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Simple Summary: Quantitative image analysis of cancers requires accurate tumor segmentation
that is often performed manually. In this study, we developed a deep learning model with a self-
configurable nnU-Net for fully automated tumor segmentation on serially acquired dynamic contrast-
enhanced MRI images of triple-negative breast cancer. In an independent testing dataset, our nnU-
Net-based deep learning model performed automated tumor segmentation with a Dice similarity
coefficient of 93% and a sensitivity of 96%.

Abstract: Accurate tumor segmentation is required for quantitative image analyses, which are in-
creasingly used for evaluation of tumors. We developed a fully automated and high-performance
segmentation model of triple-negative breast cancer using a self-configurable deep learning frame-
work and a large set of dynamic contrast-enhanced MRI images acquired serially over the patients’
treatment course. Among all models, the top-performing one that was trained with the images
across different time points of a treatment course yielded a Dice similarity coefficient of 93% and a
sensitivity of 96% on baseline images. The top-performing model also produced accurate tumor size
measurements, which is valuable for practical clinical applications.

Keywords: deep learning; tumor segmentation; triple-negative breast cancer

1. Introduction

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer, repre-
senting approximately 15% of all breast cancers and contributing to approximately 40% of
breast cancer-related deaths [1]. Neoadjuvant systemic therapy followed by surgery is the
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standard-of-care treatment for TNBC. However, the responses of patients to neoadjuvant
systemic therapy vary, and only approximately 50% of patients achieve a pathological
complete response, which is a useful surrogate marker for favorable long-term clinical
outcomes. Given the aggressive nature of TNBC and substantial variability in pathologic
complete response rates, noninvasive imaging methods for accurate tumor characterization
and early prediction of tumor response to therapy will be highly valuable. Quantitative
image analyses of tumors are increasingly used for early detection of cancer [2], accurate
tumor localization and staging [3], and treatment response assessment [4], or prediction [5].

An important step in quantitative image analyses is tumor segmentation. The most
commonly used method of tumor segmentation is manual contouring and annotation by
experienced radiologists. However, this process is labor-intensive and tedious, as well as being
susceptible to human errors and inter-reader variations [6]. To overcome these challenges,
computer-aided diagnosis algorithms have been developed. Such algorithms are usually
model-based and involve active contouring [7–9], automated thresholding [10,11], region
growing [12,13], or combinations of methods [14]. However, these methods are typically
applicable only under specific assumptions since their optimization depends on pre-defined
constraint thresholds.

Deep learning techniques, especially convolutional neural networks [3], have been
explored for their potential in delineating images or multidimensional features, including
automated tumor segmentation [15,16]. A deep learning model [17] trained with over
45,000 mammograms outperformed a previous computer-aided diagnosis system that relied
on designed features and selected seed points. U-Net, a dedicated convolutional neural
network for medical imaging segmentation, has gained popularity [18]. An implementation
using a two-stage U-Net demonstrated accurate breast tumor segmentation across multiple
datasets [19]. According to a recent review [20], three out of six referenced studies of breast
cancer segmentation were based on U-Net.

Dynamic contrast-enhanced (DCE) MRI is capable of measuring contrast agent ki-
netics and has shown high sensitivity in detecting breast cancer [21]. The kinetic texture,
which represents contrast enhancement characteristics, can be employed to segment re-
gions of tissue with similar vascular properties [22,23]. Early methods of using DCE-MRI
for tumor segmentation can be categorized as the atlas-based methods [24,25], cluster
methods [26], and classifier-based methods [27]. Recent studies have shown that deep
learning-based methods can offer superior tumor segmentation performance, potentially
by integrating both kinetic characteristics of the signals and tumor texture information
(e.g., voxel/pixel based, including tumor shape and background tissue homogeneity).
Using fully convolutional networks, a hierarchical convolutional neural network frame-
work was developed to perform segmentation [28]. Another deep learning approach is to
compose a multiple-components U-Net framework to transform the segmentation into a
multi-classification task, such as to separate tumors, fibroglandular tissue [29], and other
tissues. DeepMedic [30] is one widely-accepted framework that efficiently computes the
model parameters via a configurable multi-resolution pathway. It was originally developed
for automated brain lesion segmentation, but has since been adapted for breast tumor stud-
ies [31,32]. Other deep learning frameworks, such as SegNet [31,33] and ResNet [3,34,35],
also achieved good results in automated segmentation.

However, the success rate of the translation of these models trained from one dataset
to a different and independent dataset is still very limited. The technical challenge is likely
caused by the methods’ configuration and parameters optimization that are needed for the
dataset diversity. Adapting a model iteratively requires extensive knowledge and effort,
which increases the complexity of the clinical workflow. Another challenge is the lack of
high-quality datasets for the model training of a specific disease population. MRI datasets
are typically much larger in image size but smaller in population size than sonogram or
mammogram datasets. The availability of DCE-MRI data specific to TNBC patients is even
more limited and poses another barrier to train a functional model.



Cancers 2023, 15, 4829 3 of 14

In this work, we aimed to develop a model for automated segmentation of TNBC
on DCE-MRI images. The deep learning framework we employed to build our model is
nnU-Net [36], which is based on the standard U-Net structure but offers a unique feature
of automated hyperparameter optimization. In nnU-Net, some model parameters are em-
pirically derived using ten datasets from the Medical Segmentation Decatholon [37] while
the remaining parameters are customized with the application-specific training datasets.
We hypothesize that the nnU-Net framework, with a self-configuring segmentation model
that has demonstrated broad success over a variety of datasets and image modalities, could
provide accurate automated segmentation of TNBC using DCE-MRI images. To overcome
the challenge of the limited datasets, we combined the data acquired serially throughout a
patient’s treatment course and hypothesized that tumor progression over different time
points will improve the segmentation performance compared to using the data from a
single time point. Specifically, we trained and tested models over multiple semiquantitative
maps from DCE-MRI images. The models were systematically evaluated in terms of the
Dice similarity coefficient (DSC) and sensitivity. Our findings show that the subtraction
between pre-contrast and post-contrast images provided the best performance. Using the
model trained from data across all time points over the treatment course, we achieved a
median DSC of 93% and sensitivity of 96% over our independent testing dataset across all
time points.

2. Materials and Methods

This study was approved by the Institutional Review Board (IRB) of The University of
Texas MD Anderson Cancer Center and was part of an ongoing IRB-approved prospective
clinical trial (NCT02276443) of patients with stage I-III TNBC who were being monitored
for responses to neoadjuvant systemic therapy. This study followed the ethical guidelines
set out in the Declaration of Helsinki, and written informed consent was obtained from
each participant.

2.1. Dataset

A total of 301 patients with biopsy-confirmed stage I-III TNBC were included in this
study. The data inclusion criteria were identical to and described in a previously published
work [38]. The imaging protocol for each patient included DCE-MRI, which was acquired
at multiple time points during a patient’s treatment course: at baseline (BL), after two
cycles (C2), and after four cycles (C4) of neoadjuvant systemic therapy. Among all the
patients, 299 had BL scans, 221 had C2 scans, and 272 had C4 scans. Data from patients
with inflammatory breast cancer, failed manual tumor segmentation due to technical issues,
or a complete response to treatment without any visible residual enhancing lesions were
excluded from model training. In total, 744 datasets (285 from BL, 207 from C2, and 252
from C4) were used for this study. Patients’ demographic and clinical characteristics for
these datasets are presented in Table 1.

Table 1. Patients’ characteristics of all datasets included in this study and datasets from baseline (BL),
after 2 cycles (C2), and after 4 cycles (C4) of neoadjuvant systemic therapy.

Characteristic All Datasets BL C2 C4

No. of datasets 744 285 207 252

Age, mean ± SD, years 50 ± 11 50 ± 11 50 ± 11 50 ± 11

Longest tumor diameter,
mean ± SD, cm 2.7 ± 1.6 3.4 ± 1.5 2.6 ± 1.4 2.1 ± 1.5

Clinical stage, n (%)
I 96 (13) 37 (13) 29 (14) 30 (12)
II 542 (73) 210 (74) 148 (72) 184 (73)
III 106 (14) 38 (13) 30 (14) 38 (15)
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Table 1. Cont.

Characteristic All Datasets BL C2 C4

T category, n (%)
T1 139 (19) 54 (19) 39 (19) 46 (18)
T2 509 (68) 195 (68) 141 (68) 173 (69)
T3 83 (11) 31 (11) 23 (11) 29 (12)
T4 13 (2) 5 (2) 4 (2) 4 (2)

N category, n (%)
N0 490 (66) 188 (66) 139 (67) 163 (65)
N1 171 (23) 67 (24) 44 (21) 60 (24)
N2 26 (3) 9 (3) 8 (4) 9 (4)
N3 57 (8) 21 (7) 16 (8) 20 (8)

2.2. Image Acquisition

The DCE-MRI images were acquired using a 3T GE 750w MR scanner (GE Healthcare,
Waukesha, WI, USA) and an eight-channel bilateral phased array breast coil. The imaging
protocol utilized a three-dimensional (3D) T1-weighted DISCO [39] sequence with intra-
venous bolus injection of contrast agent (Gadovist, Bayer HealthCare, Whippany, NJ, USA)
at a rate of 2 mL/s and a dose of 0.1 mL/kg, followed with a saline flush. The imaging pa-
rameters included an acquisition matrix size of 320 × 320, a field-of-view of 300 × 300 mm,
a slice thickness of 3.2 mm, a slice gap of −1.6 mm, a TR of 6 ms, a TE of 1.1/2.3 ms, a flip
angle of 12◦, and a temporal resolution of approximately 12 s. The number of slices ranged
from 112 to 192, and the number of temporal phases ranged from 32 to 64.

2.3. Data Curation

DCE-MRI images and binary masks were first zero-padded along both sides of the
imaging volume to 192 slices, and then the full-field-of-view images were fed for model
training without any cropping. Two breast radiologists with 6 years of experience (R.M.M.)
and 11 years of experience (S.P.) manually segmented the tumors in consensus using an
in-house MATLAB-based software (The MathWorks, Natick, MA, USA). These manually
segmented tumors are shown by the reference masks in Figures 2 and 3. The manual
segmentation was performed on a subtraction image obtained by subtracting the pre-
injection phase (the initial time frame) from the early phase (the frame at approximately
2.5 min after injection). Voxels of high contrast uptake between phases were identified
as tumors, and voxels of signal void from biopsy clips or tumor necrosis were excluded.
In cases where multiple tumors were present, only the dominant one was labeled at BL, and
the same tumor was followed at C2 and C4 if images were acquired at those time points.

In addition, we calculated and used the following three semiquantitative maps: posi-
tive enhancement integral (PEI) [40], signal enhancement ratio (SER) [41], and maximum
slope of increase (MSI). These maps [42] were calculated on an AW Server using the
software provided by the vendor (v3.2, GE Healthcare, Milwaukee, WI, USA).

To evaluate the impact of central necrosis and biopsy clips on segmentation accuracy,
we compared models with their inclusion and exclusion. Unless noted otherwise, the de-
fault segmentation used for the constructed models described below in Section 2.4 relates to
models with all necrosis and clips excluded (Mk_Excl). The tumor masks including necro-
sis and clips (Mk_Incl) were generated by filling the central void voxels within Mk_Excl
automatically. Among all 285 BL cases, 38 cases were excluded as their Mk_Incl failed to
include all voxels of necrosis and clips, resulting in 247 cases for model development.

2.4. Automatic Segmentation Framework

We used the default original configuration of nnU-Net (Supplementary Text S1,
nnU-Net model training configuration and procedure) without any major architectural
changes [36]. During the model training, the input data were first preprocessed to extract
the data fingerprint, which included median shapes, signal intensity distribution, spac-
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ing distribution, and modality. The preprocessing steps included cropping the images to
non-zero regions to improve the computational efficiency. Then, the rule-based parameters,
including batch size, resample strategy, intensity normalization, and network topology,
were derived through a dictionary lookup approach. The nnU-Net framework also used
fixed parameters that were pre-trained from different applications and hardcoded for all
new studies, including the learning rate, optimizer, number of epochs, choice of activation
function, and loss function. Finally, empirical parameters were calculated on the basis
of the ensemble of 2D and 3D results and the integration of the models from five-fold
cross-validation, which determined the details in inference and post-processing.

A total of 10 nnU-Net models (Table 2) were constructed using different combinations
of input images. The first model utilized only subtraction image data from the BL dataset
and was named nnU-Net_BL. The second, third, and fourth models were created using
PEI, SER, and MSI data from the BL dataset and were named nnU-Net_PEI, nnU-Net_SER,
and nnU-Net_MSI, respectively. The fifth model, nnU-Net_Comb, was generated using
concatenating subtraction image, PEI, SER, and MSI data from the BL dataset to form an
additional data dimension. These five models were designed to identify the most sensitive
and accurate imaging metric from DCE-MRI images acquired at the same time point.
The sixth and seventh models were trained using subtraction image data from the C2 and
C4 datasets and were named nnU-Net_C2 and nnU-Net_C4, respectively. The eighth model
nnU-Net was created by combining cohorts at three time points (BL, C2, and C4) and was
named nnU-Net_3tpt. The nnU-Net_BL, nnU-Net_C2, nnU-Net_C4, and nnU-Net_3tpt
models were evaluated to determine the accuracy of the models at different time points.
The ninth and tenth models were with exclusion and inclusion of central necrosis and
biopsy clips and were named nnU-Net_Excl and nnU-Net_Incl, respectively.

Table 2. Constructed models and their inputs. Sub, subtraction image.

Model Name Input Dataset DCE Metrics

nnU-Net_BL BL Sub

nnU-Net_PEI BL PEI

nnU-Net_SER BL SER

nnU-Net_MSI BL MSI

nnU-Net_Comb BL Sub + PEI + MSI + SER

nnU-Net_C2 C2 Sub

nnU-Net_C4 C4 Sub

nnU-Net_3tpt BL + C2 + C4 Sub

nnU-Net_Excl BL Sub

nnU-Net_Incl BL Sub

Each dataset was randomly divided into development and testing sets at a 5:1 ratio.
Each development set was further split for five-fold cross-validation at a ratio of 4:1 for
training and validation. The development and testing sets of nnU-Net_3tpt were composed
separately by merging corresponding sets from nnU-Net_BL, nnU-Net_C2, and nnU-Net_C4.

Upon completion of training, the models were ensembled by averaging the softmax
probabilities from each fold of cross-validation. The resulting ensembled model was used
for inference on independent testing data. The training was performed in both 2D and 3D
models. During inference, the ensemble of both 2D and 3D prediction was generated by
performing voxel-wise majority vote.

All training was performed using an NVIDIA DGX1 system with dual 20-core Intel
Xeon E5-2698 2.2-GHz CPUs, 512 GB of DDR4 RAM, and eight NVIDIA Tesla V100 32-GB
GPUs with a total of 256 GB of GPU memory (NVIDIA, Santa Clara, CA, USA). The software
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environment included an Ubuntu Linux 18.4.6 operating system, Python 3.8.12, CUDA
11.1, cuDNN 7.6.5, and TensorFlow 2.8.0.

2.5. Statistical Analysis

The performance of each model was evaluated using four overlap-based segmentation
metrics, true positive, false negative, false positive, and true negative, using the manually
labeled mask as the reference standard on a per-subject basis. The true positive, false
negative, false positive, and true negative are defined as the percentage of the number
of voxels within the union between the reference and predicted masks, of the number of
voxels within the reference mask but outside the predicted mask, the number of voxels
within the predicted mask but outside the reference mask, and the number of background
voxels outside the reference mask, respectively. The DSC and sensitivity were calculated
and averaged across all subjects as the metrics for overall performance [43].

Given the non-normal distribution of the results, the within-group results of subject-
based DSC and sensitivity were summarized using interquartile and median calculations;
the paired two-sample comparison was performed with Wilcoxon signed-rank test and the
unpaired two-sample comparison was performed with Wilcoxon rank-sum test; the multi-
ple comparison was performed using Kruskal–Wallis test. For all comparisons, α = 0.05 was
considered the threshold for statistical significance and adjusted with Bonferroni correction
for multiple comparison.

The segmentation performance was examined for primary tumors with the following
largest dimensions: ≤2 cm (T1), 2–5 cm (T2), and ≥5 cm (T3–4).

3. Results
3.1. Segmentation Performance of Semiquantitative Parametric Maps

The Kruskal–Wallis test demonstrated significant differences among models with
different input metrics (Figure 1). The χ2 value was 42.1 for DSC (p < 0.05) and 59.9
for sensitivity (p < 0.05); post hoc-paired Wilcoxon signed-rank test was performed and
adjusted at p = 0.05/4 = 0.0125. For DSC, nnU-Net_BL was better than nnU-Net_PEI
(p < 0.0125), nnU-Net_SER (p < 0.0125) and nnU-Net_MSI (p < 0.0125) but similar to nnU-
Net_Comb (p = 0.90). For sensitivity, nnU-Net_BL was better than nnU-Net_SER (p < 0.0125)
and nnU-Net_MSI (p < 0.0125) but similar to nnU-Net_PEI (p = 0.19) and nnU-Net_Comb
(p = 0.58).
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Figure 1. Segmentation performance of nnU-Net models with different combinations of BL DCE
images and semiquantitative parametric maps. The DSC and sensitivity were measured at the subject
level using manually labeled masks as the reference standard and were then averaged across the
BL test set. (A) The boxplots of each set of results, first and third quartiles (lower and upper ends
of box, respectively), the min and max limits (whiskers) at 1.5 interquartile away from the first and
third quartiles; median (horizontal line in box), mean (x), and outliers (discrete data points) were
presented. (The letters above the boxplots indicated statistical significance between that metric and
the reference metric, which was labeled with the same letter and an asterisk on top). (B) The detailed
quantitative results used for the boxplots in (A).

3.2. Mask Type Comparison

A Wilcoxon signed-rank test showed similar group DSC mean ranks (p = 0.17) in
nnUnet_Excl (without central necrosis and biopsy clips) and nnUnet_Incl (including central
necrosis and biopsy clips) (Figure 2). The tumor sizes identified by the DL models were also
similar to the tumor sizes of the references (Figure 2B). The segmentation of both models
preserved details that corresponded accurately with their respective references (Figure 2C).
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0.05), and a better performance than nnU-Net_C4 on the testing dataset of C4 for both 
DSC (p < 0.05) and sensitivity (p < 0.05). The decrease in performance over the treatment 
time points in two representative subjects is shown in Figure 3D.  

Figure 2. Automated tumor segmentation with and without inclusion of central necrosis and biopsy
clips. (A) nnU-Net_Excl and nnU-Net_Incl on the same test cases had similar DSCs (p = 0.27).
(B) Tumor sizes based on reference masks (ref: green) were similar to those estimated with nnU-
Net_Excl (p = 0.14) and nnU-Net_Incl (p = 0.58). (C) Automated masks without inclusion (Excl: blue)
and with inclusion (Incl: red) of central necrosis and biopsy clips overlaying corresponding reference
(green) mask of a representative subject. The subimage within the dashed box has been zoomed in
and displayed as the background in the Excl and Incl images.
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3.3. Segmentation Performance Using Datasets of Different Time Points

The nnU-Net_3tpt model, which was trained on a combination of data from all three
time points, BL, C2, and C4, demonstrated better segmentation performance than the
models trained on data from a single time point (nnU-Net_BL, nnU-Net_C2, and nnU-
Net_C4) (Figure 3). The Paired Wilcoxon signed-rank test demonstrated that nnU-Net_3tpt
had a better performance than nnU-Net_BL on the testing dataset of BL for both DSC
(p < 0.05) and sensitivity (p < 0.05). Similarly, nnU-Net_3tpt had a better performance than
nnU-Net_C2 on the testing dataset of C2 for both DSC (p < 0.05) and sensitivity (p < 0.05),
and a better performance than nnU-Net_C4 on the testing dataset of C4 for both DSC
(p < 0.05) and sensitivity (p < 0.05). The decrease in performance over the treatment time
points in two representative subjects is shown in Figure 3D.
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Figure 3. Segmentation performance of nnU-Net models using data from various time points. DSC
(A) and sensitivity (B) of the different models applied to the corresponding testing dataset. Blue
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indicated by black asterisks). (C) The detailed quantitative results used for the boxplots (A,B).
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The Kruskal–Wallis test demonstrated significant differences in DSC among various
tumor sizes over the test set of 3tpt (χ2 =15.7, p < 0.05). The DSC had higher mean ranks
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for tumors larger than 2 cm but smaller than 5 cm (p < 0.05) in relation to tumors smaller
than 2 cm. Similarly, the tumors larger than 5 cm had a higher mean rank of DSC than
tumors smaller than 2 cm (p < 0.05), as shown in Figure 4A. In the BL test set (Figure 4B),
nnU-Net_3tpt had higher mean ranks of DSC than nnU-Net_BL (p < 0.05) for tumors larger
than 2 cm but smaller than 5 cm. For tumors that were 2 cm or smaller (p = 0.07) and tumors
at 5 cm or larger (p = 0.29), the performance of the two models was similar. The higher mean
ranks of DSC and sensitivity for nnU-Net_3tpt than for nnU-Net_C2 and nnU-Net_C4
across tumor sizes are presented in Supplementary Figure S1.
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3.4. Tumor Size Comparison

The tumor size of the predicted segmentation from nnU-Net_3tpt was also evalu-
ated using the reference standard (Figure 5). The intraclass correlation coefficient was
0.95 (p < 0.05) between predicted segmentation with nnU-Net_3tpt and the reference stan-
dard (Figure 5A), which demonstrated accurate tumor size estimation on the BL test set.
The correlation coefficient was 0.88 at C2 test set (p < 0.05) and 0.73 at C4 test set (p < 0.05).
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4. Discussion

In this study, we employed an automated deep learning framework for medical
imaging segmentation, nnU-Net, in conjunction with 744 datasets to develop an accurate
segmentation model specifically for TNBC under treatment. We evaluated a range of
semiquantitative maps from DCE-MRI as model inputs and found that the subtraction
images of the initial phases from the peak arterial phases yielded the optimal contrast for
model training. Additionally, using images from multiple time points during a patient’s
treatment resulted in significantly better segmentation performance than using images from
a single time point during treatment. This improved performance of our top-performing
model likely stemmed from a greater diversity in terms of tumor size, shape, location,
signal intensity patterns, and other morphological characteristics. Notably, our model
accurately estimated tumor size, which is important as it is often necessary to measure
changes in tumor size during treatment.

Our results indicate that DCE subtraction images provide sufficient image information
to achieve good tumor segmentation with our deep learning model. To our knowledge,
most reported breast cancer segmentation models for DCE-MRI use the original multiphasic
images [32,44] or the subtraction between pre-contrast and post-contrast images as the
input [45]. We investigated the former approach by incorporating the entire series of
DCE-MRI data at BL. However, we were able to input only about 26 patient datasets
during training due to the large computational memory consumption required to store 4D
image series and optimize millions of model parameters. In contrast, using subtraction
images effectively reduced the dimensionality of the data from 4D to 3D and required
much less memory. Even though some breast cancer studies with DCE-MRI showed the
use of PEI [42,46] or MSI [47,48] parametric maps for diagnosis or treatment prediction
purposes, our study showed that the use of the simple subtraction images could produce
a model with better or equivalent performance for tumor segmentation compared to the
use of incorporating other DCE parametric maps. Further, using subtraction images for
segmentation is advantageous because they are easier to generate than the other parametric
maps, whose generation may require specialized software.

To the best of our knowledge, our study is the first to perform model training using
datasets including images of patients from multiple treatment time points. The nnU-
Net_3tpt model trained using this approach demonstrated better performance than the
model trained using data from only a single treatment time point. By combining data
from three treatment time points, the training datasets were effectively tripled. Since
all the model training parameters remained identical, it is possible that the increased
dataset size contributed to the improved model performance. With the expanded training
dataset, our nnUNet_3tpt model exhibited performance similar to or even better than that
of recent breast tumor segmentation studies. For instance, when Yue et al. evaluated model
performance on a dataset of 1000 subjects (n_training = 800, n_testing = 200), their own
model, Res-UNet, achieved a DSC of 0.894, and their implementation of nnU-Net achieved
a DSC of 0.887 [45], whereas our nnU-Net_3tpt model achieved a DSC of 0.93 in the BL test
set. Other notable studies include one in which an nnU-Net trained on a training dataset of
102 subjects achieved a DSC of 0.87 (median value, mean was not reported) on a test set of
55 subjects [49]. Additionally, a regional convolutional neural network model trained on a
dataset of 241 patients, including over 10,000 slices, achieved a DSC of 0.79 on a test set of
98 patients, including approximately 9000 slices, by splitting the 3D dataset into 2D space to
increase dataset size [3]. A 3D U-Net model from a full dataset of 141 subjects (n_test = 30)
achieved a mean DSC of 0.78 [44]. The aforementioned models were developed for a
variety of subtypes of breast cancer, not exclusively TNBC. In contrast, our nnU-Net_3tpt
model, which was trained exclusively on a large sample of TNBC subjects, holds significant
potential for application within the TNBC population.

The segmentation models using masks with or without central necrosis and biopsy
clips exhibited similar DSC and sensitivity, indicating that our models based on the nnU-
Net framework are flexible and stable. To the best of our knowledge, most published
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studies on breast tumor segmentation employed reference masks that included central
necrosis and biopsy clips [3,28,44,50]. However, necrosis and biopsy clips may need to
be excluded for certain applications, such as functional tumor volume measurements.
Our findings indicate that our models can directly output both types of masks without
added processing, and segmentation performance is similar with and without exclusion
of central necrosis and biopsy clips. In contrast to a recent study [45], in which the tumor
was segmented first and then an intensity-based method was applied to delineate a low
signal intensity of necrosis within the segmented tumor region, our fully automated model
provides an easier approach.

Our nnU-Net_3tpt model had good performance but can be further improved in
several aspects. First, nnU-Net_3tpt produced increasingly better segmentation results
for tumors with larger sizes, which may explain the better performance at BL than at C2
and C4 because tumors at BL are untreated and tend to be larger. A similar trend was
noticed in other studies [45,49,51]. The performance of our model on smaller tumors could
be improved by including a more diverse range of samples, and the generalizability of the
model could be validated by including public datasets for more comprehensive training
and independent testing. Second, the nnU-Net_3tpt model failed to identify tumors smaller
than 2 cm in several instances. To avoid such failures, it may be necessary to refine the nnU-
Net framework configuration by modifying the loss function to prioritize false negatives.
In our training, the model training loss term is guided by DSC, which emphasizes both
sensitivity and precision. Other metrics for training loss may be designed to penalize
false negatives with heavier weighting. DSC may not be optimal to address the signal
heterogeneity of TNBC. An alternative metric for training loss is focal Dice loss, which could
alleviate the imbalance between empirically defined subtypes [52]. Models that extract
semantic features could integrate spatial information to improve sensitivity to tumors at
smaller sizes and tissue boundaries, making it worthwhile to validate their efficacy in the
TNBC population [53,54]. Finally, a systematic comparison of our model to the conventional
models using the same datasets would better evaluate our model. In addition to the static
imaging features used in our study, integrating tumor-specific dynamic information into
the nnU-Net framework could also help to reduce false positives [50].

5. Conclusions

We developed a fully automated, high-performance segmentation model for TNBC
patients using deep learning and a large cohort of DCE-MRI images acquired longitudinally
over the patients’ treatment course. Of the various types of images used for model training,
we found that the simple subtraction images had the best performance. Our model was
also capable of reliably segmenting tumors with either exclusion or inclusion of the central
necrosis and biopsy clips. The performance of our model, especially for small tumors, may
be further improved in a future investigation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15194829/s1, references [36,55]. Figure S1: Segmentation
performance of nnU-Net models by tumor size across different datasets; Text S1: nnU-Net model
training configuration and procedure.

Author Contributions: Conceptualization, Z.X. and J.M.; data curation, B.E.A., R.P.C., A.C. and
B.R.; formal analysis, Z.X., D.E.R., R.M.M., S.P., Z.Z., B.P., J.B.S., H.C., J.S. and J.M.; investigation,
Z.X. and J.M.; methodology, Z.X., D.E.R., R.M.M., S.P., Z.Z., B.P., J.B.S., B.C.M., B.E.A., R.P.C. and
J.M.; supervision, J.M.; writing—original draft preparation, Z.X.; writing—review and editing, Z.X.,
K.-P.H., B.E.A., R.P.C., J.W.T.L., H.T.C.L.-P., D.L.L., F.P., J.W., P.W., A.T., A.K., L.H., K.K.H., J.K.L., V.V.,
D.T., W.Y., C.Y. and J.M.; project administration, A.C. and B.R. All authors have read and agreed to
the published version of the manuscript.

Funding: This study was supported by the NIH/NCI under award number P30CA016672.

https://www.mdpi.com/article/10.3390/cancers15194829/s1
https://www.mdpi.com/article/10.3390/cancers15194829/s1


Cancers 2023, 15, 4829 12 of 14

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board of The University of Texas M. D.
Anderson Cancer Center (protocol code: 2014-0185 and date of approval: 16 July 2014).

Informed Consent Statement: Written informed consent was received from all patients.

Data Availability Statement: Data are available from the corresponding author upon request.

Acknowledgments: The authors acknowledge the support from the M.D. Anderson Moon Shots
Program and the Robert D. Moreton Distinguished Chair Funds in Diagnostic Radiology. The authors
thank Stephanie Deming, senior scientific editor, Research Medical Library, for editing the manuscript.

Conflicts of Interest: The authors would like to make the following disclosures:

• K.K.H. serves on the Medical Advisory Board for ArmadaHealth, AstraZeneca, and receives
research funding from Cairn Surgical, Eli Lilly&Co., and Lumicell.

• K.H. is currently receiving research funding from Siemens Healthineers and has received
research funding from GE.

• J.K.L. received grant or research support from Novartis, Medivation/Pfizer, Genentech, GSK,
EMD-Serono, AstraZeneca, Medimmune, Zenith, Merck; participated in Speaker’s Bureau
for MedLearning, Physician’s Education Resource, Prime Oncology, Medscape, Clinical Care
Options, Medpage; and receives royalty from UpToDate.

• Spouse of A.T works for Eli Lilly.
• D.T. declares research contracts with Pfizer, Novartis, and Ployphor and is a consultant of

AstraZeneca, GlaxoSmithKline, OncoPep, Gilead, Novartis, Pfizer, Personalis, and Sermonix.
• W.Y. receives royalties from Elsevier.
• J.M. is a consultant of C4 Imaging, L.L.C., and an inventor of United States patents licensed to

Siemens Healthineers and GE Healthcare.
• For the remaining authors, none were declared.

The funders had no role in the design of this study; in the collection, analyses, or interpretation
of data; in the writing of manuscript; or in the decision to publish results.

References
1. Wu, Q.; Siddharth, S.; Sharma, D. Triple Negative Breast Cancer: A Mountain Yet to Be Scaled Despite the Triumphs. Cancers

2021, 13, 3697. [CrossRef]
2. Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A.

Triple-Negative Breast Cancer: Clinical Features and Patterns of Recurrence. Clin. Cancer Res. 2007, 13, 4429–4434. [CrossRef]
3. Zhang, Y.; Chan, S.; Park, V.Y.; Chang, K.-T.; Mehta, S.; Kim, M.J.; Combs, F.J.; Chang, P.; Chow, D.; Parajuli, R.; et al. Automatic

Detection and Segmentation of Breast Cancer on MRI Using Mask R-CNN Trained on Non–Fat-Sat Images and Tested on Fat-Sat
Images. Acad. Radiol. 2022, 29, S135–S144. [CrossRef]

4. El Adoui, M.; Drisis, S.; Benjelloun, M. Multi-input deep learning architecture for predicting breast tumor response to chemother-
apy using quantitative MR images. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1491–1500. [CrossRef]

5. Ha, R.; Chin, C.; Karcich, J.; Liu, M.Z.; Chang, P.; Mutasa, S.; Van Sant, E.P.; Wynn, R.T.; Connolly, E.; Jambawalikar, S. Prior to
Initiation of Chemotherapy, Can We Predict Breast Tumor Response? Deep Learning Convolutional Neural Networks Approach
Using a Breast MRI Tumor Dataset. J. Digit. Imaging 2018, 32, 693–701. [CrossRef]

6. Kohli, M.D.; Summers, R.M.; Geis, J.R. Medical Image Data and Datasets in the Era of Machine Learning—Whitepaper from the
2016 C-MIMI Meeting Dataset Session. J. Digit. Imaging 2017, 30, 392–399. [CrossRef]

7. Kupinski, M.A.; Giger, M.L. Automated seeded lesion segmentation on digital mammograms. IEEE Trans. Med. Imaging 1998, 17,
510–517. [CrossRef]

8. Yuan, Y.; Giger, M.L.; Li, H.; Suzuki, K.; Sennett, C. A dual-stage method for lesion segmentation on digital mammograms. Med.
Phys. 2007, 34, 4180–4193. [CrossRef]

9. Horsch, K.; Giger, M.L.; Venta, L.A.; Vyborny, C.J. Automatic segmentation of breast lesions on ultrasound. Med. Phys. 2001, 28,
1652–1659. [CrossRef]

10. Rojas Domínguez, A.; Nandi, A.K. Detection of masses in mammograms via statistically based enhancement, multilevel-
thresholding segmentation, and region selection. Comput. Med. Imaging Graph. 2008, 32, 304–315. [CrossRef]

11. Pereira, D.C.; Ramos, R.P.; do Nascimento, M.Z. Segmentation and detection of breast cancer in mammograms combining wavelet
analysis and genetic algorithm. Comput. Methods Programs Biomed. 2014, 114, 88–101. [CrossRef] [PubMed]

12. Timp, S.; Karssemeijer, N. A new 2D segmentation method based on dynamic programming applied to computer aided detection
in mammography. Med. Phys. 2004, 31, 958–971. [CrossRef] [PubMed]

13. Petrick, N.; Chan, H.P.; Sahiner, B.; Helvie, M.A. Combined adaptive enhancement and region-growing segmentation of breast
masses on digitized mammograms. Med. Phys. 1999, 26, 1642–1654. [CrossRef] [PubMed]

https://doi.org/10.3390/cancers13153697
https://doi.org/10.1158/1078-0432.CCR-06-3045
https://doi.org/10.1016/j.acra.2020.12.001
https://doi.org/10.1007/s11548-020-02209-9
https://doi.org/10.1007/s10278-018-0144-1
https://doi.org/10.1007/s10278-017-9976-3
https://doi.org/10.1109/42.730396
https://doi.org/10.1118/1.2790837
https://doi.org/10.1118/1.1386426
https://doi.org/10.1016/j.compmedimag.2008.01.006
https://doi.org/10.1016/j.cmpb.2014.01.014
https://www.ncbi.nlm.nih.gov/pubmed/24513228
https://doi.org/10.1118/1.1688039
https://www.ncbi.nlm.nih.gov/pubmed/15191279
https://doi.org/10.1118/1.598658
https://www.ncbi.nlm.nih.gov/pubmed/10501064


Cancers 2023, 15, 4829 13 of 14

14. Huang, Q.; Luo, Y.; Zhang, Q. Breast ultrasound image segmentation: A survey. Int. J. Comput. Assist. Radiol. Surg. 2017, 12,
493–507. [CrossRef]

15. Hu, Y.; Guo, Y.; Wang, Y.; Yu, J.; Li, J.; Zhou, S.; Chang, C. Automatic tumor segmentation in breast ultrasound images using a
dilated fully convolutional network combined with an active contour model. Med. Phys. 2019, 46, 215–228. [CrossRef]

16. Al-Antari, M.A.; Al-Masni, M.A.; Choi, M.T.; Han, S.M.; Kim, T.S. A fully integrated computer-aided diagnosis system for digital
X-ray mammograms via deep learning detection, segmentation, and classification. Int. J. Med. Inform. 2018, 117, 44–54. [CrossRef]

17. Kooi, T.; Litjens, G.; van Ginneken, B.; Gubern-Merida, A.; Sanchez, C.I.; Mann, R.; den Heeten, A.; Karssemeijer, N. Large scale
deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 2017, 35, 303–312. [CrossRef]

18. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings
of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015;
pp. 234–241.

19. Baccouche, A.; Garcia-Zapirain, B.; Castillo Olea, C.; Elmaghraby, A.S. Connected-UNets: A deep learning architecture for breast
mass segmentation. NPJ Breast Cancer 2021, 7, 151. [CrossRef]

20. Balkenende, L.; Teuwen, J.; Mann, R.M. Application of Deep Learning in Breast Cancer Imaging. Semin. Nucl. Med. 2022, 52,
584–596. [CrossRef]

21. Kuhl, C.K.; Mielcareck, P.; Klaschik, S.; Leutner, C.; Wardelmann, E.; Gieseke, J.; Schild, H.H. Dynamic breast MR imaging: Are
signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 1999, 211, 101–110. [CrossRef]

22. Agner, S.C.; Xu, J.; Fatakdawala, H.; Ganesan, S.; Madabhushi, A.; Englander, S.; Rosen, M.; Thomas, K.; Schnall, M.; Feldman,
M.; et al. Segmentation and classification of triple negative breast cancers using DCE-MRI. In Proceedings of the 2009 IEEE
International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA, 28 June–1 July 2009; pp. 1227–1230.

23. Woods, B.J.; Clymer, B.D.; Kurc, T.; Heverhagen, J.T.; Stevens, R.; Orsdemir, A.; Bulan, O.; Knopp, M.V. Malignant-lesion
segmentation using 4D co-occurrence texture analysis applied to dynamic contrast-enhanced magnetic resonance breast image
data. J. Magn. Reson. Imaging 2007, 25, 495–501. [CrossRef]

24. Aljabar, P.; Heckemann, R.A.; Hammers, A.; Hajnal, J.V.; Rueckert, D. Multi-atlas based segmentation of brain images: Atlas
selection and its effect on accuracy. NeuroImage 2009, 46, 726–738. [CrossRef]

25. Wang, H.; Yushkevich, P.A. Multi-atlas segmentation without registration: A supervoxel-based approach. In Proceedings of the
Medical image computing and computer-assisted intervention: MICCAI International Conference on Medical Image Computing
and Computer-Assisted Intervention 2013, Nagoya, Japan, 22–26 September 2013; Volume 16, pp. 535–542.

26. Chen, W.; Giger, M.L.; Bick, U. A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in
dynamic contrast-enhanced MR images. Acad. Radiol. 2006, 13, 63–72. [CrossRef]

27. Keller, B.M.; Nathan, D.L.; Wang, Y.; Zheng, Y.; Gee, J.C.; Conant, E.F.; Kontos, D. Estimation of breast percent density in raw
and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine
segmentation. Med. Phys. 2012, 39, 4903–4917. [CrossRef]

28. Zhang, J.; Saha, A.; Zhu, Z.; Mazurowski, M.A. Hierarchical Convolutional Neural Networks for Segmentation of Breast Tumors
in MRI With Application to Radiogenomics. IEEE Trans. Med. Imaging 2019, 38, 435–447. [CrossRef]

29. Dalmis, M.U.; Litjens, G.; Holland, K.; Setio, A.; Mann, R.; Karssemeijer, N.; Gubern-Merida, A. Using deep learning to segment
breast and fibroglandular tissue in MRI volumes. Med. Phys. 2017, 44, 533–546. [CrossRef]

30. Kamnitsas, K.; Ledig, C.; Newcombe, V.F.J.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient multi-scale
3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 2017, 36, 61–78. [CrossRef]

31. El Adoui, M.; Mahmoudi, S.A.; Larhmam, M.A.; Benjelloun, M. MRI Breast Tumor Segmentation Using Different Encoder and
Decoder CNN Architectures. Computers 2019, 8, 52. [CrossRef]

32. Hirsch, L.; Huang, Y.; Luo, S.; Saccarelli, C.R.; Gullo, R.L.; Naranjo, I.D.; Bitencourt, A.G.V.; Onishi, N.; Ko, E.S.; Leithner, D.; et al.
Radiologist-Level Performance by Using Deep Learning for Segmentation of Breast Cancers on MRI Scans. Radiol. Artif. Intell.
2021, 15, e200231. [CrossRef]

33. Zhang, L.; Mohamed, A.A.; Chai, R.; Guo, Y.; Zheng, B.; Wu, S. Automated deep learning method for whole-breast segmentation
in diffusion-weighted breast MRI. J. Magn. Reson. Imaging 2019, 51, 635–643. [CrossRef]

34. Chen, X.; Men, K.; Chen, B.; Tang, Y.; Zhang, T.; Wang, S.; Li, Y.; Dai, J. CNN-Based Quality Assurance for Automatic Segmentation
of Breast Cancer in Radiotherapy. Front. Oncol. 2020, 10, 524. [CrossRef]

35. Gao, J.; Zhong, X.; Li, W.; Li, Q.; Shao, H.; Wang, Z.; Dai, Y.; Ma, H.; Shi, Y.; Zhang, H.; et al. Attention-based Deep Learning for
the Preoperative Differentiation of Axillary Lymph Node Metastasis in Breast Cancer on DCE-MRI. J. Magn. Reson. Imaging 2023,
57, 1842–1853. [CrossRef]

36. Isensee, F.; Jaeger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based
biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [CrossRef]

37. Antonelli, M.; Reinke, A.; Bakas, S.; Farahani, K.; Kopp-Schneider, A.; Landman, B.A.; Litjens, G.; Menze, B.; Ronneberger, O.;
Summers, R.M.; et al. The Medical Segmentation Decathlon. Nat. Commun. 2022, 13, 4128. [CrossRef]

38. Panthi, B.; Adrada, B.E.; Candelaria, R.P.; Guirguis, M.S.; Yam, C.; Boge, M.; Chen, H.; Hunt, K.K.; Huo, L.; Hwang, K.-P.; et al.
Assessment of Response to Neoadjuvant Systemic Treatment in Triple-Negative Breast Cancer Using Functional Tumor Volumes
from Longitudinal Dynamic Contrast-Enhanced MRI. Cancers 2023, 15, 1025. [CrossRef]

https://doi.org/10.1007/s11548-016-1513-1
https://doi.org/10.1002/mp.13268
https://doi.org/10.1016/j.ijmedinf.2018.06.003
https://doi.org/10.1016/j.media.2016.07.007
https://doi.org/10.1038/s41523-021-00358-x
https://doi.org/10.1053/j.semnuclmed.2022.02.003
https://doi.org/10.1148/radiology.211.1.r99ap38101
https://doi.org/10.1002/jmri.20837
https://doi.org/10.1016/j.neuroimage.2009.02.018
https://doi.org/10.1016/j.acra.2005.08.035
https://doi.org/10.1118/1.4736530
https://doi.org/10.1109/TMI.2018.2865671
https://doi.org/10.1002/mp.12079
https://doi.org/10.1016/j.media.2016.10.004
https://doi.org/10.3390/computers8030052
https://doi.org/10.1148/ryai.200231
https://doi.org/10.1002/jmri.26860
https://doi.org/10.3389/fonc.2020.00524
https://doi.org/10.1002/jmri.28464
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1038/s41467-022-30695-9
https://doi.org/10.3390/cancers15041025


Cancers 2023, 15, 4829 14 of 14

39. Saranathan, M.; Rettmann, D.W.; Hargreaves, B.A.; Clarke, S.E.; Vasanawala, S.S. DIfferential subsampling with cartesian ordering
(DISCO): A high spatio-temporal resolution dixon imaging sequence for multiphasic contrast enhanced abdominal imaging. J.
Magn. Reson. Imaging 2012, 35, 1484–1492. [CrossRef]

40. Khiat, A.; Gianfelice, D.; Amara, M.; Boulanger, Y. Influence of post-treatment delay on the evaluation of the response to focused
ultrasound surgery of breast cancer by dynamic contrast enhanced MRI. Br. J. Radiol. 2006, 79, 308–314. [CrossRef]

41. Yang, W.; Qiang, J.W.; Tian, H.P.; Chen, B.; Wang, A.J.; Zhao, J.G. Multi-parametric MRI in cervical cancer: Early prediction
of response to concurrent chemoradiotherapy in combination with clinical prognostic factors. Eur. Radiol. 2017, 28, 437–445.
[CrossRef]

42. Zhou, Z.; Adrada, B.E.; Candelaria, R.P.; Elshafeey, N.A.; Boge, M.; Mohamed, R.M.; Pashapoor, S.; Sun, J.; Xu, Z.; Panthi, B.; et al.
Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning
on multiparametric MRI. Sci. Rep. 2023, 13, 1171. [CrossRef]

43. Taha, A.A.; Hanbury, A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Med. Imaging
2015, 15, 29. [CrossRef]

44. Rahimpour, M.; Saint Martin, M.J.; Frouin, F.; Akl, P.; Orlhac, F.; Koole, M.; Malhaire, C. Visual ensemble selection of deep
convolutional neural networks for 3D segmentation of breast tumors on dynamic contrast enhanced MRI. Eur. Radiol. 2023, 33,
959–969. [CrossRef]

45. Yue, W.; Zhang, H.; Zhou, J.; Li, G.; Tang, Z.; Sun, Z.; Cai, J.; Tian, N.; Gao, S.; Dong, J.; et al. Deep learning-based automatic
segmentation for size and volumetric measurement of breast cancer on magnetic resonance imaging. Front. Oncol. 2022, 12,
984626. [CrossRef]

46. Dogan, B.E.; Turnbull, L.W. Imaging of triple-negative breast cancer. Ann. Oncol. 2012, 23, vi23–vi29. [CrossRef]
47. Milon, A.; Vande Perre, S.; Poujol, J.; Trop, I.; Kermarrec, E.; Bekhouche, A.; Thomassin-Naggara, I. Abbreviated breast MRI

combining FAST protocol and high temporal resolution (HTR) dynamic contrast enhanced (DCE) sequence. Eur. J. Radiol. 2019,
117, 199–208. [CrossRef]

48. Onishi, N.; Sadinski, M.; Hughes, M.C.; Ko, E.S.; Gibbs, P.; Gallagher, K.M.; Fung, M.M.; Hunt, T.J.; Martinez, D.F.; Shukla-Dave,
A.; et al. Ultrafast dynamic contrast-enhanced breast MRI may generate prognostic imaging markers of breast cancer. Breast
Cancer Res. 2020, 22, 58. [CrossRef]

49. Janse, M.H.A.; Janssen, L.M.; van der Velden, B.H.M.; Moman, M.R.; Wolters-van der Ben, E.J.M.; Kock, M.; Viergever, M.A.;
van Diest, P.J.; Gilhuijs, K.G.A. Deep Learning-Based Segmentation of Locally Advanced Breast Cancer on MRI in Relation to
Residual Cancer Burden: A Multi-Institutional Cohort Study. J. Magn. Reson. Imaging 2023. online ahead of print. [CrossRef]

50. Wang, S.; Sun, K.; Wang, L.; Qu, L.; Yan, F.; Wang, Q.; Shen, D. Breast Tumor Segmentation in DCE-MRI With Tumor Sensitive
Synthesis. IEEE Trans. Neural Networks Learn. Syst. 2021, 34, 4990–5001. [CrossRef]

51. Zhou, Z.; Sanders, J.W.; Johnson, J.M.; Gule-Monroe, M.; Chen, M.; Briere, T.M.; Wang, Y.; Son, J.B.; Pagel, M.D.; Ma, J.; et al.
MetNet: Computer-aided segmentation of brain metastases in post-contrast T1-weighted magnetic resonance imaging. Radiother.
Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2020, 153, 189–196. [CrossRef]

52. Zhao, R.; Qian, B.; Zhang, X.; Li, Y.; Wei, R.; Liu, Y.; Pan, Y. Rethinking Dice Loss for Medical Image Segmentation. In Proceedings
of the 2020 IEEE International Conference on Data Mining (ICDM), Sorrento, Italy, 17–20 November 2020; pp. 851–860.

53. Li, Y.; Han, G.; Liu, X. DCNet: Densely Connected Deep Convolutional Encoder-Decoder Network for Nasopharyngeal Carcinoma
Segmentation. Sensors 2021, 21, 7877. [CrossRef]

54. Zhang, H.; Gao, Z.; Zhang, D.; Hau, W.K.; Zhang, H. Progressive Perception Learning for Main Coronary Segmentation in X-Ray
Angiography. IEEE Trans. Med. Imaging 2023, 42, 864–879. [CrossRef]

55. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep
Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/jmri.23602
https://doi.org/10.1259/bjr/23046051
https://doi.org/10.1007/s00330-017-4989-3
https://doi.org/10.1038/s41598-023-27518-2
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1007/s00330-022-09113-7
https://doi.org/10.3389/fonc.2022.984626
https://doi.org/10.1093/annonc/mds191
https://doi.org/10.1016/j.ejrad.2019.06.022
https://doi.org/10.1186/s13058-020-01292-9
https://doi.org/10.1002/jmri.28679
https://doi.org/10.1109/TNNLS.2021.3129781
https://doi.org/10.1016/j.radonc.2020.09.016
https://doi.org/10.3390/s21237877
https://doi.org/10.1109/TMI.2022.3219126
https://doi.org/10.1109/TPAMI.2017.2699184
https://www.ncbi.nlm.nih.gov/pubmed/28463186

	Introduction 
	Materials and Methods 
	Dataset 
	Image Acquisition 
	Data Curation 
	Automatic Segmentation Framework 
	Statistical Analysis 

	Results 
	Segmentation Performance of Semiquantitative Parametric Maps 
	Mask Type Comparison 
	Segmentation Performance Using Datasets of Different Time Points 
	Tumor Size Comparison 

	Discussion 
	Conclusions 
	References

