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Simple Summary: Thermal ablation, including radiofrequency ablation (RFA) and microwave abla-
tion (MWA), for hepatocellular carcinomas (HCCs) is accepted as a curative treatment option in many
HCC treatment guidelines because of the better clinical outcomes performed in a more minimally
invasive manner. Essential management tips to successful ablation therapy can be organized into
five categories: understanding the principles of ablation therapies and the characteristics of ablation
devices, assessing the benefits and risks of ablation, practicing ultrasound-guided needle tip control
and visualization, taking advantage of imaging guidance techniques, and evaluating therapeutic
response to ensure adequate ablation. We herein provide an overview of the basic principles and
characteristics of tissue heating, highlight the safety management of ablation therapy, and provide
the technical skills of sophisticated planning and image guidance technologies to improve short- and
long-term outcome of HCC patients. These essentials will contribute to the expansion of thermal
ablation applications in clinical settings.

Abstract: Thermal ablation therapy, including radiofrequency ablation (RFA) and microwave ablation
(MWA), is considered the optimal locoregional treatment for unresectable early-stage hepatocellular
carcinomas (HCCs). Percutaneous image-guided ablation is a minimally invasive treatment that
is being increasingly performed because it achieves good clinical outcomes with a lower risk of
complications. However, the physics and principles of RFA and MWA markedly differ. Although
percutaneous thermal ablation under image guidance may be challenging in HCC cases with limited
access or a risk of thermal injury, a number of ablative techniques, each of which may be advantageous
and disadvantageous for individual cases, are available. Furthermore, even when a HCC is eligible for
ablation based on tumor selection and technical factors, additional patient factors may have an impact
on whether it is the appropriate treatment choice. Therefore, a basic understanding of the advantages
and limitations of each ablation device and imaging guidance technique, respectively, is important.
We herein provide an overview of the basic principles of tissue heating in thermal ablation, clinical
and laboratory parameters for ablation therapy, preprocedural management, imaging assessments of
responses, and early adverse events. We also discuss associated challenges and how they may be
overcome using optimized imaging techniques.

Keywords: percutaneous thermal ablation; hepatocellular carcinoma; image guidance; radiofrequency
ablation; microwave ablation

1. Introduction

Locoregional therapies are defined as minimally invasive image-guided liver tumor-
directed procedures that can be categorized into ablative therapy, transcatheter therapy, and
radiation therapy. Ablative therapies for hepatocellular carcinomas (HCCs) are classified
as either chemical ablation (including ethanol or acetic acid injection) and thermal ablation
(including laser, radiofrequency, microwave, cryoablation, and high-intensity focused
ultrasound). Percutaneous ethanol injection (PEI) was the first ablative technique used for
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treating early-stage hepatocellular carcinomas (HCCs), where absolute alcohol is injected
into the tumor. However, PEI therapy has been replaced by newer and more effective
thermal ablation techniques due to its high local recurrence rate.

Thermal tumor ablation therapy can destroy an entire tumor by using heat to kill
malignant cells and is one of the promising minimally invasive techniques for the treatment
of nonresectable HCCs. Thermal ablation, including radiofrequency ablation (RFA) and
microwave ablation (MWA), offers the advantages of being less invasive due to the use
of a percutaneous procedure with ultrasonography (US) or computed tomography (CT)
as the guiding modality and the lower risk of major complications. Therefore, recurrent
small HCCs are also eligible for repeat ablation. Today, percutaneous RFA and MWA are
considered the standard local ablative modalities for the treatment of early-stage HCCs.
From a technical standpoint, complete, accurate, and safe ablation is essential to achieve
the best outcomes in ablation for HCCs. Many technological advances are continually
introduced to improve upon the effectiveness of thermal ablation. To tailor therapy to a
specific patient’s condition (e.g., thrombocytopenia, coagulopathy, ascites, history of biliary
surgery or chronic renal disease, etc.), careful monitoring can help prevent complications
after ablation.

Essential management tips to successful ablation therapy can be organized into five
categories: understanding the principles of ablation therapies and the characteristics of
ablation devices, assessing the benefits and risks of ablation, practicing ultrasound-guided
needle tip control and visualization, taking advantage of imaging guidance techniques, and
evaluating therapeutic response to ensure adequate ablation. Due to the rising complexity
of treatment devices and expanding paradigms for tumor ablation, an understanding of the
basic principles of ablation is a prerequisite for the effective treatment of HCCs. We herein
highlight various aspects of and safety management by thermal ablation therapy. We also
discuss thermal ablation techniques in recent imaging and technological guidance. These
essential tips will be very helpful for physicians performing successful ablations of HCCs.

2. Principles of Thermal Ablation and Treatment Devices
2.1. Radiofrequency Ablation (RFA)

RFA is a current loop comprising a generator, cabling, electrodes, and the ground-
ing pad (Figure 1). An electrical current of ~450–500 kHz causes the ions inside the
tissue to rapidly oscillate, resulting in resistive tissue heating around the active electrode,
which is known as the Joule effect [1]. This induces local temperatures of between 60 and
100 ◦C (Table 1).

Table 1. Characteristics of RFA and MWA.

RFA MWA

Heat generation Joule effect Induction heating

Energy Alternating current
(450 kHz)

Electromagnetic waves
(2.45 GHz)

Needle gauge 17 G 13 G (Emprint®); 14 G, 17 G,
18 G (Mimapro®)

Output voltage, W ~200 W ~100 W
Temperature, ◦C ~100 ◦C ~150 ◦C
Ablation zone Oval (Oval~) Sphere
Heat-sink effect Strong Weak
Grounding pads Necessary Unnecessary

Parameters on ablation Energization time, voltage,
tissue impedance Energization time, voltage

A 17 gauge electrode needle-type probe is employed and connected to a 200-watt RF
generator. There are two main types of electrodes for RFA: multiple expandable electrodes
(such as StarBurst® (Rita Medical Systems; Mountain View, CA) and LeVeen® (Boston
Scientific; Natick, MA, USA)) and internally cooled electrodes (including Cool-tip® (Co-
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vidien; Mansfield, MA, USA)). A bipolar RFA system (CelonPOWER® (CelonLabPower;
Teltow, Germany)) has been established with multiple cooled electrodes in the absence
of a grounding pad. A RFA electrode was recently developed to adjust the ablation
range. Using a sliding insulation sheath, the active metallic tip of the RFA needle (such as
VIVA® (STARMed; Goyang, Gyeonggi-do, Republic of Korea), Vari Tip® (BVM Medical;
Hinckley, UK), and arfa® (Japan Lifeline; Tokyo, Japan)) may be adjusted in 5 mm intervals
up to a length of 4 cm. Therefore, the length of the active tip may be selected according to
the size, location, and shape of the tumor.
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Figure 1. Schematic diagram of the RFA system and its mechanism of heat generation. Note,
RF: radiofrequency.

2.2. Microwave Ablation (MWA)

Electromagnetic energy operating at 915 MHz or 2.45 GHz may be used to produce
very high (>150 ◦C) temperatures, which is known as an induction heating [1]. Microwave
heating is caused by the rotation of water molecules, and the process differs from the Joule
heating mechanism that underpins RFA (Figure 2). In addition, MWA does not require a
grounding pad because an electric current does not flow through a patient’s body (Table 1).

Recent developments and improvements in technologies have created a new mi-
crowave ablation system (Emprint® (Covidien/Medtronic; Minneapolis, MN, USA) and
MIMA Pro® (Mima-pro Scientific Inc.; Nantong, China)). The Emprint ® antenna probe
is only 13 G, whereas Mimapro ® has three types: 14 G, 17 G, and 18 G. An electrode
needle-type probe is connected to a 100-watt MW generator. The circulation of sterile
saline solution down the shaft to the distal probe tip internally cools the probe antenna and
cables, which achieves thermal control and provides a reliable and stable ablation zone
near the antenna shaft during tissue desiccation. The desired field shape is obtained by mi-
crowave field control, despite changes in the tissue environment by ablation. Furthermore,
heat-induced changes in the dielectric constant immediately around the probe antenna are
minimized by wavelength control [2]. Therefore, larger ablation zones are generated by
MWA. The ablation time is shorter, the ablation zone is larger, and the heat sink effect is



Cancers 2023, 15, 4763 4 of 14

weaker with MWA than with RFA. In clinical settings, MWA and RFA are considered to
have equivalent efficacy, complication rates, local recurrence rates, and survival rates [3,4].
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2.3. Potential Immunomodulatory Effects

Thermal ablation involves the induction of irreversible damage to cancer cells by
localized heat and may result in the release of tumor antigens. Thermal ablation-induced
inflammation and increases in tumor antigens can be expected to promote the cancer
immunity cycle. The combination of immunotherapy and thermal ablation may be an
emerging therapeutic option with enhanced efficacy [5–7].

3. Clinical Indications and Proper Methodology

Percutaneous thermal ablation is commonly performed on patients with HCCs in
Eastern and Western countries, generally for Child–Pugh class A or B with ≤3 tumors
of a diameter ≤3 cm [8–12]. According to international HCC clinical practice guidelines,
there is no difference in treatment indication between RFA and MWA. We should un-
derstand the ablation mechanisms and properties of therapeutic needles for maximizing
therapeutic effects. Intermediate-stage HCCs or lesions larger than 5 cm might also be
treated with ablation if effective local tumor control is achieved with available ablation and
guidance techniques. Moreover, percutaneous thermal ablation can also be effective and
safe for elderly patients, and its clinical benefits do not appear to be negatively affected by
comorbidities [13,14].

However, relatively large tumors (>2.5–3 cm) have been identified as a predictor
of local recurrence, but not overall survival, after RFA [15]. Therefore, RFA needs to be
selected according to not only technical feasibility and tumor sizes, but also the severity of
portal hypertension if present, and the remaining liver volume and expected liver function
after surgery in each patient.

4. Tips for Beginning Tumor Ablation
4.1. Planning US and Software-Based Planning

A simulation of the ablation procedure allows operators to treat patients more ef-
ficiently, which results in shorter procedure times and better outcomes. Planning US is
generally performed one day before treatment to establish whether percutaneous ablation
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therapy is feasible. It has the advantage of planning ablation strategies, including the
therapeutic needle path and placement, and overlapping ablations [16,17].

Software-assisted planning and simulations are also beneficial for percutaneous abla-
tion. Graphics software (including Advantage Workstation® (GE Healthcare; Waukesha,
WI, USA), SYNAPSE VINCENT® (Fujifilm Medical; Tokyo, Japan), Ziostation2® (Ziosoft
Inc.; Tokyo, Japan), AZE Virtual Place® (Canon Medical; Tokyo, Japan), and BioTrace
IO® (TechsoMed; Rehovot, Israel)) display the following scenarios: a pre-interventional
simulation, including the orientation and positioning of a tumor and the optimization of
access paths, and a peri-interventional simulation, including predictions of the ablation
zone and thermal organ injury [18,19].

4.2. Grounding Pad on the Back

Temperatures at the grounding pad are dependent on a number of variables, including
the grounding pad surface area, the amount of current deposited in the liver, the orientation
of the pad, and the pad’s distance from the RF electrode [20]. For example, a decrease in
the distance between the electrode and the pad facilitates the flow of electricity. Therefore,
lower impedance between the RF electrode and the ground pad means that current density
(and, thus, heating) around the RF electrode is increased. Although the grounding pad is
generally fixed to a patient’s thighs, placement on the back is favorable for shortening the
ablation time without reducing the ablation zone and increasing pain [21].

4.3. Body Position Change

The liver may be shifted by a patient’s body position, which may help identify the
tumor site when sonogram poorly visualizes the liver. Patients are generally placed in the
supine position for a percutaneous approach. The semi-Fowler position may be useful for
showing a HCC in the right hepatic lobe, particularly the subphrenic area, due to descent
down the liver [22], while left lateral decubitus positioning may allow for imaging over
the liver because the bowels, which contain intraluminal air, are less likely to be present in
right subcostal scanning [23].

4.4. Control of Needle Insertion on Clear US Images

The precise positioning of needle insertion through the center of a tumor is an essential
task for complete tumor ablation. However, the needle tip is sometimes difficult to discern
under the guidance of US, and a failure to visualize the needle tip during needle advance-
ment may result in a technical error. The difficulty associated with aligning the needle
and US transducer is one of the most common factors contributing to inadequate needle
visualization [24]. Therefore, advancing the needle without observing the tip properly must
be avoided. Cooperative manipulation between the US probe and the therapeutic needle is
challenging because of the dynamic nature of US and, thus, requires extensive practice.

4.5. Extreme Steam Popping

Extreme steam popping may cause subcapsular or intraperitoneal hemorrhage during
ablation for HCCs [25,26]. Low-power ablation may delay steam popping [27]; therefore,
the low-power technique of the RFA protocol with manual multistep increments in power is
widely used to prevent a rapid increase in intertumoral pressure. New RFA systems (such
as the VIVA RF system® (STARMed; Goyang, Gyeonggi-do, Republic of Korea) and the arfa
RF ablation system® (Japan Lifeline; Tokyo, Japan)) have recently been equipped with the
linear mode of ablation, with gradual increases of 5 or 10 watts each minute automatically
until the break of energization. Additionally, impedance monitoring is extremely useful for
predicting the occurrence of popping in RFA. A temporary power outage may help prevent
extreme steam popping when a hyperechoic zone cannot be visualized around the needle
despite a higher voltage for ablation.
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5. Risk Assessment for Tumor Ablation
5.1. Low Platelet Count (Thrombocytopenia)

Although hemorrhagic complications are rare with percutaneous ablation therapy,
thrombocytopenia or platelet dysfunction in patients with chronic liver disease may in-
crease the risk of post-operative bleeding following invasive procedures [28], and platelet
transfusions may be advised in clinical practice for platelet counts <50,000/µL. Addition-
ally, lusutrombopag, an orally active, small-molecule thrombopoietin receptor agonist that
induces the production of endogenous platelets, may be used as prophylaxis to reduce the
risk of bleeding [29,30]. However, the use of platelet transfusions to prevent post-operative
bleeding is controversial because it has not yet been established whether prophylactic
platelet transfusion is superior to no prophylaxis, if the platelet count threshold is appropri-
ate as a guide to initiate the transfusion of prophylactic platelets, and what dose of platelets
is needed to prevent post-operative bleeding [31,32].

5.2. Low Levels of Blood Clotting Factors (Coagulopathy)

Routine coagulation screening is typically performed to predict post-operative bleed-
ing in patients with liver cirrhosis. Before an invasive intervention, fresh frozen plasma
(FFP) transfusion is considered for patients with a prothrombin time–international normal-
ized ratio (PT-INR) ≥ 1.5; however, the thresholds used for PT-INR correction in clinical
settings lack supportive evidence. The routine correction of thrombocytopenia and coag-
ulopathy in patients with liver dysfunction-induced coagulation abnormalities prior to a
low-risk ablation procedure is generally not recommended [33]. Furthermore, a previous
study demonstrated that the use of FFP transfusion to reduce PT-INR and expedite inter-
ventions was ineffective in critically ill patients with coagulopathy associated with liver
cirrhosis [34].

5.3. Ascites, Esophagogastric Varices, and Hepatic Encephalopathy

HCC patients with poor liver function may develop ascites, variceal hemorrhage, or
hepatic encephalopathy. The treatment of these symptoms needs to be initiated immediately
prior to an invasive intervention for HCCs, and locoregional therapies are generally planned
after the resolution of these symptoms. However, some HCC patients with persistent
symptoms may receive locoregional therapies. For example, a percutaneous procedure
including ablation and biopsy is widely considered a contraindication in the presence
of ascites due to the risk of uncontrollable bleeding into ascites [35]. Previous studies
reported that image-guided liver interventions in the presence of ascites did not affect the
post-operative hemorrhage rate [36,37]. Salvage locoregional therapy may prolong overall
survival, even in patients with a higher Child–Pugh score [38]; however, the decision
regarding eligibility for ablation requires careful consideration.

5.4. History of Biliary Surgery/Interventions

Post-ablation infections, including cholangitis or liver abscess, are rare, and there is no
consensus on the effectiveness of prophylactic antibiotics for patients undergoing thermal
ablation to reduce the risk of postprocedural infection [39,40]. However, the high risk of
cholangitis in patients who underwent biliary surgery or endoscopic sphincterotomy is
primarily caused by failed or incomplete biliary drainage [41,42], and bilioenteric anas-
tomosis strongly correlated with the development of cholangitis, potentially leading to
severe complications. Therefore, patients with a history of biliary surgery or endoscopic
sphincterotomy require more rigorous antimicrobial prophylaxis.

5.5. Comorbidity of Renal Failure

Difficulties are associated with the treatment of HCCs in patients with chronic kidney
disease (CKD) because CKD itself is associated with a 1.5-fold increased risk of bleeding [43].
Even if HCC patients complicated with renal failure have a normal platelet count, increased
capillary fragility and the disturbance of blood coagulation may result in post-operative
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hemorrhage. Therefore, close attention to severe CKD is needed to prevent post-operative
bleeding [44,45].

6. Management of Factors Affecting the Visualization of Tumors in US

Achieving a complete pathologic response by ablation for HCCs requires a transient
ablative hyperechoic zone to cover it entirely during a procedure. In short, the needle is
introduced percutaneously into the center of the tumor nodule on B-mode US, and the
needle tip is positioned at the deepest margin of the target tumor. Multiple overlapping
ablation technique is sometimes required due to the geometry of the tumor. However, it
can be challenging to ablate HCCs under B-mode US guidance when HCCs have poor
sonographic conspicuity. Then, we need some progressive approaches to cancer detection.

6.1. Artificial Ascites/Pleural Effusion Technique

The creation of artificial ascites or pleural effusion is a supportive ablation technique
for HCCs located close to the gastrointestinal tract or diaphragm [46–48]. Percutaneous
image-guided ablation for HCCs in these high-risk locations is technically challenging
due to the risk of thermal injury to the surrounding organ and/or the poor sonographic
visualization of a tumor caused by an overlap with the intestines or lungs. Intraperitoneal
or intrapleural infusion may act as an acoustic window and a thermal blanket by ensuring
the adequate separation of the ablation zone from the adjacent organ.

6.2. Contrast-Enhanced US (CEUS) Guidance

Microbubble contrast agents are widely used in US imaging. Sulfur hexafluoride mi-
crobubbles (SonoVue®; Bracco SpA, Milan, Italy), perflutren lipid microbubbles (Definity®;
Bristol-Myers Squibb, North Billerica, MA), perflutren protein microbubbles (Optison®; GE
Healthcare, Buckinghamshire, UK), and perfluorocarbon microbubbles (Sonazoid®; GE
Healthcare, Oslo, Norway) are second-generation contrast agents. These microbubbles pro-
vide stable nonlinear oscillation in a low power acoustic field because of their hard shells,
producing great detail in the harmonic signals in real time. Dynamic CEUS displays similar,
but distinct, vascular patterns to dynamic CECT; the US contrast agents are retained within
blood vessels (blood pool contrast agents), whereas those for CT and magnetic resonance
imaging (MRI) move into the extracellular space until their concentrations balance between
the intravascular and extracellular spaces. Meanwhile, the Sonazoid® can be taken up by
Kupffer cells in the liver, and Sonazoid® microbubbles accumulate in the liver parenchyma
over time (Figure 3).

CEUS increases conspicuity and more accurately characterizes hypervascular HCCs
that are poorly visualized in B-mode US. HCCs are visualized as defects in the liver
parenchyma during the Kupffer phase, only with Sonazoid use. Therefore, these defect
lesions can be used as a target for the insertion of a single needle. Meanwhile, advanced
skill is required with SonoVue®, Definity®, or Optison® use in CEUS guidance because the
optimum timing is too short to search for enhanced HCC nodules and insert the therapeutic
needle during the early vascular phase (within approximately two minutes after injection).

CEUS guidance in ablation can improve diagnostic performance through the correct
targeting of HCCs and real-time needle navigation with good short-term treatment re-
sponses. The technical success rate of a single RFA session was significantly higher with
CEUS than with B-mode US (94.7% vs. 65.0%, p = 0.043) [49]. Furthermore, the number of
RFA sessions conducted in a historical cohort was smaller with Sonazoid CEUS guidance
than with B-mode US guidance [50]. Another study showed that the sustained local control
rate was markedly higher for CEUS-guided RFA than for B-mode US-guided RFA (85.3%
vs. 66.4% at 2 years) [51].
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Figure 3. Pharmacokinetic behaviors of US contrast agents. The vascular phase shows tumor
vascularity. The artery- and portal-dominant time zones in the vascular phase are referred to as the
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Sonazoid®) shows hepatic parenchymal findings.

6.3. Fusion Imaging Guidance

Advances in technology have led to the introduction of imaging techniques that com-
bine CT or MRI and US in clinical practice, and fusion imaging has emerged as a valuable
guide for ablating small HCCs with poor conspicuity in US [52–54]. Image fusion has
evolved into a relatively mature option for high-end US machines, with many manufac-
turers offering various options. The names of these US machines highlight the nature of
their function: Real-time Virtual Sonography® (Fujifilm Medical; Tokyo, Japan), Volume
Navigation® (GE Healthcare; Wauwatosa, WI, USA), PercuNav® (Philips Healthcare; Both-
ell, WA, USA), Smart Fusion® (Canon Medical; Tokyo, Japan), and eSie Fusion Imaging®

(Siemens Healthcare; Forchheim, Germany). The movement of the US transducer allows
for the display of two-dimensional (2D) multiplanar reconstruction (MPR) images from
CT or MRI in the same plane as US images (Figure 4). Thus, CT/MR–US fusion imaging
can improve the visualization of inconspicuous HCCs and helps us to understand the
three-dimensional relationship between the liver vasculature and HCCs. Furthermore, the
operator confidence is increased by targeting with CT/MR-US fusion imaging techniques,
and the technical success rates for HCCs with poor conspicuity ranged from 94.4 to 100%.

Treatment responses may also be monitored during ablation using US fusion imag-
ing. Moreover, fusion imaging allows for side-by-side comparisons of real-time 2D (post-
ablation) and MPR (pre-ablation) US images as well as easy visualization of the ablative
margin during ablation. US–US fusion imaging allows side-by-side comparison of the abla-
tive margin during the ablation, and this feedback helps operators to recognize residual tu-
mors. Moreover, US–US overlay fusion can visualize the ablative margin immediately after
ablation because the tumor image is projected onto the ablative hyperechoic zone. Previous
studies demonstrated that a sufficient ablative margin was achieved using US-US overlay
fusion guidance, which ultimately reduced the risk of local tumor progression [55,56].

A flickering screen in image fusion may occur when the US probe with a magnetic
sensor becomes distant from the magnetic generator. The magnetic field roughly extends
up to 60 cm ahead of the magnetic generator. Therefore, the generator should be set up
above the patient’s body; keeping a close distance between the generator and the US probe
is needed for fusion imaging.
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7. Treatment Response Assessment

Ablative heating leads to tissue dehydration and water vaporization, and a transient
hyperechoic ablated zone arises due to the generation of vapor bubbles as strong acoustic
scatterers. Therefore, the HCC needs to be fully covered by an ablative hyperechoic zone,
regarded as a necrotic lesion, during the ablation procedure [57,58].

Multiphasic CT or MRI with a contrast material is routinely used for post-ablation
surveillance imaging [59–63], and the first follow-up imaging is usually scheduled four to
six weeks after therapy. In the follow-up period, the patient may develop not only local
tumor progression but also new intrahepatic recurrence, and clinical long-term follow-up
will provide support to successfully detect these lesions. The aims of post-ablation imaging
are three-fold: 1, to assess the technical success of the ablation and identify immediate
adverse events; 2, to accurately detect tumor progression and intrahepatic recurrences;
and 3, to identify any distant extrahepatic recurrences. Ablation is deemed successful
when both the absence of tumor vascular enhancement and a sufficient ablative margin
are achieved. The safety margin of ablation is regarded to be >5 mm to avoid the risk of
local tumor progression, because microsatellite lesions may be distributed around the HCC
nodule [64,65]. Therapeutic responses are assessed by comparing axial images before and
after ablation, generally in a side-by-side manner. If the residual HCC is obscured in the
reactive hyperemic region, side-by-side comparisons and measurements of the ablative
margin may result in false and misleading ablation treatment assessments. Graphics
interface software (such as Advantage Workstation® (GE Healthcare; Waukesha, WI, USA),
Syngo.via VB20A® (Siemens Healthcare; Forchheim, Germany), SYNAPSE VINCENT®

(Fujifilm Medical; Tokyo, Japan), Ziostation2® (Ziosoft Inc.; Tokyo, Japan), AZE Virtual
Place® (Canon Medical; Tokyo, Japan), and BioTrace IO® (TechsoMed; Rehovot, Israel))
allows for the easy overlay of images obtained pre- and post-ablation therapy and supports
the evaluation of HCC ablative margins three-dimensionally to overcome the potential bias
in subjective evaluations [66,67].

8. Clinical Outcomes and Adverse Events

Several studies show thermal ablation therapies, including RFA and MWA, to be
as effective as surgical resection in HCCs ≤ 3 cm, with a 5-year overall survival rate
of 60–80% [68–70] and a 2-year local recurrence rate of 1.7–24% [71]. The combination
of precise ablation and accurate treatment response assessment using three-dimensional
imaging techniques has promising potential to improve quality of cancer care and achieve
better clinical outcomes.
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The overall rates of early mortality after percutaneous ablation were previously re-
ported to range between 0.1 and 0.6%, while those of serious adverse events were between
2.2 and 7.8% [72–74]. Common early complications included liver abscess (0.2–0.8%),
hemothorax (0.2–0.8%), gastrointestinal perforation (0.3–0.5%), peritoneal hemorrhage
(0.2–0.5%), hepatic infarction (0.2–0.5%), pneumothorax (<0.2%), portal vein thrombosis
(<0.2%), pleural effusion requiring medication (<0.2%), ground pad burns (<0.2%), and
biliary hemorrhage (<0.1%).

9. Clinical Implications of Thermal Ablation Therapies

An alternative approach for the prevention of HCC recurrence may be to find a
clinically available compound that is inexpensive, easily manageable, and less toxic, with a
proven safety profile on long-term administration.

Vitamin K plays a role in controlling cell growth, and vitamin K2 can induce the
differentiation of human myeloid leukemia cells, as well as apoptosis in immature blast cells.
If vitamin K2 could reduce HCC recurrence by preventing carcinogenesis or suppressing
tumor growth, vitamin K2 would be an ideal adjuvant agent. However, the efficacy
of vitamin K2 in suppressing HCC recurrence was not confirmed in this double-blind,
randomized, and placebo-controlled study [75].

Sorafenib inhibits both mitogen-activated protein kinase/extracellular signal-regulated
kinase (MAPK/ERK)-mediated cell proliferation and angiogenesis driven by vascular en-
dothelial growth factor (VEGF) signaling; this provides a nearly 3-month median survival
benefit and a 31% reduction of risk of death in patients with advanced HCCs [76]. Despite
the promising results of some reports and the theoretical advantages of sorafenib in an
adjuvant setting, a broad multicenter randomized controlled trial (Sorafenib as Adjuvant
Treatment in the Prevention of Recurrence of Hepatocellular Carcinoma (STORM)) failed to
find a significant improvement in progression-free survival (primary endpoint) and overall
survival [77].

Angiotensin-converting enzyme (ACE) inhibitors are currently widely used as anti-
hypertensive agents in clinical practice. In addition, ACE inhibitors may be an alternative
anti-angiogenic strategy in the treatment of liver fibrosis and HCCs, because angiogenesis
is an essential process in tumor growth and liver fibrosis. In a retrospective cohort, ACE
inhibitors significantly improved overall survival and the time to recurrence after RFA in
HCC patients, in comparison with both patients under an ACE inhibitor and those not
receiving any of the drug classes [78]. However, further prospective research with larger
samples is warranted.

10. Conclusions

Based on standards recommended in international guidelines, percutaneous thermal
ablation for early-stage HCCs is a safe, feasible, and potentially curative treatment. Due
to the enrichment of knowledge and technological advances in the field of percutaneous
ablation, personalized approaches are proposed for patients with early-stage HCCs. The
technical skills, hardware and software requirements, and combination of different treat-
ment techniques needed to improve the short- and long-term outcomes of HCC patients
require specialized interventional oncologic centers with sophisticated planning, image
guidance, and image fusion techniques. Adequate training, a basic understanding of the
underlying principles and an awareness of the working mechanisms, as well as knowledge
of the advantages and disadvantages of the different ablation techniques available, are
needed by operators of thermal ablation. A number of skills are critical for the success of
this procedure, including accurate positioning of the needle applicator under image guid-
ance. Furthermore, knowledge of the expected imaging characteristics of successful and
failed ablation, in addition to perioperative complications, is important. Collectively, these
factors will contribute to the expansion of thermal ablation applications in clinical settings.
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