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Simple Summary: Brain tumors are difficult to treat, and surgeons need the best tools to safely
remove them. This review looks at the various technologies that help surgeons see tumors more
clearly during surgery. These technologies range from special microscopes and exoscopes to advanced
imaging like handheld molecular diagnostic tools. While these tools have made surgery safer and
more effective, they are not without challenges, such as complex usage and interpretation. Our aim
is to present an overview of these technologies, discuss their pros and cons, and look at the future,
where artificial intelligence and virtual reality could make these surgeries even more precise. This
research could guide future innovations that improve patient outcomes.

Abstract: Advancements in intraoperative visualization and imaging techniques are increasingly
central to the success and safety of brain tumor surgery, leading to transformative improvements in
patient outcomes. This comprehensive review intricately describes the evolution of conventional and
emerging technologies for intraoperative imaging, encompassing the surgical microscope, exoscope,
Raman spectroscopy, confocal microscopy, fluorescence-guided surgery, intraoperative ultrasound,
magnetic resonance imaging, and computed tomography. We detail how each of these imaging
modalities contributes uniquely to the precision, safety, and efficacy of neurosurgical procedures. De-
spite their substantial benefits, these technologies share common challenges, including difficulties in
image interpretation and steep learning curves. Looking forward, innovations in this field are poised
to incorporate artificial intelligence, integrated multimodal imaging approaches, and augmented
and virtual reality technologies. This rapidly evolving landscape represents fertile ground for future
research and technological development, aiming to further elevate surgical precision, safety, and,
most critically, patient outcomes in the management of brain tumors.

Keywords: intraoperative imaging; brain tumor surgery; advanced visualization techniques

1. Introduction

Brain tumor imaging has been a longstanding area of multidisciplinary interest due to
the unique demands and complexities of managing this patient population [1,2]. While
diagnostic imaging techniques for brain tumors are relatively well characterized, real-time
intraoperative imaging remains an area of active need and interest; this is particularly
relevant in gliomas and other intra-axial tumors in which safe, maximal resection remains
a mainstay of treatment [2–4].

Surgical resection relies heavily on the surgeon’s ability to delineate the tumor from
the surrounding normal parenchyma to achieve maximal safe resection [5,6]. Such precision
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hinges on effective intraoperative imaging which provides real-time guidance during resec-
tion and helps to confirm whether the desired extent of resection has been achieved [5,7].
This need is underscored by a robust body of evidence describing the relationship be-
tween the extent of resection and patient outcomes, including progression-free and overall
survival, particularly in surgery for gliomas [6,8–11].

To date, conventional intraoperative imaging modalities such as intraoperative ultra-
sound (iUS), magnetic resonance imaging (iMRI), and computed tomography (iCT) have
played a significant role in guiding brain tumor resection [1,5]. Recent advancements in
the capabilities of nanomaterials have shown promise in both T1-MRI and photodynamic
therapy [12,13]. Cellular/subcellular imaging techniques like Raman-based spectroscopy
provide excellent diagnostic capabilities, but are often too focused to evaluate the complete-
ness of resection comprehensively. On the other hand, supracellular imaging modalities like
iCT, iMRI, and iUS offer a more expansive view essential for assessing resection boundaries,
but may lack the diagnostic specificity offered by cellular/subcellular imaging [5,14,15].
Recent advancements in optical imaging techniques may provide exciting new avenues
for intraoperative visualization; these include exoscope-based visualization, fluorescence-
guided surgery (FGS), confocal imaging, and Raman-based technologies [4,7,16,17]. An
integrative approach may involve the combination of cellular/subcellular imaging for
diagnostic specificity with supracellular imaging techniques for a broader assessment of
resection. This combination could potentially enhance the precision and effectiveness of
brain tumor surgeries. These technologies are a promising addition to the surgical arma-
mentarium in the era of molecularly informed precision medicine for brain tumor patients.

This review aims to comprehensively explore FDA-approved or clinically accepted
optical imaging techniques, focusing on their strengths, limitations, and potential appli-
cations in brain tumor surgery. We have intentionally limited the scope of our review to
technologies that are currently available for clinical use, thereby excluding experimental
and preclinical studies. We describe the operational principles of these modalities, their
unique attributes, and challenges they address in the surgical setting. We also discuss
future directions and innovations in this rapidly evolving field.

2. Optical Visualization Techniques for Brain Tumor Resection
2.1. A Historical Lens on the Evolution of Optical Neurosurgical Oncology

The development of the operating microscope and subsequent evolution of microsur-
gical techniques is a journey that spans centuries, characterized by human ingenuity and
punctuated by scientific breakthroughs (Figure 1) [18]. Initial strides in these technologies
occurred in the 19th century, when individuals such as Chester More Hall and Joseph
Jackson Lister sought to correct optical aberrations, which improved image clarity and
magnification [18,19]. Carl Friedrich Zeiss began to specialize in microscope manufacturing
during the mid-19th century and, together with Ernst Carl Abbe, they contributed to the
standardization and production of high-quality microscopes [18,20].

By the 20th century, the microscope had become an integral component of many
surgical procedures, demonstrated first by Carl Olof Nylén, who utilized a monocular
microscope for labyrinthine fistula surgery in 1921 [21]. In 1938, a heavy tripod with
counterweights was introduced, which improved stability during high magnification [18].
In the late 1940s, the binocular surgical microscope was introduced by Richard A. Per-
ritt; this binocular technology allowed surgeons to have enhanced depth perception and
adjustable magnification [18,19,22]. In 1952, Hans Littmann developed the Zeiss-Opton
microscope, which could change magnification without altering the focal length. By 1953,
the “Zeiss OPMI 1” operating microscope was manufactured, which offered enhanced
stability, user-friendly operation, and improved coaxial lighting [19,22,23]. This period
marks the integration of microscopes in neurosurgery, first by Theodore Kurze in Los
Angeles, with adaptations for ophthalmological surgery by Heinrich Harms, Günter Mack-
ensen, and Jose Ignacio Barraquer [18,19,23]. As Kurze advanced his work, Raymond M. P.
Donaghy simultaneously began enhancing the operating microscope on the opposite coast
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in Vermont [24]. Additional innovations introduced in 1956, such as axial illumination and
foot-operated controls, were complemented by the introduction of a mouth switch, which
collectively facilitated the ease of microscope use in surgery [19,23]. These advancements
led to an increase in the use and development of operative optical devices for various
surgical procedures, including craniotomies and brain tumors resections.
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2.2. Conventional Operating Microscope

Brain tumor resection is a delicate and challenging surgical procedure that demands
optimal visualization and precision [9,21,22]. The operating microscope found its way into
the neurosurgical operating room in 1957, where Theodore Kurze utilized it to resect a
schwannoma from a young patient at the University of Southern California in Los Angeles
(Figure 1) [19]. Following this success, neurosurgeons worldwide quickly recognized the
microscope’s potential and started implementing and refining its use during brain tumor
resections [18,25].

The integration of the operating microscope into neurosurgical practice resulted in
unprecedented high-definition visualization and magnification of the surgical field, which
facilitated the differentiation between normal and abnormal tissue (Table 1) [26]. This accu-
rate delineation is of utmost importance, as it enables the surgeon to perform maximal safe
resection while preserving vital structures, therefore reducing postoperative neurological
deficits and morbidity [11,27–29]. Studies have consistently demonstrated that a greater
extent of resection translates into longer progression-free survival and overall survival in
patients with malignant brain tumors, particularly gliomas [5,9,11,27–30].

Table 1. A Summary of the Intraoperative Imaging Modalities Used for Brain Tumor Resection.

Modality Concept Description Advantages Limitations

Intraoperative Ultrasound
(iUS)

Utilizes high-frequency sound
waves to create images of the
brain during surgery

Provides dynamic feedback;
enhances tumor localization

Limited by operator
experience; may not be
effective for all tumor types

Intraoperative Magnetic
Resonance Imaging (iMRI)

Utilizes magnetic fields and
radio waves to create detailed
images of the brain during
surgery

High-resolution imaging;
detect brain shift

Requires significant
infrastructure; may prolong
surgery time

Intraoperative Computed
Tomography (iCT)

Utilizes X-ray technology to
create cross-sectional images
of the brain during surgery

Rapid image acquisition;
Seamless incorporation into
surgery

Exposure to ionizing
radiation; lower soft tissue
contrast compared to MRI

Surgical Microscope

An optical instrument with
high magnification used
during brain tumor surgery
for precise visualization

High-definition visualization;
differentiation between
healthy tissue and tumor;
facilitates maximal safe
resection; can record surgical
procedures in high-definition

Restricted field of view;
limited maneuverability due
to bulk and weight; operator
fatigue due to ergonomics

Exoscope
A high-definition camera that
offers a panoramic view of the
surgical area

Improved magnification and
illumination; better depth of
field; enhances ergonomics for
surgeons

Potential learning curve for
new users; cost of integration
into the surgical workflow

Fluorescence-Guided Surgery
(FGS)

Utilizes fluorescent agents to
delineate tumor tissue during
surgery, providing real-time
intraoperative tumor
visualization

Real-time visualization;
facilitates maximal safe tumor
resection

Limited by the availability of
fluorescent agents; may not be
effective for all tumor types

Raman Spectroscopy

Uses monochromatic light for
real-time, high-resolution
biochemical tissue analysis at
molecular level

Distinguishes tumor cells
from healthy brain tissue with
high accuracy; objective and
automated feedback

Weak signal intensity;
challenges in data acquisition
and processing times for
real-time applicability
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Table 1. Cont.

Modality Concept Description Advantages Limitations

Confocal Microscopy
Uses spatial filters for
high-contrast, micron-scale
resolution imaging

High-contrast and detailed
images; visualization of
structures in
three-dimensional volume;
employs detection of
fluorescence markers for
tumor visualization

Motion artifacts due to slow
frame rates; relies on specific
agents; lacks adjustable
imaging depth

Key advancements include the adaptation of beam splitter technology, the addition
of surgeon armrests and patient headrests, and the development of counterweights to
balance the operating microscope [18,19,31]. The operating microscope has paved the way
for various complementary technologies such as the use of fluorescence-guided surgery,
facilitated by modules such as the FL-400 and FL-800 [18]. Furthermore, the ability to
record surgical procedures in high-definition quality offers a valuable tool for teaching,
consultation, self-improvement, and future research, ultimately contributing to continual
enhancements in tumor resection strategies [18].

Despite the numerous advancements and the clear benefits, the use of the operating
microscope in brain tumor resection is not without challenges [32]. One main limitation is
the restricted field of view, which can pose difficulties when operating on lesions located in
complex anatomical regions or deep within the brain tissue [26,33,34]. Additionally, despite
counterweight systems and electromagnetic brakes, the bulk and weight of operating
microscopes can still limit maneuverability, particularly in long procedures [7,34,35]. The
eyepiece-based viewing system, while offering excellent visualization, has limited mag-
nification and illumination and may lead to operator fatigue over time [18]. Ergonomics
are another significant consideration, including the need for challenging neck and back
positioning that can impact surgeon fatigue during longer surgeries; recent work has
also elucidated the ramifications of intraoperative ergonomics on surgeon health and ca-
reer longevity. These challenges set the stage for the development of newer technologies
discussed in subsequent sections.

2.3. Exoscope

Within the ever-evolving domain of neurosurgical optics, the exoscope has emerged as
an exciting improvement upon the conventional operating microscope (Figure 1;
Table 1) [17]. Its operating principle involves the use of a camera system positioned
alongside the surgeon that provides two- or three-dimensional, high-resolution imaging
on a heads-up display monitor placed in front of the surgeon (Figure 2) [4,36–39]. The
exoscope may offer improvements in visual acuity and operative workflow compared to
traditional binocular surgical microscopes due to greater magnification, illumination, and
depth of field perception [40–42].

A recent systematic review compared the exoscope to the traditional operating micro-
scope and explored their applications to neurosurgery; across all papers, the exoscope’s
video image quality, three-dimensional visualization, and surgical field illuminated were
found to be comparable or even superior to those provided by the microscope [17]. The
exoscope was found to nicely facilitate the visualization of critical neurovascular structures,
cerebral parenchyma vs. tumor, and operative instruments across both superficial and deep
operative fields [40–42]. Neuro-oncology has been a key application of the exoscope at
leading centers [33,37,43].

The exoscope has also provide significant improvements in surgeon ergonomics by
promoting a more relaxed posture and alleviating the physical strain associated with the
use of conventional operating microscopes [33,44]. This is particularly true when two
surgeons are performing microsurgery together; while this is often a cumbersome exercise
with the conventional operating microscope, it is far more natural with the exoscope.
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tumor resection.

Recent exoscopes incorporate features such as light filters for 5-aminolevulinic acid
(5-ALA), fluorescein, indocyanine green (ICG) video-angiography, and adjustable operative
settings [4,40,45]. A recent study found that the exoscope provided superior visualization
under blue light and required fewer switches between blue and white light (median = 10),
thereby enhancing the surgical process compared to the traditional operating microscope
(median = 14) [40]. This amalgamation of functionalities bolsters surgical precision and
safety, while the capacity for collective visualization encourages improved intraoperative
communication and surgical workflow. However, their practical effectiveness needs more
systematic and comprehensive assessment.

Several studies examined the extent of resection attained while using the exoscope and
have shown an average extent of resection of up to 95% and a rate of complete resection
ranging from 65% to 80% for various brain tumor types [37,46–49]. However, it is essential
to consider that these figures may vary, and more expansive, rigorously designed studies
are needed to assess the exoscope’s true impact on the extent of resection, along with other
important aspects such as, safety, ease of use, postoperative complications, patient survival,
and surgeon comfort.

Despite these advantages, several drawbacks have been reported. Transitioning from
direct visualization to monitor-based viewing with the exoscope presents a learning curve
for surgeons accustomed to traditional microscopes [36,50]. A recent systematic review
conducted by Montemurro et al. examined 21 clinical series involving a total of 891 pa-
tients [17]. Among these cases, 5.8% (52 instances) opted to transition from using the
exoscope to a traditional operating microscope during surgery due to the steep learning
curve associated with exoscope technology. Financial constraints are also a significant limi-
tation to the widespread adoption of the exoscope [51]. The acquisition and maintenance
costs associated with exoscope technology are substantial and may not be feasible for all
healthcare settings, especially where a microscope is already available.

The exoscope holds significant promise for further development. It is speculated that
future versions might incorporate artificial intelligence and machine learning algorithms
for automated delineation of tumor boundaries and critical neurovascular structures, which
could facilitate improved surgical safety and efficiency [52]. In sum the exoscope represents
a notable development in neurosurgical procedures with significant implications for neuro-
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oncology; it promises to be an area of significant ongoing research and development in the
years ahead [33].

2.4. Fluorescence-Guided Neurosurgery

Fluorescence-guided surgery (FGS) is an exciting innovation in neuro-oncology that
facilitates augmented visualization of brain tumor tissue by inducing selective fluorescence
in tumor cells [4]. FGS has been seamlessly integrated into existing optical modalities,
including loupes, microscopes, and exoscopes (Table 1) [8,53].

Prominent compounds used in FGS include 5-ALA, fluorescein sodium (FS), and
indocyanine green (ICG), all of which have demonstrated efficacy in delineating malignant
tissue from healthy brain parenchyma. 5-ALA is a pro-drug that accumulates in tumor cells
and is converted to fluorescent metabolite protoporphyrin IX (PpIX), which emits violet-
red fluorescence under blue light, enabling the surgeon to visually distinguish malignant
tissue [54]. The uptake of 5-ALA by the tumor microenvironment permits high diagnostic
accuracy, sensitivity, and specificity, of high-grade gliomas (HGGs). FS, a fluorescent dye, is
used extensively in ophthalmology and recently has gained significance in neuro-oncologic
surgery [55,56]. Utilized for tumor visualization, FS accumulates in extracellular spaces
where the blood–brain barrier (BBB) is disrupted [57]. With excitation at 460–500 nm, it
emits green fluorescence at 540–690 nm [58]. Administered during anesthesia, FS aids
in differentiating tumor tissue and is visible up to 4 h after administration [56]. Though
effective, with sensitivities of 82–94% and specificities of 90–91% for HGG visualization,
FS is not limited only to tumor tissue [55–58]. Dual labeling with 5-ALA may improve
visualization, and further research is essential for optimal dosage and administration tim-
ing [56,59,60]. ICG is a compound that has traditionally been used for intraoperative video
angiography for cerebrovascular surgery and has recently been described for intraoperative
visualization of brain tumors [61,62]. ICG relies on the disrupted BBB for accumulation
in brain tumors and is administered systemically over 24 h prior to surgery [63]. ICG
emits fluorescence in the near-infrared range and is visualized with modified visualization
devices. A recent study found that the second window ICG technique demonstrates highly
sensitive detection of HGG tissue in real time [64]. They found that near-infrared imaging
demonstrated a 91% correlation with gadolinium enhancement in post-surgical MRI scans,
detecting residual enhancements as minute as 0.3 cm3, while a lack of near-infrared signals
post-surgery was strongly linked to complete tumor removal, as confirmed by subsequent
MRI (p < 0.0001).

The first and only randomized study of FGS demonstrated increased extent of tumor
resection and improved progression-free survival rates [8]. New targeted fluorophores can
bind to tumor-specific markers such as the epidermal growth factor receptor (EGFR) and
other peptides [65–68]. 5-ALA has been the most exhaustively studied FGS agent for HGGs
and most recently meningiomas due to its robust red fluorescence in the tumor bulk and
predictive value for delineating tumor tissue versus surrounding brain parenchyma [69,70].
5-ALA is the only FDA-approved agent for use during glioma surgery [71]. Correlations
have also been observed between fluorescence intensity and histological grading, suggest-
ing an ability to approximate tumor grade by fluorescent signal [6,54,69,70]. Despite its
promising advantages, the use of 5-ALA comes with certain drawbacks. These include
complications like photosensitivity [72]. Additionally, 5-ALA is costly and demands the use
of specialized surgical visualization systems for conducting fluorescence-guided surgery
(FGS) [73].

The integration of FGS into surgical loupes, microscopes, and exoscopes presents
a synergistic advantage [45,74–76]. Recent exoscopes, equipped with light filters for 5-
ALA, fluorescein, and ICG, enhance the visualization of HGGs, thereby contributing to
safer and more efficient surgical procedures [40,77]. Simultaneously, the utilization of
FGS within microscopes and exoscopes also yields improved resection results and patient
outcomes [45,74]. Nevertheless, there are potential challenges to overcome. In addition to its
restricted utility in low-grade gliomas and the low sensitivity and specificity for infiltrating
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tumor cells, the fluorescence intensity varies, requiring a careful interpretation of visual
cues [78]. The process demands proficiency and experience to accurately distinguish
between fluorescing tumor tissue and non-tumorous tissue [53,74,78].

New methods of FGS are now being studied that may permit more effective de-
lineation of tumor tissue from the surrounding parenchyma [79]. Fluorescence lifetime
imaging (FLIM) utilizes time-gated intensified cameras to visualize nicotinamide adenine
dinucleotide (NADH, which is more highly expressed in tumor cells relative to normal
brain tissue) and/or 5-ALA induced PpIX [79,80]. FLIM has showcased its potential to
highlight areas of subtle 5-ALA fluorescence and to increase the ability to differentiate
tumor cells from normal brain tissue when used to detect NADH in addition to PpIX [79].

Integrating fluorescence endoscopy into the spectrum of FGS offers notable benefits,
especially in tackling deep-seated and elusive brain tumors. Tamura et al. [81] have re-
ported enhanced PpIX visualization for biopsies, with a custom endoscope later employed
by Potapov et al. [82]. For a comprehensive, less invasive postsurgical cavity inspection in
GBM surgery. A scanning fiber endoscope identified sub-threshold PpIX fluorescence near
infiltrative glioma margins, expanding upon standard wide-field operating microscope ca-
pabilities [83]. This compact, high-resolution technology promises more precision-oriented
and safer neurosurgical approaches.

3. Intraoperative Handheld Visualization and Diagnostic Techniques
3.1. Raman Spectroscopy

Raman spectroscopy (RS) is a newer, innovative analytical technique that is rapidly
gaining traction in neurosurgical oncology (Table 1) [15,84,85]. RS works by shining a
monochromatic light, usually from a laser, onto a sample and measuring the scattering of
light as it interacts with the molecules in the sample [15,84]. The scattered light undergoes
a shift in energy levels, which is unique to the molecular composition and structure of the
sample. This results in a spectrum that can be analyzed to provide detailed information
about the chemical composition of the tissue.

The unique strength of RS lies in its ability to deliver real-time, high-resolution, and
nondestructive biochemical analyses of tissues at a molecular level, thereby distinguishing
tumor cells from healthy brain tissue with remarkable accuracy [15]. This characteristic is of
utmost importance in glioma surgery, where differentiating neoplastic from healthy tissue is
critical yet challenging [15]. Additionally, RS offers the potential for an objective, automated,
and real-time feedback system, reducing the dependence on the surgeon’s subjective visual
interpretation during intraoperative decision-making [86]. Recent iterations of RS have
demonstrated remarkable sensitivity and specificity, which can meaningfully improve
intraoperative decision-making based on rapid pathological interpretation and real-time
analysis [86–88].

RS has rapidly translated from the research to the clinical setting. The work by Jermyn
et al. was a seminal breakthrough, bringing a hand-held RS probe into the operating
room with striking outcomes—achievements that have since been commercialized [89].
The reported 93% sensitivity and 91% specificity illustrate the potential for widespread
clinical adoption. This success has been echoed in other innovative applications, such
as an imaging needle for intraoperative blood vessel detection and a dual-modal system
combining surface enhanced Raman scattering (SERS), which involves the amplification
of Raman signals using metal nanoparticles, and optoacoustic tomography, which uses
the generation of ultrasound waves through light absorption to create detailed images, for
tumor delineation [85,90–92]. Coherent anti-Stokes Raman scattering (CARS), a nonlinear
technique sensitive to molecular vibrations, has also shown promising results, particularly
in distinguishing healthy cells from cancerous ones [93]. This is achieved by using two laser
beams—pump and Stokes beams—that are tuned to match the energy difference between
the ground and excited vibrational states of the target molecules. The development of
this technique has been further enhanced by the inclusion of stimulated Raman Scattering
(SRS) [94,95]. SRS is another advanced spectroscopic method, which also uses two laser
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beams but in a slightly different manner to generate a signal that is directly proportional
to the concentration of the target molecules. This advanced spectroscopic method has
demonstrated its capability to emulate the conventional hematoxylin and eosin (H&E)
staining technique with a diagnostic accuracy exceeding 92%. Such advancements con-
tribute an additional layer of diagnostic proficiency to optical technologies. Recent studies
have highlighted the ability of SERS in differentiating tumor types, while SRS has been
shown to effectively identify human brain tumor infiltration [86,96]. Desroches et al. [97]
provided another leap forward by developing a core needle biopsy probe incorporated
with a navigation-guided fiber optic Raman probe, enhancing in situ surgical capabilities.
Their handheld spectroscopy system demonstrated robust sensitivity and specificity rates
of 80% and 90%, respectively, for the intraoperative detection of malignancies. Concurrent
advancements in data analysis machine learning (ML) methods, such as principal com-
ponent analysis, classical least square fitting, partial least square, and linear discriminant
analysis, continue to expand the possibilities of Raman-based techniques in brain tumor
surgery [86,98,99].

Despite the promising advances in RS in brain tumor surgery, significant challenges
linger, constraining its clinical integration. Raman techniques frequently suffer from weak
signal intensity, requiring considerable effort to enhance the signal-to-noise ratio [86,100].
Data acquisition and processing times can complicate their real-time applicability in clin-
ical settings [101]. However, semiautomated methods are currently in development to
streamline RS measurements for the detection of brain tumors in real-time during surgery.

3.2. Confocal Microscopy

Confocal microscopy (CM) is another advanced optical imaging tool that has handheld
applications with a foot switch and plays a pivotal role in enhancing the precision of brain
tumor resections (Table 1) [54,102]. CM functions by employing spatial filters, such as
pinholes and slits, to effectively eliminate out-of-focus and multiply scattered background
light, thereby enabling optical sectioning microscopy [103]. Consequently, it can generate
high-contrast images and offer micron-scale spatial resolution, reaching up to approxi-
mately 100 µm imaging depth within tissue, allowing for the visualization of structures
in three-dimensional volume [104,105]. Notably, these features contribute to the efficacy
of CM in distinguishing between healthy and cancerous brain tissues [104]. Additionally,
the technique capitalizes on the detection of fluorescence markers, like PpIX, for accurate
visualization and delineation of low-grade gliomas [105].

Confocal laser endomicroscopy (CLE) is a type of CM that has recently demonstrated
promising advancements in intraoperative brain tumor surgery with handheld applications.
Höhne et al. implemented CLE in surgical protocols, administering 5 mg/kg of sodium
fluorescein (SF) to a cohort of 12 patients [106]. They found the procedure beneficial
in providing high-quality visualization of fine structures and for presenting concealed
anatomical detail, indicating SF’s potential as a reliable contrast agent. Moreover, in 2022,
Abramov et al. explored CLE’s in vivo feasibility for brain tumor surgeries, reporting high
diagnostic accuracy and quick image acquisition [107].

Despite its potential, CM in brain tumor surgery is challenged by several issues. Com-
mercial intraoperative confocal microscopes currently rely on fluorescein for visualization
of tumor tissues and are not fully optimized for PpIX fluorescence visualization. Tradi-
tional single-axis probes often suffer from motion artifacts due to slow frame rates [108,109].
Current visualization of tissues is based on black and white imaging and these devices also
lack adjustable imaging depth. Thus, while promising, CM requires further refinement for
improved clinical efficacy [110].

4. Conventional Imaging Techniques for Intraoperative Tumor Resection

Traditional imaging technologies such as iUS, iMRI, and iCT have greatly enhanced
suprasellar imaging visualization and the extent of tumor resection while also helping
navigate complex anatomical changes (Table 1) [1,5]. An optimal approach may involve
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the integration of cellular/subcellular imaging for diagnostic specificity with supracellular
imaging techniques for broader resection evaluation. This could potentially increase the
precision and effectiveness of brain tumor surgeries.

Since its introduction in the 1980s, iCT has witnessed significant improvements in
overcoming initial challenges of image quality and equipment-related artifacts [111–113].
Although not used as commonly, it offers rapid image acquisition, cost efficiency, and better
workflow compatibility [2]. iCT’s capability to capture images while the patient’s head
is secured in a head clamp is an undeniable asset. This feature facilitates updating the
neuronavigation system to account for brain shift and allows for vascular imaging [111].
The technological evolution has spurred the creation of automated registration techniques,
thereby reducing the average target registration error to less than 1 mm [114].

iUS uses the principle of piezoelectricity to generate real-time images of brain struc-
tures [115]. Presenting as the most cost-effective intraoperative imaging, iUS provides
immediate feedback, facilitating tumor boundary localization and brain anatomy changes,
thus enhancing tumor resection precision [3,116]. However, the complex echo patterns
and low image quality require advanced interpretation and operational skills [117,118].
Newer technologies such as Doppler ultrasonography, contrast-enhanced iUS (CEUS), and
elastography have improved visualization and tumor boundary delineation, brain tumor
vascularization assessment, and tumor grade differentiation [119–121].

iMRI is a new adaptation of an existing diagnostic technology, offering superior
resolution and tissue differentiation capabilities while providing a better extent of resection
compared to other modalities [117,118]. Similar to iUS, iMRI counters the ‘brain shift’
phenomenon during surgery, crucial in maintaining stereotactic navigation accuracy and
maximizing tumor extent of resection [6,122–125]. However, widespread adoption of iMRI
is still limited due to its clinical criteria, high costs, length of acquisition, and operating
room infrastructure logistic needs [30,124]. Future directions in iMRI aim to focus on
enhancing image quality, workflow efficiency, and cost-effectiveness with low-field units
while also integrating other imaging modalities [117,118]. However, a recent study by
Roder et al. [126] compared iMRI and 5-ALA in glioblastoma surgery. The study found
that both iMRI and 5-ALA were comparable in achieving complete resections, defined as
residual tumors ≤ 0.175 cm3 (81% for iMRI vs. 78% for 5-ALA; p = 0.79).

The landscape of intraoperative imaging is constantly evolving, fueled by converging
technological forces that are revolutionizing neurosurgical procedures [18,33,63]. This
transformation in neurosurgical imaging is being driven by three key developments: the
integration of multiple real-time imaging modalities, the incorporation of augmented
reality (AR)/virtual reality (VR), and the incorporation of artificial intelligence (AI) and
ML [63,127–130]. The integration of multiple modalities in intraoperative imaging is
proving instrumental in advancing neurosurgical innovation. This integrated approach is
the result of a growing recognition that no single modality holds the answer to all clinical
questions [7,63,131,132].

AR and VR are poised to revolutionize surgical planning, navigation, and surgical
execution [129]. These technologies overlay digital information onto the physical world
(AR) or create entirely simulated environments (VR), thereby transforming neurosurgical
procedures [129,130,133]. Sun et al. [129] highlighted the potential of AR and VR in neuro-
surgical operations. Their study involved 79 glioma patients and 55 control subjects and
demonstrated that utilizing functional neuronavigation and intraoperative MRI enables tai-
lored and optimized surgery. The AR group showed significantly higher complete resection
rates (69.6% vs. 36.4%) and average extent of resection (95.2% vs. 84.9%) compared to the
control group, with statistical significance (p < 0.01). The preservation of neural functions
was also superior in the AR group at 2 weeks and 3 months postoperatively. These research
findings highlight the effective role of AR in enhancing accuracy and advancing patient
outcomes during the surgical removal of tumors in eloquent areas of the brain. The use of
AR technology is not limited to these procedures; it also plays a significant role in providing
guidance during intraoperative navigation in endoscopic skull base surgeries. Pennachietti
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and colleagues discovered that when AR is incorporated into endoscopic skull base ap-
proaches, it helped accurately target neurological lesions and determine the intraoperative
extent of a tumor [134]. Zeiger and his team further demonstrated that AR can be beneficial
in identifying the boundaries of standard bony structures during skull-base surgeries, such
as delineating the relation of the anterior clinoid to the optic nerve and internal carotid
artery [135]. Nevertheless, it is significant to highlight that the majority of these studies on
surgical resections guided by AR have primarily relied on pseudo-AR techniques, involving
overlays inserted into the lenses of microscopes equipped for AR functionality.

Finally, the future of intraoperative imaging in neurosurgical oncology is guided by
the synergistic incorporation of AI and ML [127,128,136]. The capability of these systems
to refine the delineation of tumor and healthy tissues is pivotal to the success of tumor
diagnostics and surgical resections, promising enhancements in both surgical precision and
patient outcomes [128,137]. An exemplar of this synergy is the integration of AI with FGS, a
vital technology in differentiating tumor tissue during brain tumor surgery [137,138]. Mul-
tiple studies illustrated the utility of AI for real-time intraoperative cytological diagnosis of
CNS tumors and training a deep learning model on a variety of brain lesions [127,128,136].
In this context, ‘patch-level classification’ refers to the AI system’s ability to diagnose tu-
mors based on small, localized areas or ‘patches’ of the scanned images, while ‘patient-level
classification’ indicates the system’s ability to integrate these individual diagnoses into
a comprehensive understanding for each patient. Remarkable diagnostic accuracies of
95% and 97% were achieved in the patch-level classification and patient-level classification
tasks, respectively, emphasizing the potential of AI and its future trajectory in the intraop-
erative diagnosis of brain tumors [128]. The application of AI and ML in managing the
increasing complexity and volume of data from multimodality imaging systems cannot be
overstated [127,128,136]. These tools have the potential to improve image quality, detect
subtle patterns that might be overlooked by human perception, and provide predictive
insights based on preoperative imaging.

The future of intraoperative imaging is one of convergence and augmentation. As these
technologies merge, allowing surgeons to harness the advantages of each visualization
modality simultaneously in real time in the operating room, we find that neurosurgical
oncology stands on the brink of transformation. The implementation of these advancements
is contingent upon continued collaborative efforts among clinicians, engineers, physicists,
and scientists to navigate challenges and maximize the potential of these technologies.

5. Conclusions

Advancements in intraoperative imaging and optics—such as the exoscope, FGS, RS,
and CM—are propelling forward the field of brain tumor surgery. Despite the progress,
several challenges persist, including steep learning curves and difficulties in image inter-
pretation. We advocate for an integrative approach that synergizes subcellular imaging and
diagnostics with supracellular imaging modalities. When combined with intraoperative
techniques like fluorescence-guided surgery, this comprehensive strategy has the potential
to enhance tissue differentiation, thereby improving surgical outcomes for patients. Future
trends look toward incorporating AI and ML, integrating various imaging modalities, and
applying AR and VR. Sustained interdisciplinary collaboration is essential for unlocking
the full potential of these innovative technologies, all geared toward the ultimate goal of
enhancing the precision and effectiveness of surgical interventions for brain tumor patients.
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