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Simple Summary: This research aimed to investigate if adding social determinants of health (SDOH)
to predictive models improves major adverse cardiovascular events (MACE) predictions in breast
cancer patients, as cardiovascular disease is their leading cause of death. ML models, incorporating
SDOH, demographics, risk factors, tumor characteristics, and treatments, were developed and
compared. The results showed that including SDOH enhanced ML model performance in forecasting
MACEs within two years of breast cancer diagnosis, especially for non-Hispanic Black patients.
These findings offer more accurate risk assessments and personalized care insights for breast cancer
patients, while also guiding efforts toward achieving healthcare equity.

Abstract: Cardiovascular disease is the leading cause of mortality among breast cancer (BC) pa-
tients aged 50 and above. Machine Learning (ML) models are increasingly utilized as prediction
tools, and recent evidence suggests that incorporating social determinants of health (SDOH) data
can enhance its performance. This study included females ≥ 18 years diagnosed with BC at any
stage. The outcomes were the diagnosis and time-to-event of major adverse cardiovascular events
(MACEs) within two years following a cancer diagnosis. Covariates encompassed demographics,
risk factors, individual and neighborhood-level SDOH, tumor characteristics, and BC treatment.
Race-specific and race-agnostic Extreme Gradient Boosting ML models with and without SDOH data
were developed and compared based on their C-index. Among 4309 patients, 11.4% experienced
a 2-year MACE. The race-agnostic models exhibited a C-index of 0.78 (95% CI 0.76–0.79) and 0.81
(95% CI 0.80–0.82) without and with SDOH data, respectively. In non-Hispanic Black women (NHB;
n = 765), models without and with SDOH data achieved a C-index of 0.74 (95% CI 0.72–0.76) and 0.75
(95% CI 0.73–0.78), respectively. Among non-Hispanic White women (n = 3321), models without and
with SDOH data yielded a C-index of 0.79 (95% CI 0.77–0.80) and 0.79 (95% CI 0.77–0.80), respectively.
In summary, including SDOH data improves the predictive performance of ML models in forecasting
2-year MACE among BC females, particularly within NHB.
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1. Introduction

In 2020, breast cancer (BC) was the primary driver of global cancer incidence, ac-
counting for an estimated 2.3 million new cases (11.7% of all cancer cases) [1]. In the
United States (US), projections for 2023 indicate an estimated 300,590 new BC cases and
43,700 BC-related fatalities [2]. BC is the most prevalent form of cancer worldwide, with
around 91% of individuals diagnosed with BC achieving a minimum five-year survival
rate [1,3]. However, for every molecular subtype and stage of disease (except stage I), Black
women exhibit the lowest 5-year relative survival rate compared to all other racial/ethnic
groups [4]. The most significant disparities between Black and White women are observed
in hormone-receptor-positive/human epidermal growth factor receptor 2-negative disease,
with survival rates of 88% and 96% for Black and White women, respectively [4].

Cardiovascular disease (CVD) is the leading cause of death among patients with active
BC over 50 [5]. The risk of CVD-related mortality is higher in post-menopausal female BC
survivors than in individuals without a BC history [5]. Effective management of preexisting
CVD risk factors, such as diabetes mellitus and hypertension, significantly influences the
prognosis of older BC patients [6]. Social determinants of health (SDOH) are defined as
“the conditions in which people are born, grow, work, live, and age, and the wider set of
forces and systems shaping the conditions of daily life” by the World Health Organization,
contributing significantly to the development of CVD risk factors, morbidity, and mortality,
especially within marginalized communities [7,8]. SDOH, encompassing factors such as
poverty, limited education, neighborhood disadvantage, racial residential segregation,
discrimination, insufficient social support, and isolation, significantly influence both the
stage at which BC is diagnosed and the subsequent survival outcomes [9].

Machine Learning (ML) models have been increasingly used as prediction tools due
to their potential greater performance compared to traditional regression models, and their
capacity to learn and deal with data with multiple structures, especially clinical data [10–12].
These models operate by receiving input data and employing mathematical optimization
and statistical analysis techniques to predict outcomes [13]. A meta-analysis published in
2020 demonstrated that ML algorithms exhibit a high level of accuracy in predicting CVD
outcomes [13].

According to recent evidence, ML models incorporating SDOH data improve the risk
prediction of in-hospital mortality after hospitalization for Heart Failure (HF), particularly
among Black adults [14]. The inclusion of SDOH data elevated the model’s classification
index (C-index) from 0.72 (95% confidence interval [CI] 0.73–0.79) to 0.77 (95% CI 0.71–0.75)
for Black patients, yet this effect was not observed in non-Black patients [14]. However,
to our knowledge, there are no studies examining whether the inclusion of SDOH data
enhances the prediction of cardiovascular events in patients with BC. We hypothesize that
ML models incorporating SDOH data will outperform models without this integration in
predicting major cardiac events (MACEs) in BC patients, especially in patients who are
non-Hispanic Black (NHB). The primary objective of this study is to develop and compare
race-specific (separate models for NHB and non-Hispanic White (NHW) patients) and race-
agnostic (race as a covariate) ML models with and without SDOH data in the prediction of
MACE in patients with BC.

2. Materials and Methods
2.1. Study Setting

The study setting was the University Hospitals (UH) Seidman Cancer Center in
Northeast Ohio, US. UH is a large hybrid academic-community tertiary care center that
provides medical services to diverse communities, including urban, suburban, and rural
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areas. It comprises an extensive network comprising 23 hospitals, over 50 health centers
and outpatient facilities, and more than 200 physicians’ offices across 16 counties in the
region [15,16]. The patient population at UH is predominantly from inner-city areas,
leading to a higher representation of Black patients and comparatively lower percentages
of Hispanic and Asian minorities than the US population [15,16].

2.2. Data Source

The data for this study were collected from the UH Seidman Cancer Center data
repository, which is based on the CAISIS platform, an open-source, web-based cancer data
management system that integrates multiple sources of patient data [16–22]. To enhance the
accuracy and comprehensiveness of the obtained information for each patient, additional
data from Electronic Health Records (EHR) were incorporated using the Electronic Medical
Record Search Engine (EMERSE) [23]. All patient records were deidentified.

2.3. Inclusion and Exclusion Criteria

The cohort (Figure 1) consisted of females aged 18 years or older diagnosed with BC
at any stage. The diagnosis was determined based on specific ICD 9/10 codes, including
C50.XX, C79.81, 174.X, 175.0, 175.9, 198.81, and 217, where “X” represents any integer [24,25].
The inclusion criteria encompassed patients diagnosed between 1 January 2010 and 31
December 2019, ensuring a minimum follow-up period of two years by the year 2022,
which was the data collection year. Patients were excluded from the analysis if they were
male or had in situ carcinoma. Due to a low number of patients with Hispanic ethnicity,
these individuals were also excluded from the analysis. All patients with available SDOH
data were included, while patients without SDOH data were excluded from the analysis.
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2.4. Outcome

The co-primary outcomes of this study were the diagnosis and time-to-event oc-
currence of 2-year MACE following the diagnosis of BC. The MACE events considered
included heart failure (HF), acute coronary syndrome (ACS), atrial fibrillation (A-fib), and
ischemic stroke (IS) [16,26]. The diagnosis of these events was determined using spe-
cific ICD 9/10 codes obtained from the complete medical history recorded in the EHR of
each patient.

2.5. Covariates

Data on demographics, risk factors, SDOH, tumor characteristics, and treatment were
collected for all eligible patients. Demographic information obtained from the patient’s
EHR included age at diagnosis, self-reported race/ethnicity (NHB, NHW, other), and
payer information (Medicaid, Medicare, private insurance, self-pay, other). Risk factors
were extracted from the comorbidities list using relevant ICD codes identified prior to
the MACE diagnosis. These risk factors encompassed self-reported smoking status (yes,
no, former, unknown), Charlson comorbidity index, and cardiovascular (CV) history/risk
factors (yes, no) [27,28]. Positive CV history/risk factors were identified if the patient
had a diagnosis of hyperlipidemia, cardiomyopathy, known coronary artery disease, prior
myocardial infarction (MI), carotid disease, prior transient ischemic attack (TIA)/stroke,
and/or chronic kidney disease (CKD) (Supplemental Table S1). Combining these factors
into a single variable aimed to generate a covariate that characterizes patients at high CV
risk [29].

Individual and neighborhood-level SDOH features were sourced from LexisNexis, the
world’s largest electronic database for legal and public-records-related information. These
features were grouped into four domains: social and community context (marital status,
number of household members, distance to closest relatives), economic stability (address
stability, property status, annual income, properties owned, wealth index, household in-
come, total count of transport properties owned), neighborhood and built environment
(crime index, burglary index, car theft index, murder index, neighborhood median house-
hold income, neighborhood median home values), and educational access and quality
(education institution rating, college attendance) [30,31]. The LexisNexis dataset utilized in
our study consists of a compilation of various public and private records that are updated
at different frequencies, with the data obtained reflecting the most current available records
and combining records from adult patients discharged from a UH facility over 2.5 years
and adult patients who are members of an Accountable Care Organization [32].

Tumor characteristics included date of cancer diagnosis, hormone receptor status
(estrogen receptor (ER), progesterone receptor (PR), and HER2), histological type (ductal
or lobular, not specified (NOS), other/unknown), and TNM staging group (stage 0–IV).
Treatment characteristics encompassed appointment completion rates and the use of single
or combination treatments throughout a patient’s follow-up, including radiation of the
breast (right, left), chemotherapy, endocrine therapy, and immunotherapy.

2.6. Descriptive Analysis

To ensure the integrity and reliability of our dataset for analysis, we implemented
an outlier detection procedure [33]. This involved the application of data visualization
techniques, specifically utilizing box plots, to effectively identify and subsequently remove
outliers from the dataset [34].

The data were categorized based on race/ethnicity (NHB, NHW) and presented as
absolute values and percentages for categorical variables and as median and quartiles
for continuous variables. To compare categorical variables among different racial/ethnic
groups, the Pearson chi-square test was employed. The distribution assumptions of con-
tinuous variables were assessed using histograms and the Kolmogorov–Smirnov test.
Student’s t-tests were conducted for normally distributed factors, while non-parametric
Kruskal–Wallis tests were used for non-normally distributed factors.
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Correlation plots were used to examine the correlations among independent variables,
and variables that exhibited statistically significant correlations were not included simulta-
neously in the models. A significance level of p < 0.05 was considered, and missing values
were excluded from the analysis.

2.7. Machine Learning Development

Race-specific and race-agnostic ML models, with and without SDOH data, were
developed and compared (Figure 2). The ML approach was chosen in this study due to
its ability to learn from data and handle diverse data structures [14,35,36]. We utilized
the tree-based method called extreme gradient boosting (XGBoost), designed for ML in
survival analysis [37,38].
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The preprocessing phase encompassed three main stages: data splitting, feature
engineering, and feature selection. During the data split, the data were chronologically
divided into three sets: 60% for training, 20% for testing, and 20% for validation [39]. In
the process of feature engineering, categorical variable columns were transformed through
transposition, resulting in the creation of individual binary classification columns for each
category—in this new scheme, a value of 1 represented true, while 0 denoted false [40].
Feature selection was performed on the training set by comparing variables based on
their association with MACE (yes vs. no), selecting those with a p-value less than 0.30,
a conservative approach to avoid the exclusion of relevant covariates [41]. The testing
set was used for hyperparameter tuning using a 10-fold 10-times cross-validation with
100 iterations, prioritizing the C-index [42]. All the models were adjusted for the following
hyperparameters: nrounds (number of additional trees or weak learners added to the
model), nthread (number of parallel threads used), eta (shrinkage of feature weights in
each boosting step), max_depth (the maximum depth of each tree), min_child_weight
(the minimum weight/number of samples required to create a new node in the tree),
gamma (the minimum loss reduction to create new tree-split), subsample (the fraction
of observations/rows to subsample at each step), and colsample_bytree (percentage of
features/columns used to build each tree). The hyperparameter tuning was conducted
using the randomized search approach [43]. Subsequently, the tuned model was applied
to the validation set using a 10-fold, 10-times cross-validation. The performance of the
ML models was assessed using the mean C-index, a precise and appropriate technique for
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measuring prediction error, along with its 95% CI [42,44,45]. The models ultimately chosen
following the aforementioned phases were the ones exhibiting the highest C-index values.

2.8. Software and Packages

The analyses were conducted using RStudio software, version 4.2.2 [46]. The ML
models were developed using the “mlr3” (version 0.16.1) and “mlr3proba” (version 0.5.2)
packages [47,48].

3. Results
3.1. Population

We included 4309 females with BC (Figure 1; Table 1), of which 765 (17.8%) were
categorized as NHB. The median age at diagnosis for the cohort was 63 years, with an
interquartile range (IQR) of 53 to 72 years. Ductal carcinoma accounted for 49.2% of the
diagnoses, while 5.7% were classified as stage III and 1.9% as stage IV. Among the cases,
44.9% were ER-positive, 40.2% were PR-positive, and 6.8% were HER2-positive. Most
patients were never smokers (50.6%) and had a history or risk factor for cardiovascular
disease (74.6%). The median Charlson comorbidity score was 4 (IQR 2–7). Surgery was per-
formed in 60% of the cohort, while 28.2% received chemotherapy, 46% received endocrine
therapy, 4.7% received immunotherapy, and 39.4% received radiotherapy.

Table 1. Population characteristics from patients with breast cancer at University Hospitals (UH)
Seidman Cancer Center, 2010–2020.

Patients Diagnosed with Breast Cancer

University Hospitals (UH), 2010–2020
n = 4309

Age at diagnosis—median (IQR) 63 (53–72)
Race/ethnicity—n (%)

non-Hispanic Black 765 (17.7)
non-Hispanic White 3321 (77.1)

Other 223 (5.2)
Stage—n (%)

III–IV 326 (7.5)
Histology—n (%)

Ductal 2121 (49.2)
ER+—n (%) 1936 (44.9)
PR+—n (%) 1732 (40.2)

HER2+—n (%) 90 (2.1)
Smoking status—n (%)

Smoker 303 (7)
Former smoker 9897 (22.9)
Never smoker 2182 (50.6)

Unknown 837 (19.4)
Charlson comorbidity score—median

(IQR) 4 (2–7)

Cardiovascular history/risk factor—n (%) 3123 (74.6)
Cardiomyopathy 230 (5.3)

Coronary artery disease (CAD) 775 (18)
Myocardial infarction (MI) 261 (6.1)

Carotid disease (CD) 141 (3.3)
Transient ischemic attack (TIA)/Stroke 67 (1.6)

Chronic kidney disease (CKD) 536 (12.4)
Dyslipidemia 2285 (5.3)

Diagnosis per patient—median (IQR) 2 (0–2)
Surgery—n (%)

Mastectomy 792 (18.4)
Lumpectomy 964 (22.4)
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Table 1. Cont.

Patients Diagnosed with Breast Cancer

Chemotherapy (C)—n (%) 1213 (28.2)
Radiotherapy (R)—n (%) 1699 (39.4)

Left 401 (9.3)
Right 436 (10.1)

Immunotherapy (I)—n (%) 204 (4.7)
Endocrine therapy (E)—n (%) 1982 (46)

Combined therapy—n (%)
C + R 761 (17.7)
I + R 123 (2.9)

H + C + R 459 (10.7)
H + C + R + I 61 (1.4)

% appointments attended—median (IQR) 66.6 (50–81.8)

3.2. Outcomes

Within a two-year follow-up period after the BC diagnosis, 11.4% of the patients
experienced a MACE, with a median time-to-event of 177 days and an IQR of 45 to 414 days.
HF was the most commonly diagnosed event, occurring in 6.9% of the patients, followed
by A-fib in 3.7%, IS in 2.4%, and ACS in 2.3%. When comparing NHB individuals to NHW
individuals, significantly higher rates of MACE (19.2% vs. 9.9%), HF (13.1% vs. 5.5%),
and ACS (4.8% vs. 1.7%) were observed among NHB patients (p < 0.001). Moreover, NHB
individuals had a rate of IS of 3.4% and A-fib of 3.8%, while NHW had rates of IS of
2.3% and A-fib of 3.8%. There were no notable differences in the time-to-event between
racial/ethnic groups.

3.3. Race-Agnostic ML Models

The race-agnostic models with and without SDOH data were developed in
4309 female patients with BC (Table 2). The model without SDOH data exhibited a C-
index of 0.78 (95% CI 0.76–0.79), while the model with SDOH data exhibited a C-index of
0.81 (95% CI 0.80–0.82).

Table 2. Hyperparameters and performance for race-agnostic and race-specific ML models designed
to predict 2-year MACE.

Hyperparameters Performance (C-Index)

Race-agnostic

Without SDOH data

nrounds = 2050; nthread = 10; verbose = 0;
eta = 0.02715107; max_depth = 9;

min_child_weight = 2.886243;
gamma = 3.93808; subsample = 0.9668632;

colsample_bytree = 0.9550104

0.78 (0.76–0.79)

With SDOH data

nrounds = 50; nthread = 8; verbose = 0;
eta = 0.1013887; max_depth = 1;
min_child_weight = 2.971928;

gamma = 3.337559; subsample = 0.804832;
colsample_bytree = 0.97875

0.81 (0.80–0.82)

NHB

Without SDOH data

nrounds = 50; nthread = 14; verbose = 0;
eta = 0.02364827; max_depth = 1;

min_child_weight = 2.62171;
gamma = 4.533674; subsample = 0.9894932;

colsample_bytree = 0.6737331

0.74 (0.72–0.76)

With SDOH data

nrounds = 50; nthread = 16; verbose = 0;
eta = 0.04240374; max_depth = 4;

min_child_weight = 7.789127;
gamma = 4.256919; subsample = 0.9581859;

colsample_bytree = 0.6278961

0.75 (0.73–0.78)
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Table 2. Cont.

Hyperparameters Performance (C-Index)

NHW

Without SDOH data

nrounds = 50; nthread = 4; verbose = 0;
eta = 0.03734001; max_depth = 2;

min_child_weight = 2.380759;
gamma = 4.503645; subsample = 0.8980231;

colsample_bytree = 0.8306106

0.79 (0.77–0.80)

With SDOH data

nrounds = 4050; nthread = 14; verbose = 0;
eta = 0.06144029; max_depth = 2;
min_child_weight = 0.1104873;

gamma = 2.937595; subsample = 0.999557;
colsample_bytree = 0.8240068

0.79 (0.77–0.80)

3.4. Race-Specific ML Models—NHB

The race-specific models in NHB were developed in 765 patients (Table 2). The model
without SDOH data exhibited a C-index of 0.74 (95% CI 0.72–0.76). The model with SDOH
data exhibited a C-index of 0.75 (95% CI 0.73–0.78).

3.5. Race-Specific ML Model—NHW

The race-specific models in NHW were developed in 3321 patients (Table 2). The
model without SDOH data exhibited a C-index of 0.79 (95% CI 0.77–0.80). The model with
the SDOH data model exhibited a C-index of 0.79 (95% CI 0.77–0.80).

4. Discussion

This study aimed to develop and compare race-specific and race-agnostic ML models,
with and without SDOH data, in predicting MACE in patients with BC. Our findings
indicate that including SDOH data significantly improved the predictive performance of
the ML models in NHB patients. Conversely, for NHW patients, the addition of SDOH
data did not result in a noticeable change in the model’s performance, suggesting that
other factors may have a more prominent role in driving MACE development in this
group. Racial disparities in SDOH may contribute to the higher incidence of MACE in
NHB patients, further emphasizing the social construct of race.

As a field, cardiology has been at the forefront of adopting ML techniques [49–52].
Several studies have demonstrated that ML algorithms outperform traditional risk as-
sessments that rely on established CVD risk factors [13,53,54]. Conventional CVD risk
assessment models often assume a linear relationship between each risk factor and CVD
outcomes [55]. In addition, these models have limitations, including variations among
specific populations, the overestimation of CVD risk in certain situations, and a limited
number of predictors [56,57]. In previously published ML models for CVD prediction that
did not incorporate SDOH data, most shared a common set of demographic variables (e.g.,
age, sex, smoking status) and laboratory values [13]. Our results encourage the integration
of SDOH into ML algorithms developed for predicting CVD in patients with BC.

Traditional clinical risk factors for CVD have long been acknowledged in prevention
efforts [58]. However, there is increasing recognition of the significant role played by the
SDOH in the development of CVD [7]. Recent evidence has shown that specific SDOH,
such as socioeconomic status (SES), race and ethnicity, social support, cultural and language
factors, access to healthcare, and residential environment, play a crucial role in predicting
disparities in CVD risk and CVD outcomes [7]. A lower SES is hypothesized to act as
a chronic stressor, contributing to promoting a proinflammatory state and developing
atherosclerosis [59–62]. The chronic stress associated with lower SES can be quantified
using allostatic load, which is linked to a significant increase of up to 31% in CVD risk [21].
Taking into account the aspect of the neighborhood-built environment (which refers to the
physical characteristics and design of neighborhoods), research has consistently demon-
strated that adverse neighborhood conditions such as higher population density; increased
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traffic; limited availability of nearby stores, supermarkets, and fitness centers; and in-
sufficient green spaces or vegetation are associated with an elevated CVD risk [63–67].
Furthermore, psychosocial factors (psychological and social characteristics) play a crucial
role in CVD—various factors within this domain, including job strain, childhood expe-
riences, depression, perceived discrimination, and social isolation, have been shown to
have significant associations with the development and progression of CVD [68–76]. Our
findings reaffirm the crucial role of SDOH in CVD. We observed a noteworthy enhancement
in the predictive performance of the race-agnostic model when incorporating SDOH data,
with the model’s C-index increasing from 0.78 to 0.81. This underscores the significance of
considering SDOH factors in improving the accuracy of CVD prediction models.

Notably, our results have shown that the predictive performance after including SDOH
data is higher in NHB compared to NHW. This highlights the importance of understanding
racial disparities and conceptualizing race as a social construct. Structural racism can
contribute to residential segregation, which in turn influences employment prospects, eco-
nomic status, access to quality education, and exposure to higher levels of neighborhood
violence, crime, and poverty [7]. An illustrative example of this effect is the higher likeli-
hood of Black individuals residing in states with high levels of structural racism reporting
a history of MI within the past year compared to Black individuals in states with low levels
of structural racism [7]. Focusing specifically on patients with BC, it is hypothesized that
adverse SDOH may explain the racial disparities observed in CVD outcomes within this
population, as NHB women with BC face greater adversity in SDOH factors [16]. This is of
utmost importance considering the higher MACE/CVD rates observed in NHB individuals,
as confirmed by our study results [16].

From a practical standpoint, the findings of our study align with the principles outlined
in the 2023 American Heart Association statement titled “Equity in Cardio-Oncology Care
and Research”, emphasizing the need to implement strategies that mitigate inequalities
and address the healthcare needs of underserved populations [77]. The results underscore
the urgency of developing public health policies aimed at addressing disparities in SDOH.
Immediate action is needed to ensure equitable healthcare access and tackle the underlying
factors contributing to SDOH disparities. Furthermore, our study has demonstrated the
importance of integrating SDOH data into future predictive models to enhance their
performance.

This study possesses several limitations. First, the database used in this study relies on
EHR, and some information may be incomplete or missing. Furthermore, while our institu-
tion maintains a close follow-up with patients as a nationally recognized comprehensive
cancer center, some patients may still be lost to follow-up or seek emergency care at other
healthcare facilities, which could introduce a potential bias. Additionally, the criteria for
data availability in LexisNexis may have led to a selection bias in our sample. The results
reported may reflect the characteristics and demographics of the catchment area where our
institution is located and may represent individuals with a higher propensity for seeking
healthcare services. Moreover, including both patients with curable and incurable BC could
have influenced the reported rates of MACE. The ML models were not validated in an
external dataset.

5. Conclusions

In summary, there is an improvement in the predictive performance of machine
learning models for predicting MACEs in patients with BC with the incorporation of social
determinants of health (SDOH) data, particularly NHB patients. These findings underscore
that race is a social construct and emphasize the importance of public policies to reduce
inequalities and address SDOH disparities. Future studies should consider prospective
and multicenter designs or US nationally representative samples, encompass diverse
populations, explore a broader range of covariates, develop specific models for different
types of CVD, scrutinize optimal cut-off points for individual models, and investigate the
geographical variations in SDOH within regions.
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ACS acute coronary syndrome
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CI confidence interval
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C-index concordance index
EMERSE Electronic Medical Record Search Engine
ER estrogen receptor
HER eletronic health records
HF heart failure
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ICD International Classification of Diseases
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