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Simple Summary: In this research study, the authors investigated the impact of specific genetic
mutations on the survival of lung cancer patients with brain metastases who underwent surgical
resection. These mutations, known as anaplastic lymphoma kinase (ALK)-rearranged and epidermal
growth factor receptor (EGFR)-amplified mutations, have shown potential for targeted treatments.
The study analyzed data from patients who received surgical treatment at Emory University Hospital
between 2012 and 2022. Results showed that the overall survival and progression-free survival rates
in this group were better than those seen in earlier studies. The study suggests that as more targeted
therapies become available, the survival rates for lung cancer patients with brain metastases may
continue to improve. The findings emphasize the importance of individualized treatments based on
genetic mutations.

Abstract: In the context of the post-genomic era, where targeted oncological therapies like mono-
clonal antibodies (mAbs) and tyrosine-kinase inhibitors (TKIs) are gaining prominence, this study
investigates whether these therapies can enhance survival for lung carcinoma patients with specific
genetic mutations—EGFR-amplified and ALK-rearranged mutations. Prior to this study, no research
series had explored how these mutations influence patient survival in cases of surgical lung brain
metastases (BMs). Through a multi-site retrospective analysis, the study examined patients who
underwent surgical resection for BM arising from primary lung cancer at Emory University Hos-
pital from January 2012 to May 2022. The mutational statuses were determined from brain tissue
biopsies, and survival analyses were conducted. Results from 95 patients (average age: 65.8 ± 10.6)
showed that while 6.3% had anaplastic lymphoma kinase (ALK)-rearranged mutations and 20.0%
had epidermal growth factor receptor (EGFR)-amplified mutations—with 9.5% receiving second-line
therapies—these mutations did not significantly correlate with overall survival. Although the sample
size of patients receiving targeted therapies was limited, the study highlighted improved overall
survival and progression-free survival rates compared to earlier trials, suggesting advancements
in systemic lung metastasis treatment. The study suggests that as more targeted therapies emerge,
the prospects for increased overall survival and progression-free survival in lung brain metastasis
patients will likely improve.

Keywords: brain metastases; lung cancer; systemic therapies; epidermal growth factor receptor;
anaplastic lymphoma kinase; radiosurgery
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1. Introduction

Multimodal treatment of metastatic cancer has changed in the genomic era. Targeted
therapies have improved systemic disease control in subsets of metastatic disease [1,2],
most notably for breast cancer, lung cancer, and melanoma [3–5]. As systemic disease is
better controlled and overall survival (OS) of patients with metastatic disease improves,
the incidence of brain metastases (BMs) has also risen [5–7].

Meanwhile, significant progress has been made in function-sparing microsurgical
techniques for the resection of solitary, dominant, and multiple symptomatic BMs [8,9].
Combining microsurgery with radiation therapy in the form of whole brain radiotherapy
(WBRT), focused radiation stereotactic radiosurgery (SRS), and fractionated SRS has re-
sulted in local control rates of 80%, 82%, and 84%, respectively [10–14]. New systemic
immune-modulating therapies or tyrosine kinase inhibitors (TKIs) have demonstrated clin-
ical evidence of at least partial blood–brain barrier (BBB) penetration and efficacy, unlike
prior chemotherapeutic agents [15]. New guidelines from the National Comprehensive
Cancer Network (NCCN) now mention the emerging role of systemic therapy in brain
disease [16]. Multiple ongoing clinical trials in lung, breast, and melanoma are underway
to better elucidate the role of systemic therapy in the multimodal algorithm for brain
metastases treatment [17–29].

The incidence of anaplastic lymphoma kinase (ALK)-rearranged mutations and epi-
dermal growth factor receptor (EGFR)-rearranged mutations in lung cancer patients is
around 5% and 15%, respectively. Approximately 20 to 40% of patients with metastatic
lung cancer will develop BMs [30–33]. Among these, 25% of lung cancer patients develop
ALK-rearranged mutations [34] and 33% of patients develop activating mutations [35]. Both
ALK and EGFR mutations strongly correlate with favorable systemic therapeutic responses
to TKIs and increased OS [36,37]. The incidence of BMs in EGFR and ALK patients is also
significantly higher than other mutational types [17,38], with approximately 30% of ALK
and 40% of EGFR patients having BMs [39,40]. Notably, retrospective, single-institution
analysis has suggested that systemic mutational status in patients with melanoma BM
correlates to improved local control (LC) and OS in patients undergoing craniotomy for
resection [41]. This is significant given that melanoma was one of the first systemic malig-
nancies to demonstrate the cerebral penetrance of systemic therapy and role of molecular
drivers (BRAF) in prognostication. The role of mutational status has not been well described
in patients with lung BMs.

Therefore, this study investigates the role of mutational status in lung cancer BM
patients undergoing surgical resection with respect to LC and OS. With our study, we aim
to (1) review the relationship between the extent of resection (EOR) and OS with lung
cancer BM after undergoing surgical resection; (2) evaluate the relationship among ALK
and EGFR mutations with the rate of gross total resection (GTR), local control, and OS; and
(3) discuss the targeted therapies administered for mutational lung cancer management
and their potential role in local control and OS.

2. Materials and Methods
2.1. Study Design

This surgical series was a multi-site, retrospective study of all cerebral lung cancer
patients undergoing resection at Emory University Healthcare hospital between January
2012 and May 2022, including two tertiary, academic referral hospitals, and two mid-sized,
community hospitals. We collected data from the CNS Tumor Outcomes Registry at Emory
(CTORE), a prospectively managed patient outcomes database for central nervous system
(CNS) tumors treated at participating sites. Our study was approved by the institutional
review board at Emory University and had obtained an informed consent waiver.

2.2. Patient Selection and Data Collection

Patients undergoing surgical resection for BM with a diagnosis of primary lung cancer
within the study period were included. Eligible patients were identified from the CTORE
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database and data were collected from primary review of the electronic medical record,
including clinical, pathology/genomic, and imaging data. These were reviewed for demo-
graphic data, Karnofsky Performance Scale (KPS), surgical procedure details and frequency
including EOR, complications (i.e., motor weakness or speech trouble after surgery, wound
infection, CSF leak, and/or seizures), local recurrence, pathology (i.e., primary tumor
and mutational statuses), extent of systemic disease (i.e., disease in bone, adrenal glands,
liver or other organs) and control of disease, prior therapy (i.e., chemotherapy, radiation,
and/or immunotherapy), adjuvant/postoperative therapy, and discharge/readmission
information. Imaging data were used for BM characterization, including location, number
of metastatic lesions, and volume of dominant lesion. Data regarding preoperative as
well as postoperative targeted therapy and radiation were also collected. The type of
radiation administered was characterized as either standard-fractionated, WBRT, or SRS.
Genomic data were obtained from pathology reports and Caris molecular profiling (Caris
Life Sciences, Dallas, TX, USA). Patient driver mutational statuses were categorized as
either EGFR-amplified, ALK-rearranged mutations present in the biopsied brain tissue,
or neither.

2.3. Statistical Analysis

Statistical analysis was performed using SAS version 9.4 (SAS Institute, Cary, NC,
USA). Descriptive statistics were performed for all demographic data. The primary end
points of the study were OS and local recurrence free survival (LRFS). OS was defined as
the time from the date of surgery to the date of death or the date of last follow-up. LRFS
was defined as the time from the date of surgery to the date of local recurrence or the date of
last follow-up. Univariate and multivariable analyses were performed by Cox proportional
hazard models to assess factors associated with OS and LRFS. Multivariable models were
selected using the backward variable selection approach with an alpha of removal of 0.2.
To account for the small sample size and low event rates, Firth’s penalized likelihood
bias-reduction approach was used. The Kaplan–Meier method was used to generate OS
and LRFS curves and survival curves were compared between different groups using the
log-rank test. Statistical significance was set at an alpha value of 0.05.

3. Results
3.1. Patient Population

During the study period between January 2012 and May 2022, 95 patients (Table 1)
underwent surgical resection of cerebral lung cancer with accessible molecular testing of
the biopsied brain tissue and were available to review in our electronic medical record.
This patient cohort had a mean age of 63.2 ± 10.4 years with 54 (56.8%) female pa-
tients and 41 (43.2%) male patients. Median preoperative KPS for the patient cohort was
80 (Table 1). A total of 43 (45.3%) patients had local recurrence of the resection site post-
surgery. A total of 7 (7.4%) patients had ALK-rearranged mutations and 19 (20.0%) patients
had EGFR-amplified mutations. The mean number of metastatic brain lesions for patients
was 2.64 ± 2.97 prior to surgery and the median number of metastatic lesions that devel-
oped post-surgery was 1 (0–3). The median time from lung cancer diagnosis to BM was
244 (12–932) days. A total of 72 (79.1%) patients had GTR of the BM during their first cran-
iotomy. Six patients required reoperation for BM resection and, of those, 83.3% of patients
had GTR. A total of 54 (58.7%) patients were readmitted after discharge with presentations
that included hypotension, tachycardia, seizures, altered mental status, speech and motor
impairments, and disease worsening (Table 2).
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Table 1. Clinical characteristics of cerebral lung cancer patients with pertinent demographic and
surgical variables.

Variable Level N (%) = 95

Age Mean (SD) 63.2 (10.4)
Gender Male 41 (43.2)

KPS Median (IQR) 80 (70–90)
ALK Mutation 7 (7.4)

Received adjuvant targeted therapy 3 (42.9)
EGFR Mutation 19 (20.0)

Received adjuvant targeted therapy 8 (42.1)
Patients without ALK/EGFR mutations receiving

immunotherapy 30 (31.6)

Was brain mets 1st presentation 66 (69.5)
Disease in bone 28 (29.5)

Disease in adrenal gland 13 (13.7)
Disease in liver 12 (12.6)

Prior chemotherapy 41 (43.2)
Prior immunotherapy 10 (10.5)

Prior radiation 36 (37.9)
Additional radiation given 34 (42.5)

Lobe of brain Frontal 35 (36.8)
Temporal 6 (6.3)
Parietal 22 (23.2)

Occipital 6 (6.3)
Cerebellar 26 (27.4)

Number of metastatic brain lesions Mean (SD) 2.64 (2.97)
Number of new brain metastases post-surgery Median (IQR) 1 (0–3)

Volume of dominant brain mets, cm3 Mean (SD) 17.28 (19.37)
Time to brain mets from lung cancer diagnosis (days) Median (IQR) 244 (12–932)

Extent of resection—1st craniotomy Gross total resection 72 (79.1)
Extent of resection—2nd craniotomy Gross total resection 5 (83.3)

Table 2. Complications of cerebral lung cancer patients with pertinent outcome variables.

Variable N (%) = 95

Wound infection after surgery 3 (3.2)
CSF leak after surgery 1 (1.1)

Intracerebral hemorrhage 2 (2.1)
Seizures after surgery 4 (4.2)

Local recurrence 43 (45.3)
Readmission 54 (56.8)

Readmission within 30 days 30 (31.6)
Reoperation required 6 (6.4)

In our study, three (42.9%) patients with ALK mutations (Table 1) received targeted
therapy in the form of TKIs and had a mean OS of 0.97 years. Of these patients, three
(42.9%) had adjuvant targeted therapies in the form of Crizotinib (TKI), Alectinib (TKI),
and Lorlatinib (TKI). Two (28.6%) ALK patients had targeted TKI therapy prior to sur-
gical resection in the form of Crizotinib with a mean OS of 2.93 years prior to requiring
surgical intervention.

Furthermore, eight (42.1%) patients with EGFR mutations (Table 1) received targeted
therapy in the form of TKIs and mAbs and had a mean OS of 3.06 years after surgical
resection of BMs. Of these patients, eight (88.9%) had adjuvant targeted therapies in the
form of Atezolizumab (mAb), Osimertinib (TKI), Pembrolizumab (mAb), and Erlotinib
(TKI). Six (31.6%) patients had targeted therapy prior to surgical resection in the form of
Gefitinib (TKI), Erlotinib, and Osimertinib with a mean OS of 4.39 years prior to requiring
surgical intervention.
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In addition, 30 (31.6%) patients without records of ALK or EGFR mutations in their
biopsied brain tissue received immunotherapy (Table 1) and had a mean OS of 2.50 years.
Of these patients, 21 (70.0%) had adjuvant targeted therapies in the form of Atezolizumab,
Ipilimumab (mAb), Pembrolizumab, Nivolumab (mAb), Ramucirumab (mAb), and Er-
lotinib. Ten (33.3%) patients had immunotherapy prior to surgical resection in the form
of Durvalumab, Nivolumab, Atezolizumab, Pembrolizumab, Crizotinib, and Denosumab
(mAb) with a mean OS of 1.57 years prior to requiring surgical intervention.

The median survival from the start of treatment administration was 3.55 (95% CI:
1.70-NA) years (Figure 1). When stratified, the median survival was 6.01 (95% CI: 2.75-NA)
years for patients who had immunotherapy for their NSCLC and an ALK or EGFR mutation
that required targeted therapy in the form of TKIs and mAbs. On the other hand, the median
survival from the start of treatment administration was 4.08 (95% CI: 1.59-NA) years
for patients who had immunotherapy for their NSCLC but not ALK or EGFR mutation-
related targeted therapy, and 1.70 (95% CI: 1.30-NA) years for patients who did not have
immunotherapy or ALK or EGFR mutation-related targeted therapy (Figure 2). These
levels were not statistically significant from each other, however.
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Figure 2. Kaplan–Meier curve of survival from 1st treatment administration stratified by immunother-
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3.2. Univariate Association with Overall Survival and Local Recurrence-Free Survival

Univariate analysis of our surgical cohort found adjuvant radiation therapy (HR:
0.26; 95% CI: 0.12–0.52; p-value = <0.001), adjuvant chemotherapy (HR: 0.54; 95% CI:
0.30–0.98; p-value = 0.040), new brain metastases within a year of surgery (HR: 3.37; 95%
CI: 1.66–6.85; p-value = <0.001), systemic progressive disease (HR: 3.82; 95% CI: 1.84–7.92;
p-value = <0.001), and type of radiation therapy (SRS vs. standard fractionated) (HR: 0.44;
95% CI: 0.20–0.94; p-value = 0.030) as prognostic factors for overall survival (Table 3). ALK-
rearranged (HR: 2.26; 95% CI: 0.87–5.84; p-value = 0.085) and EGFR-amplified (HR: 1.63;
95% CI: 0.76–3.49; p-value = 0.692) mutations were not significantly associated with overall
survival. Furthermore, there was no statistical difference in OS between patients with GTR
versus near-total resection.
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Table 3. Univariate association with predictors of overall survival.

Covariate Level N
OS (yrs)

Hazard Ratio (95% CI) p-Value

Adjuvant radiation therapy 81 0.26 (0.12–0.52) <0.001
ALK mutation 7 2.26 (0.87–5.84) 0.085
EGFR mutation 19 1.63 (0.76–3.49) 0.692

Adjuvant chemotherapy 54 0.54 (0.30–0.98) 0.040
Previous radiation 36 1.04 (0.58–1.89) 0.889

Motor weakness or speech trouble after surgery 31 1.68 (0.93–3.02) 0.081
Number of new brain metastases within

a year of Ssurgery 1.03 (0.98–1.08) 0.281

New brain metastases within a year of surgery 3.37 (1.66–6.85) <0.001
Systemic progressive disease 54 3.82 (1.84–7.92) <0.001

Type of radiation therapy SRS (1, 3, or 5 fractions) 66 0.44 (0.20–0.94) 0.030
Standard fractionated

WBrT (10 or
15 fractions)

15 - -

Volume of tumor—1st carniotomy 1.01 (0.99–1.02) 0.304
Extent of resection—1st surgery Gross-total resection 72 0.60 (0.30–1.21) 0.154

Subtotal resection 19 - -

In addition, univariate analysis of our surgical cohort found number of new brain
metastases within a year of surgery (HR: 1.07; 95% CI: 1.01–1.14; p-value = 0.030) and vol-
ume of tumor resected in the first craniotomy (HR: 1.02; 95% CI: 1.00–1.03; p-value = 0.024)
as prognostic factors for LRFS (Table 4). EGFR/ALK mutations and EOR were not signifi-
cant prognostic factors for LRFS.

Table 4. Univariate association with predictors of local recurrence-free survival.

Covariate Level N
LRFS (yrs)

Hazard Ratio (95% CI) p-Value

Adjuvant radiation therapy 81 4.86 (0.66–35.76) 0.087
ALK mutation 7 0.75 (0.18–3.13) 0.691
EGFR mutation 19 0.50 (0.23–1.11) 0.084

Adjuvant chemotherapy 54 0.74 (0.38–1.44) 0.372
Previous radiation 36 0.57 (0.29–1.11) 0.093

Motor weakness or speech trouble after surgery 31 1.34 (0.69–2.62) 0.386
Number of new brain metastases within

a year of surgery 1.07 (1.01–1.14) 0.030

New brain metastases within a year of surgery 45 1.06 (0.96–1.19) 0.253
Progressive disease 54 1.37 (0.74–2.54) 0.311

Type of radiation therapy SRS (1, 3, or 5 fractions) 66 1.30 (0.54–3.14) 0.558
Standard fractionated

WBrT (10 or
15 fractions)

15 - -

Volume of tumor—1st craniotomy 1.02 (1.00–1.03) 0.016
Extent of resection—1st surgery Gross-total resection 1.53 (0.66–3.53) 0.316

Subtotal resection - -

The overall median survival was 2.12 years (Figure 3). The median survival for
patients with ALK-rearranged mutations was 1.29 years (Figure 4), and the median survival
for patients with EGFR-amplified mutations was 5.19 years (Figure 5). Additionally, the
median survival for patients with GTR was 2.12 years (Figure 6). Furthermore, the overall
LRFS was 1.89 years (Figure 7). Median LRFS could not be calculated for ALK patients
due to limited sample size (Figure 8). The median LRFS for EGFR patients was 4.35 years
(Figure 9). The median LRFS for patients with GTR was 1.76 years (Figure 10).
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3.3. Multivariate Associations

For OS, systemic progressive disease (HR: 4.74; 95% CI: 1.89–11.85; p-value
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≤ 0.013),
type of radiation therapy (SRS vs. standard fractionated) (HR: 0.30; 95% CI: 0.14–0.68;
p-value = 0.008), new brain metastases within a year of surgery (HR: 1.12; 95% CI: 1.01–1.23;
p-value = 0.010), and adjuvant chemotherapy (HR: 0.46; 95% CI: 0.21–1.02; p-value = 0.024)
were prognostic factors for survival (Table 5).

Table 5. Multivariate association with predictors of overall survival.

Covariate Level
OS (yrs)

Hazard Ratio (95% CI) Adjusted p-Value Model p-Value

<0.001
Systemic progressive disease 4.74 (1.89–11.85) 0.013 -

Type of radiation therapy SRS (1, 3, or 5 fractions) 0.30 (0.14–0.68) 0.008 -
Standard fractionated

WBrT (10 or 15 fractions) - - -

New brain metastases within a
year of surgery 1.12 (1.01–1.23) 0.010 -

Adjuvant chemotherapy 0.46 (0.21–1.02) 0.024 -

4. Discussion

With the growing importance of mutational marker analysis to target therapy, the
multimodal management of BMs is poised for significant change. Consequently, multidis-
ciplinary teams of neurosurgical, neuro-oncological, and radiation practitioners must be
aware of the effects that mutations play on OS, systemic treatment response, and, poten-
tially, regarding intracranial disease control as well. Our retrospective study evaluates the
impact of ALK and EGFR mutational markers in the management, local control, and EOR
of BMs as well as by discussing the potential role that newer second-line targeted therapies
played for BM management.

Additionally, 30 patients without ALK or EGFR mutations in the biopsied brain tissue
received targeted therapies, but they did not have ALK or EGFR mutations in the biopsied
brain tissue. This may be attributed to ALK and EGFR mutations in the primary lung
tumor sites that were not present in BM pathology. Such an incoherence between primary
tumor and metastatic lesion mutational status is known as discordance. Discordance
is common among metastatic lung cancer patients, with 30–50% of cases reporting this
phenomenon [42,43]. As a result, outcomes of targeted therapy are further complicated, as
discordant tumors could act as confounding factors on survival and the overall efficacy of
treatments [44,45].

Our multivariate analysis showed that systemic progressive disease, type of radiation
therapy, new BMs within a year of surgery, and adjuvant chemotherapy were prognostic fac-
tors for survival. These findings are externally validated by previous surgical series [46–49].
New BMs within a year of surgery is an especially interesting finding since current scientific
literature does not provide a definitive time frame in which new BMs could yield a hazard
to patient survival. Our analysis also showed that any new BMs within a year of resection
can significantly reduce patient survival. Additionally, we also found the number of new
BMs within a year of surgery and volume of tumor to be significant prognostic factors for
LRFS. Tumor size has been a known predictor for local recurrence of BM and our results
are externally validated by the literature [50,51]. The number of new BMs that occur within
a year was another interesting prognostic factor. More new BMs meant a greater hazard for
local recurrence of the disease, a finding that, although consistent with previous literature,
is new and more specific [52,53].

Some of our results, however, had differing findings from sources in the external
literature that studied the efficacy of BM mutational status and applied targeted therapy.
Most notably, unlike the prior work by Colditz et al. detailing a relationship between
BRAF mutational status predicting favorable outcomes in melanoma patients [41], we were
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not able to find significant associations between mutational status and EOR as well as OS
in our lung cancer cohort. Their study cited heterogeneous treatment protocols, where
first-line (single-agent immune checkpoint therapy) and second-line (anti-CTLA-4 and
anti-PD-1) therapies were used at various time periods. Furthermore, their institution also
had limitations on which patients could access BRAF-targeted therapy, requiring treatment
with immune-checkpoint therapy first. Thus, varying administration protocols create an
unstandardized basis for comparing our results to those of Colditz et al. Furthermore,
the differences in our findings can also be attributed to potential deviations in the mecha-
nisms of the pathophysiological disease progression to BM between metastatic lung cancer
and melanoma.

Furthermore, our ALK and EGFR mutational patient cohort that received targeted
therapy had a larger median OS and LRFS (6.01 and 5.75 years, respectively) than the group
that did not have any mutations in biopsied brain tissue but did receive immunotherapy
(4.08 and 1.89 years, respectively). These survival times, however, were greater than the me-
dian survival time for patients who did not receive any immunotherapy (1.70 and 1.76 years,
respectively). The cost versus the benefit of improving OS by this much should be assessed
in future studies. All three of our patient cohort groups had longer survival times than those
published in the literature, especially for the groups that received targeted therapies, which
tended to be 8–26 months OS [54–58]. In addition, literature findings showed 18–24 months
to be the range for local recurrence free survival, externally validating our findings [59–62].
Furthermore, in our cohort, EGFR mutational status trended towards being significant in
prolonging LRFS, which is in line with findings in the literature as well [63]. Thus, the
combinations of targeted therapies in this series and their respective chronology of use
seem to confer survival and local control benefits and will be studied further through future
work from our group to create and evaluate formally assessable results.

Limitations

Our study was limited by its retrospective nature. Although targeted therapies for
ALK-rearranged and EGFR-amplified mutations show promise in combination with surgi-
cal resection of cerebral lung cancer, additional analysis and further studies must elucidate
these relationships to optimize their inclusion in treatment protocol. Larger sample sizes
and randomized studies could yield better associations between surgical resection, muta-
tion status, targeted therapy, and postoperative outcomes. Furthermore, our study spans
10 years; during this time, there has been an evolution of targeted therapies used for ALK-
rearranged and EGFR-amplified mutations. Future work will focus on improved follow-up
and increased numbers of patients via multi-institutional collaboration with complete
genomic sequencing as well as classifying the patient mutational status and their respective
therpies at a more granular level of detail. Given the time period of our studies, we also
expect increasing utilization of cerebral-penetrant systemic therapies in future patients that
will allow us to better evaluate the role of these therapies in surgical BM patients.

5. Conclusions

With our retrospective review of 95 patients undergoing surgical resection of cerebral
lung cancer from January 2012 to May 2022, we identified key prognostic factors for OS
and LRFS. Additionally, we assessed the role of ALK and EGFR mutations in local control
of disease and OS. Patients with either ALK or EGFR mutation-related targeted therapies
combined with immunotherapy showed the highest survival, though differences between
groups were not statistically significant. Prognostic factors for OS included systemic
progressive disease, type of radiation therapy used, new BMs within a year of surgery, and
adjuvant chemotherapy.

In the evolving landscape of genomic medicine, our findings underscore the signifi-
cance of directed-oncological therapies. We hope to continue building upon our work as
we gather more patients who have received second line CNS-penetrant therapies better
able to cross the blood–brain barrier and conduct follow-up studies comparing subsequent
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therapy cohorts to traditional systemic therapy. Furthermore, we hope to raise awareness
for the administration of combination targeted therapies as well as their timing to inspire
future scientific investigations for these questions. Gaining a better understanding of these
second-line therapies will enable individualized therapies to potentially increase survival
times and local control of BM.
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