less abun-
dant in HR+/HER2−, HR+/HER2+ and TNBC tissues compared to HR − HER2+ tumors
(Table S2).
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Figure 2. Breast bacterial community composition varies by immunohistochemical (IHC) status.
(A) Violin plots show median and interquartile range as measured by Shannon and Simpson diversity
indices with regard to hormone receptor (HR) and HER2 status of the tumor tissue. p-value results
were from Kruskal–Wallis tests. Taxonomic composition of the breast microbiome is depicted as
relative percentages at the (B) phylum, (C) family, and (D) genus level.

Since we observed significant differences in the relative percentage of microbiota
according to HR status, we hypothesized that microbial differences exist across intrinsic
subtypes. Similar to IHC type, Shannon and Simpson indexes were not significantly differ-
ent between the four intrinsic subtypes (p-value = 0.329 vs. p-value = 0.310, respectively)
(Figure 3A), which was also observed among the PCA analysis (R2 = 0.779, p = 0.378)
(Figure 3B). Furthermore, Proteobacteria were the predominant bacterial phylum across the
four intrinsic breast tumor subtypes followed by Firmicutes (Figure 3C), whereas at the fam-
ily level, Sphingomonadaceae were predominant in luminal A, HER2-E and basal-like breast
tumor intrinsic subtypes (Figure 3D). In the luminal B subtype, the relative abundance
of such microbiota was lower, including Sphingomonadaceae; however, Pseudomonadaceae
and Xanthomonadaceae were relatively higher (Figure 3D). At the lower taxonomic level
(genus), our linear regression analysis revealed differences in abundance of microbial
genera by intrinsic subtype. As shown in Figure 3E, statistically significant abundance of
Polaromonas (p = 0.0005), Varibaculum (p = 0.0087), Exiguobacterium (p = 0.0097), Bifidobac-
terium (p = 0.0382), and several other genera between luminal A, HER2-E, and basal-like
tumors were observed overall when compared to luminal B tumors (Table S3).
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Figure 3. Breast bacterial community composition varies by PAM50 intrinsic subtypes. (A) Violin
plots show median and interquartile range as measured by Shannon and Simpson diversity indices
within breast tissue from Ethiopian BC patients. p-value results were obtained from Kruskal–Wallis
tests. (B) PC plot shows the clustering pattern of the intrinsic subtypes based on unweighted UniFrac
distance and is colored by sample types (green—luminal A, red circles—luminal B, teal—HER2E, and
purple circles—basal-like tumor samples); p = 0.378 and R2 = 0.799. Taxonomic composition of the
breast microbiome, depicted as relative percentage at the (C) phylum, (D) family, and (E) genus level.

We next investigated the relationship between tumor stage and the relative abundances
among microbial taxa. Shannon (p = 0.475) and Simpson (p = 0.358) indexes were not
significantly different between early and advanced stage of disease, respectively (Figure 4A).
PCA showed no significant separation between early and advanced stages of BC (R2 = 0.533,
p = 0.16). However, visually there is a clear separation between the two groups. There were
eight patients with unknown stage information which did not significantly change the
results (Figure 4B). At the phylum level, Proteobacteria dominated (Figure 4B). Similar to
HR status and intrinsic subtype, relative abundance of family Sphingomonadaceae and genus
Sphingomonas dominated in early-stage (T0-2A) compared to more advanced-stage tumors
(T2B-4) (Figure 4C,D). Specifically, genus Stenotrophomonas (p = 0.015), Corynebacterium
(p = 0.049), Prevotella (p = 0.024), Actinomyces (p = 0.021), and several additional genera were
significantly more abundant in advanced-staged tumors compared to early-stage tumors
(Table S4).

3.4. Breast Microbial Communities Correlate with Clinicopathological Features in BC

Lastly, we determined whether microbial communities correlated with certain clinico-
pathological features, including IHC group, intrinsic subtype, and stage, as observed in our
study. In HR−/HER2+ BC, Alkanindiges and Anoxybacillus strongly correlated with this
IHC group, whereas Rhodopseudomonas correlated strongly with HR+ HER2+ BC. Only the
genus Anoxybacillus slightly correlated positively with HR + HER2- tumors. Interestingly,
TNBC tumors correlated strongly with the genus Burkholderia, followed by Thermicanus,
Paracoccus, Mogibacterium, and Aeromonas (Figure 5A).

Many of the same microbial patterns observed by IHC group were also found among
the different intrinsic molecular subtypes. For instance, similar to HER2+ tumors, HER2-
E tumors correlated strongly with Alkanindiges and Anoxybacillus (Figure 5B). Likewise,
basal-like tumors correlated with the same genera as TNBC, with Burkholderia being the
most strongly correlated genus. There was a weak association with Cuprivadus in basal-
like tumors (Figure 5B) that was not observed in TNBC tumors using IHC determination
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(Figure 5A). Luminal A and luminal B tumors correlated weakly with Anoxybacillus. Further-
more, there was not much of a difference in genera among the early- and advanced-stage
BC, although a stronger correlation with the genus Citrobacter was observed in advanced
breast tumors (Figure 5C).
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In summary, we identified 14 microbiota genera in breast tumor tissues that were
distinct from NAT tissues, of which Sphingobium, Anaerococcus, Corynebacterium, Delftia,
and Enhydrobacter were most significantly decreased in breast tumors compared to NAT
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tissues. Several microbial genera also significantly differed by clinicopathological factors
in Ethiopian women with BC. Specifically, genera Burkholderia, followed by Thermicanus,
Paracoccus, Mogibacterium, and Aeromonas, more strongly correlated with aggressive triple
negative (TNBC) and basal-like breast tumors compared to less aggressive luminal A,
luminal B, and HER2-E tumors. The genera Alkanindiges, Anoxybacillus, Leifsonia, and
Exiguobacterium most strongly correlated with HER2-E tumors. Luminal A and luminal B
tumors also correlated with Anoxybacillus but not as strongly as HER2-E tumors. A relative
higher abundance of the genus Citrobacter most significantly correlated with advanced-
stage breast tumors compared to early-stage tumors. This is the first study to report an
association between breast microbial dysbiosis and clinicopathological factors in Ethiopian
women.

4. Discussion

Women in Ethiopia, like women in other lower middle income countries (LMIC), have
poorer overall BC survival rates [46,47]. Stage at diagnosis as well as availability of optimal
care were among the factors associated with poor BC survival outcomes. Additionally, the
role of biological factors including the tumor microenvironment (TME) that includes the
microbiota have been shown to be associated with poor clinical outcomes [48].

BC is a leading cause of cancer morbidity among women of African ancestry. This is
further compounded by underrepresentation of women of African ancestry in BC research
studies. Therefore, we intended this study to generate evidence-based preliminary data to
profile the microbiome in breast tumor and normal adjacent tissues of the same donor and
to identify the association between differences in microbial composition and abundance
and clinicopathological factors in Ethiopian women with BC. To this end, we used fresh
frozen breast tumor and NAT tissues to profile microbial composition and abundance and
to determine their association with clinicopathological features observed in BC.

4.1. Findings of Studies on Breast Tissue Microbiome

In recent years, research findings have begun to reveal the potential role of mammary
microbiota in mediating BC development [49]. Current research findings indicate that
the microbiota among BC patients differs from that of healthy women [14]. Supporting
evidence reported a distinct mammary microbiota composition that also differed between
breast tumor and normal breast tissues [11]. Such evidence points to distinct microbial sig-
natures that might be related to cancer development and response to certain treatment [14].
However, the extent to which microbiota alterations (dysbiosis) contributes to BC devel-
opment is unclear. Although the discovery of microbiota differences in breast milk was
previously explored, recent works have begun to investigate the association between breast
tissue microbial dysbiosis with cancer. Accordingly, these efforts indicate that healthy breast
and BC tissues are composed of a unique microbiota in which the phylum Proteobacteria
predominated in healthy breast tissues, followed by Firmicutes [11,50].

In agreement with our study, previous studies demonstrated that the breast is charac-
terized by a high predominance of Proteobacteria, followed by the phyla Firmicutes and
Actinobacteria [11,49,50]. In another study, Proteobacteria were prominently identified
in the tumor tissues and conversely, in non-cancerous adjacent tissues, Actinobacteria
abundance was increased [51]. Furthermore, previous studies highlighted the difference in
breast microbial composition and abundance between normal adjacent and tumor tissues
and/or healthy controls [12,26]. These microbes thrive in a fatty-acid-rich environment
in the breast and are positively associated with adiposity [52]. Thus, it is not surprising
that these bacteria are abundant in the breast. At the family level, our findings are in
agreement with Klann et al., who also observed a higher relative abundance the family
Ruminococcaceae and the genus Akkermansia in breast tumor tissue as compared to normal
tissue and a lower relative abundance of Bacteroides and Sutterella in breast tumor compared
to normal tissue [53]. More recently, exciting research on the breast microbiome to identify
distinct microbial signatures considering different parameters, including race of patients
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with BC, tumor stage, and breast tumor subtype, was carried out [28]. In agreement with
our findings, it was observed that the phylum Proteobacteria was most abundant across
all tissues, followed by Firmicutes, Bacteroidetes, and Actinobacteria regardless of race,
and a higher abundance of the genus Ralstonia, which could explain in part a portion of
the BC racial disparities [28]. Considering the diverse population in the Ethiopian context,
conducting a study to profile microbiota and understanding its association with certain
prognostic features would be of paramount importance in cancer management.

In efforts towards understanding the role of microbiota in health and disease, until
now, it has remained elusive and/or unclear whether there is a difference in microbial
composition in breast tumors and paired NAT of the same individual with BC [11,13].
While comparing tumor tissue with NAT, the microbiota composition showed a distinct
bacterial profile, suggesting the oncogenic effect of specific bacterial taxa [50]. In terms
of relative distribution of microbiota, our sequencing data of NAT and tumor groups are
supported by another study where out of 11 differentially abundant operational taxonomic
units (OTUs), the majority of OTUs were abundant in paired normal tissue and close to one-
third of the OTUs were abundant in tumor tissue. The bacterium Sphingomonas yanoikuyae
was enriched in paired normal tissue, similar to our findings, whereas the bacterium
Methylobacterium radiotolerans was most significantly enriched and prevalent in paired in
tumor tissue [13]. Microbial differences in paired breast tissues (tumor versus NAT) have
also been identified in women from different geographical locations, which suggests that
environment or lifestyle factors might impact the relative abundance of certain microbes in
the breast microenvironment [11,54].

Generally, the breast TME is composed of a variety of cell types and microbiota.
Studies suggest that pathophysiological changes occurring within the breast cells could
have a significant impact on tumor growth [51]. Additionally, it has been discovered that
certain microbial species identified in the human breast are potent agents that have the
potential to trigger DNA damage, genomic instability, and alterations of molecular events
in the form of mutations and epigenetic modifications [55]. For instance, functional in vitro
studies revealed that Escherichia coli and Staphylococcus epidermidis isolated from BC patients
trigger DNA double-stranded breaks in HeLa cells [22]. Therefore, microbial communities
within a host could be considered an additional environmental factor that may contribute
to or be influenced by carcinogenesis [56]. Considering that the data in this regard are in
their infancy, precautions are required while inferring the significance of microbiota in the
initiation, progression, and prediction of therapeutic responses among patients with BC.

4.2. Findings Associated with Clinical and Histopathological Features

In agreement with our findings, other studies reported a correlation between spe-
cific breast microbial taxa and certain prognostic features such as stage [12], receptor
status [26,57,58], and lymphovascular invasion [26]. In our study, we found specific genera
that were strongly associated with different intrinsic subtypes and by stage of disease.
Specifically, we observed that the genus Burkholderia most strongly correlated with ag-
gressive triple negative (TNBC) and basal-like breast tumors compared to less aggressive
luminal A, luminal B, and HER2-E tumors. In support of our findings, a recent insightful
study by Hoskinson et al. noted that a higher abundance of several microbial families,
including Burkholderiaceae, was associated with early BC development when analyzing
normal breast tissue compared to tissues donated prior to and after BC diagnosis [59].
These findings suggest that microbes in the genus Burkholderia may play an oncogenic role
in the development of aggressive BCs, such as TNBC and basal-like tumors. In addition, we
observed that several genera, including Alkanindiges, Anoxybacillus, Leifsonia, and Exiguobac-
terium most strongly correlated with HER2-E tumors. Luminal A and luminal B tumors
weakly correlated with Alkanindiges and Anoxybacillus. Interestingly, Modica and colleagues
reported that lymphovascular invasion correlated negatively with Alkanindiges in HER2-E
tumors, which could explain the weak association between less aggressive luminal A and
luminal B tumors in our study [60]. On the other hand, Alkanindiges was correlated with
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invasive ductal carcinomas [61]. Furthermore, we observed a relative higher abundance
of the genus Citrobacter most significantly correlated with advanced-stage breast tumors
compared to early-stage tumors. A supporting study by Yang et al. reported that women
with malignant BC exhibited enriched levels of Citrobacter in their gut compared to those
with benign tumors where Citrobacter was further associated with elevated glycan and
lipopolysaccharide biosynthesis [62].

With a comparatively large sample size aimed at identifying bacterial genera with sta-
tistically different abundances, another study identified Porphyromonas, Lacibacter, Ezakiella,
and Fusobacterium as being more abundant in higher-stage compared with lower-stage
tumors [61]. These findings highlight the complex nature of the microbiome and tumor
interactions in the breast. Although we did not observe the distribution across tumor grade,
in a separate study, multiple genera were significantly associated with histologic grade,
with a number of genera present only in grade 1 tumors [61]. However, additional studies
using a larger sample size and comparable numbers of different groups of BCs are needed
to confirm these associations. Collectively, most findings consistent with our study revealed
that the breast houses a unique microbiota that can be distinguished based upon hormone
receptor status, molecular subtype, and stage of disease [11,13,50,51].

4.3. Problems with Breast Microbiome Studies

Normally, a wide range of research findings employ various platforms to investigate
breast tissue microbial profiles. Consequently, comparing and interpretating findings from
different studies can be challenging due to differences in sample retrieval, processing,
and methods employed to prevent bacterial contamination. According to recent evidence,
microbiota of BC tissues are quite different from microbiota in breast tissues of women
without BC [26]. Though various studies have indicated that breast microbiota might play
a role in mediating breast carcinogenesis [11,22,63,64], scientists are posing questions about
how the microbiome might play a role in modulating the risk of BC development. The
hypothesis is that changes in the composition of breast microbiota may also contribute
to disease development and progression through several pathways, but it is still unclear
whether the host´s microbial differences are a consequence or a cause of this human disease.
This distinct phenomenon could be explained and/or interpreted in two ways: (1) alteration
in microbiota profiles and/or dysbiosis comes first in the course of the carcinogenic process
and can establish a microenvironment predisposed to cancer or (2) there is no correlation
between the two events. However, knowledge of the microbiota of BC patients remains
in its infancy. Given this context, additional studies have to be carried out to broaden
knowledge on this topic and to understand which of the two possibilities occurs in patients
with BC.

Considering the observed methodological differences in breast microbiome studies,
including sample size, sample type, employed amplicon amplification technique, DNA
extraction method utilized, sequencing approach, and potentially other factors, appreciating
the precise difference in the composition and abundance of microbiota within a group of
variables could be challenging in interpreting conclusions. However, in support of our
findings, the literature indicates that differences in community composition across data
sets can be attributed to ethnicity, dietary habits, geography, lactation status, method of
sample collection, and platform of sequencing and data analysis [65].

In addition to the contradicting scenarios referring to the role of microbiota as either a
cause or effect of cancer, the differences in sample collection and processing, methodologi-
cal differences in sequencing, and variations in recruited patient groups, along with the
distinct clinical and histopathological parameters, underrepresentation of some geographi-
cal regions, and patient-oriented studies only with few inconsistent and/or contradicting
in vitro results, could ultimately make the generalization of the role of microbiota in health
and disease difficult in a broader context. Therefore, further studies addressing all of the
noted pitfalls are necessary, particularly in developing countries including Ethiopia to
improve BC care.
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4.4. Why Shannon Diversity Was Not Different between NAT and Tumor Tissues

In this study, Shannon diversity or richness of microbial taxa was not found to be sig-
nificantly different between NAT and tumor tissues; however, microbial evenness defined
by Simpson’s index was slightly significant between the two groups. In support of our
study, a previous study showed that adjacent normal paired breast tissue had a higher mi-
crobial diversity and richness than normal and tumor tissues [12]. Additionally, a previous
study revealed that alpha diversity was significantly higher in normal compared to tumor
samples where in unweighted UniFrac measures, breast tumor samples clustered distinctly
from normal samples (R2 = 0.130; p = 0.01) [53]. One study from Ghana revealed that alpha
diversity was strongly and inversely associated with BC by tumor stage and molecular
subtype [66]. In other studies, it was shown that BC patients had statistically significantly
altered microbiota composition (beta diversity) and lower alpha diversity compared with
healthy patients [59] or breast tissues [12,67], whereas another study reported that there
was no difference in bacterial communities between tumor tissue and NAT [22], which may
be explained by sample retrieval approaches [26,50]. Since we did not include breast tissue
from women without BC, such a discrepancy in the relative alpha diversity between normal
tissue and tumor samples is anticipated. Such a scenario will strengthen a well-articulated
future study that includes diverse samples and specific patient groups.

4.5. Limitation of Our Study

Our findings have paved a way to understanding the composition of breast micro-
biota in Ethiopian BC patients. Despite the plethora of microbiome studies in developed
countries, it has been shown that African populations are under-represented, and there is
an acute demand for studies related to the microbiome among African populations [68].
Therefore, taking into account context-specific factors and considerable limited evidence,
microbiome studies must be replicated in Africa to extend our understanding of BC and
to identify potential biomarkers used for prognosis and predicting therapeutic response.
We believe that having a larger sample size consisting of fresh frozen breast tissues from
healthy controls (without BC) and BC patients with benign and malignant tumors might
assist in drawing conclusions as to whether with microbial differences are a consequence
or a cause of BC. Additional patient information on lifestyle factors, such as diet and envi-
ronmental exposures, are also critical components for understanding the role of microbial
dysbiosis on the breast microenvironment.

5. Conclusions

In summary, the current study, which utilized fresh frozen breast tumor tissues and
NAT from the same women, reported for the first time a unique microbial signature that
correlates with prognostic features, including stage, IHC status, and PAM50 intrinsic sub-
types, among Ethiopian women with BC. We identified 14 microbiota genera in breast
tumor tissues that were distinct from NAT tissues. Burkholderia most strongly correlated
with aggressive triple negative (TNBC) and basal-like breast tumors, whereas Alkanindiges,
Anoxybacillus, Leifsonia, and Exiguobacterium most strongly correlated with HER2-E tumors.
Luminal A and luminal B tumors also correlated with Anoxybacillus but not as strongly as
HER2-E tumors. A relatively higher abundance of the genus Citrobacter most significantly
correlated with advanced-stage breast tumors compared to early-stage tumors. This is the
first study to report an association between breast microbial dysbiosis and clinicopathologi-
cal factors in Ethiopian women. Our findings encourage further precise characterization of
local microbes in BC patients in Ethiopia for drug discovery and targeted microbial-based
therapeutics, thus improving the prognosis and quality of life of BC patients. A future
epidemiological study taking into account sample size, more controlled environmental
conditions, high throughput metagenomics, and follow-up data is essential to strengthen
conclusions related to clinical outcomes.
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from human breast tissue samples. (A) Rarefaction curve relating the number of sequencing reads
compared to the number of amplicon sequence variants (ASVs). (B) Rarefaction curve relating the
number of ASVs compared to the number of microbial genera. Figure S2: Bar plots illustrating
the relative abundances of microbiota that differ between NAT and breast tumor tissues by (A)
phylum, (B) class, and (C) family taxonomic levels. The unfilled portions of the bar plots represent
lower-abundance taxa; Table S1: Significant genera by paired Wilcoxon signed-rank test in paired
tumor relative to normal adjacent tissues; Table S2: Significant genera in tumors according to IHC
status (linear model); Table S3: Significant genera in tumors according to PAM50 (linear model); Table
S4: Significant genera that differ between advanced vs. early-stage tumors.
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