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Simple Summary: The cholinergic system’s participation in cancer development has been reviewed,
highlighting the involvement of acetylcholine receptors (AChR) and acetylcholine (ACh). It has
also been observed that acetylcholinesterase (AChE) plays a relevant role in cancer because AChE
is an indirect regulator of AChRs by hydrolyzing ACh; however, controversy has been observed
regarding the participation in cancer, since in some tumors the enzymatic activity increases, while in
others the activity drops. This review focuses on analyzing the involvement of AChE during cancer
progression and proposes AChE as a central regulator in the initiation and progression of cancer via
the cholinergic system. Modulating ACh levels with AChE could regulate AChRs differentially, thus
driving diverse cancer events.

Abstract: Acetylcholinesterase is a well-known protein because of the relevance of its enzymatic
activity in the hydrolysis of acetylcholine in nerve transmission. In addition to the catalytic action, it
exerts non-catalytic functions; one is associated with apoptosis, in which acetylcholinesterase could
significantly impact the survival and aggressiveness observed in cancer. The participation of AChE
as part of the apoptosome could explain the role in tumors, since a lower AChE content would
increase cell survival due to poor apoptosome assembly. Likewise, the high Ach content caused
by the reduction in enzymatic activity could induce cell survival mediated by the overactivation of
acetylcholine receptors (AChR) that activate anti-apoptotic pathways. On the other hand, in tumors
in which high enzymatic activity has been observed, AChE could be playing a different role in the
aggressiveness of cancer; in this review, we propose that AChE could have a pro-inflammatory role,
since the high enzyme content would cause a decrease in ACh, which has also been shown to have
anti-inflammatory properties, as discussed in this review. In this review, we analyze the changes that
the enzyme could display in different tumors and consider the different levels of regulation that the
acetylcholinesterase undergoes in the control of epigenetic changes in the mRNA expression and
changes in the enzymatic activity and its molecular forms. We focused on explaining the relationship
between acetylcholinesterase expression and its activity in the biology of various tumors. We present
up-to-date knowledge regarding this fascinating enzyme that is positioned as a remarkable target for
cancer treatment.
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1. Introduction
1.1. Acetylcholine as a Cell Proliferation Factor

Acetylcholine (ACh) is a cholinergic neurotransmitter whose primary function is the
chemical synapse [1,2]. Although it has been extensively studied as a neurotransmitter,
ACh also has autocrine and paracrine functions related to the promotion of cell prolifer-
ation [3–7] and inhibition of apoptosis via acetylcholine receptors (AChRs) [8–14]. The
nicotinic acetylcholine receptor (nAChR) and muscarinic acetylcholine receptor (mAChR)
are expressed in tumor cells, and their increment is related to poor prognosis [12,15–17];
therefore, strong evidence has suggested that ACh and AChRs are essential regulators in
cancer [18].

Activation of nAChRs regulates cell proliferation. It has been found that the scaffolding
protein β-arrestin-1 binds and activates Scr in nAChR stimulation via nicotine in non-
small-cell lung cancer (NSCLC) and colon cancer cells [19,20]. Furthermore, α7nAChR
can activate the MAP kinase pathway [19,21,22], and nicotine treatment of mouse lung
epithelial cells shows an upregulation of cyclin-D1 that induces S-phase entry [23]. Similarly,
in NSCLC cells, it has been demonstrated that the activations of α7nAChR with nicotine
can induce cell proliferation in a manner analogous to the growth factor, causing physical
interaction of the retinoblastoma protein (Rb) with Raf-1; this promotes binding of E2F1,
E2F2, and E2F3 to the promoter of proliferation-related genes, inducing their transcription
and entry into the S-phase of the cell cycle [19]. Moreover, Ca2+ influx promoted by α7AChR
activates the kinases ERK1/2, MEKK-1, and p90RSK; subsequently, p90RSK activates the
transcription factor NF-κB, inducing entry into the S-phase in the mesothelial cell line
MSTO-211H [21,24–26] (Figure 1A).
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E2F1 on proliferation-related gene promotors, leading to S-phase entry. The MAP kinase pathway 
also induces binding between the Rb-E2F1 dimer and Raf-1. The sustained mitogenic signaling leads 
to the dissociation of Raf-1 and Rb, leaving free E2F1. The increased influx of Ca2+ by nAChRs causes 
ERK1/2 and MEKK1 activation, MEKK1 activates NF-κB, and cell proliferation is induced [21,24–
26,29,30]. (B) nAChR causes phosphorylation of Bad and Bax, thereby inactivating them and 
preventing apoptosis. Overexpression of Bcl-2 and its activation by nAChRs induces cell survival. 

Figure 1. Selected nAChR-mediated proliferative and apoptosis signaling pathways. (A) Binding
of ACh or nicotine to nAChRs induces the formation of the oligomeric complex, which consists
of nAChR, β-arrestin, and Src; this complex activates Src. Activated Src triggers the MAP kinase
pathway and induces the formation of the cyclin D1-Cdk4/6 complex, leading to the phosphorylation
of Rb [23,27,28]. The hyperphosphorylation of Rb releases the transcription factor E2F1 on proliferation-
related gene promotors, leading to S-phase entry. The MAP kinase pathway also induces binding
between the Rb-E2F1 dimer and Raf-1. The sustained mitogenic signaling leads to the dissociation of
Raf-1 and Rb, leaving free E2F1. The increased influx of Ca2+ by nAChRs causes ERK1/2 and MEKK1
activation, MEKK1 activates NF-κB, and cell proliferation is induced [21,24–26,29,30]. (B) nAChR causes
phosphorylation of Bad and Bax, thereby inactivating them and preventing apoptosis. Overexpression
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of Bcl-2 and its activation by nAChRs induces cell survival. The PKC, Akt, PKA, and MAP kinase
pathways mediate this signaling. Created with Biorender.com (accessed on 12 June 2023).

The apoptotic activity is mediated by α3 and α4nAChRs and involves activation of
the Akt pathway [31]; however, other pathways, such as those for PKC, PKA [32], and
NF-κB, participate in the apoptotic effects [13]. The activation of the ERK1/2, Akt, and
PKA pathways induce phosphorylation of Bad at Ser112, Ser136, and Ser155, respectively,
causing its inactivation and preventing cell death [32]. Furthermore, it has been demon-
strated that the activation of PKC by nAChRs can induce the phosphorylation of Bax at
Ser184, inactivating it while at the same time promoting the phosphorylation of Bcl-2 at
Ser70, causing its activation; these events suppress the apoptosis (Figure 1B) [13,14,33,34].

Muscarinic acetylcholine receptors (mAChRs) also activate cell proliferation path-
ways. Stimulation of the mAChR type 3 (M3) induces the activation of PI3K, adenylate
cyclase, phospholipase A2 (PLA2), and diacylglycerol (DAG) through phospholipase C
(PLC) [3,35–37]. DAG actives protein kinase C (PKC), regulating MAPk/ERK1/2 through
Raf-1 [37–39]. This pathway also involves PI3K, Src, and Erk1/2 [39]. Instead, IP3 induces
the release of Ca2+ from intracellular stores, and Ca2+ can modulate MAPK/ERK1/2 signal-
ing via Ca2+/calmodulin kinase (Ca2+/CaM) and Ca2+-dependent protein tyrosine kinase
(PYK2) [37,40–42] (Figure 2A). It is known that these receptors inhibit apoptosis through the
activation of PI3K/Akt and MAPK/ERK1/2 in diverse cell types [43–48]. The mechanism
depends on the transcription of the anti-apoptotic protein Bcl-2 [49]. It was shown that
Akt could inhibit both caspase 9 and Bad [50–55], and the activation of mAChRs (M1)
inhibit caspase 2 and 3 independent of the PI3-K/Akt and MAPK/ERK1/2 pathways [9,10];
therefore, mAChRs have a significant impact on apoptosis (Figure 2B).

Cancers 2023, 15, x FOR PEER REVIEW 3 of 26 
 

 

The PKC, Akt, PKA, and MAP kinase pathways mediate this signaling. Created with Biorender.com 
(accessed on 12 June 2023). 

The apoptotic activity is mediated by α3 and α4nAChRs and involves activation of 
the Akt pathway [31]; however, other pathways, such as those for PKC, PKA [32], and NF-
κB, participate in the apoptotic effects [13]. The activation of the ERK1/2, Akt, and PKA 
pathways induce phosphorylation of Bad at Ser112, Ser136, and Ser155, respectively, 
causing its inactivation and preventing cell death [32]. Furthermore, it has been 
demonstrated that the activation of PKC by nAChRs can induce the phosphorylation of 
Bax at Ser184, inactivating it while at the same time promoting the phosphorylation of Bcl-
2 at Ser70, causing its activation; these events suppress the apoptosis (Figure 1B) 
[13,14,33,34]. 

Muscarinic acetylcholine receptors (mAChRs) also activate cell proliferation 
pathways. Stimulation of the mAChR type 3 (M3) induces the activation of PI3K, 
adenylate cyclase, phospholipase A2 (PLA2), and diacylglycerol (DAG) through 
phospholipase C (PLC) [3,35–37]. DAG actives protein kinase C (PKC), regulating 
MAPk/ERK1/2 through Raf-1 [37–39]. This pathway also involves PI3K, Src, and Erk1/2 
[39]. Instead, IP3 induces the release of Ca2+ from intracellular stores, and Ca2+ can 
modulate MAPK/ERK1/2 signaling via Ca2+/calmodulin kinase (Ca2+/CaM) and Ca2+-
dependent protein tyrosine kinase (PYK2) [37,40–42] (Figure 2A). It is known that these 
receptors inhibit apoptosis through the activation of PI3K/Akt and MAPK/ERK1/2 in 
diverse cell types [43–48]. The mechanism depends on the transcription of the anti-
apoptotic protein Bcl-2 [49]. It was shown that Akt could inhibit both caspase 9 and Bad 
[50–55], and the activation of mAChRs (M1) inhibit caspase 2 and 3 independent of the 
PI3-K/Akt and MAPK/ERK1/2 pathways [9,10]; therefore, mAChRs have a significant 
impact on apoptosis (Figure 2B). 

 
Figure 2. Selected mAChR-mediated proliferative and apoptosis signaling pathways. (A) Binding 
of ACh actives PLC, which hydrolyzes PIP2 to IP3 and DAG. Subsequently, DAG activates PKC, 
and PKC induces the activation of MAPK to increase DNA synthesis. Calcium mobilizing from 
organelle stores also activates MAP kinases via CaM, inducing cell proliferation. (B) Activation of 
the mAChRs induces the phosphorylation of Akt by PI3K; Akt promotes survival through the 
increment in Bcl-2 and inactivation of Bad. PI3K also increases the levels of Bcl-2 through the 
activation of MAP kinase, inducing cell survival. Created with Biorender.com (accessed on 12 June 
2023). 

Figure 2. Selected mAChR-mediated proliferative and apoptosis signaling pathways. (A) Binding of
ACh actives PLC, which hydrolyzes PIP2 to IP3 and DAG. Subsequently, DAG activates PKC, and
PKC induces the activation of MAPK to increase DNA synthesis. Calcium mobilizing from organelle
stores also activates MAP kinases via CaM, inducing cell proliferation. (B) Activation of the mAChRs
induces the phosphorylation of Akt by PI3K; Akt promotes survival through the increment in Bcl-2
and inactivation of Bad. PI3K also increases the levels of Bcl-2 through the activation of MAP kinase,
inducing cell survival. Created with Biorender.com (accessed on 12 June 2023).

These findings suggest a potential role for ACh in cancer and increase the relevance of
examining whether ACh might be involved in tumor progression and whether the control
of ACh levels is relevant to regulating cancer development. Acetylcholinesterase (AChE)
regulates the levels of ACh through the hydrolysis of the neurotransmitter, thereby prevent-
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ing ACh from reaching the nicotinic acetylcholine receptor (nAChR) [2,56,57] (Figure 3);
consequently, AChE could be a direct regulator of these autocrine and paracrine cellular
processes by controlling ACh levels.
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Figure 3. Hydrolysis of acetylcholine (ACh) by acetylcholinesterase (AChE). AChE is a serine
hydrolase that rapidly cleaves ACh in acetate and choline. It is on the list of enzymes classified
according to their catalytic efficiency, occupying the second position. AChE functions at the limit of
substrate diffusion, and it can hydrolyze 25,000 molecules of ACh per second [2]. A decrement in the
AChE activity could allow ACh increases and reach nAChRs and mAChRs, promoting proliferation
and survival through the MAPK and Akt pathways. Created with Biorender.com (accessed on 12
June 2023).

1.2. The Enzyme

In humans, the gene encoding ACHE is located on chromosome 7 in the q22 region.
In the gene, three exon 1 variants (each with a distinct promoter), five other exons, and a
pseudo intron have been identified [58] (Figure 4A). The complex transcription of the gene
and post-transcriptional mechanisms can generate up to nine different transcripts [59]. All
mRNAs generated sharing exons E2, E3, and E4, which encode for the catalytic domain
of AChE [60,61] (Figure 4A) and differ in the 5′ and 3′ exons. Exons E1a and E1c do not
have initiation codons, so for the six mRNAs with these codons, translation begins in the
E2 exon, and mRNAs differ only in the 3′ end and encode for the three classical isoforms of
AChE (T, H, and R) that differ at the C-terminal end [62,63].

The classical AChE-T subunit could generate amphiphilic monomers, dimers, and
tetramers (G1

A, G2
A, and G4

A); hydrophilic tetramers (G4
H); and hetero-oligomeric asso-

ciations [64]. If the tetramers are bound to the Proline-Rich Membrane Anchor (PRiMA)
transmembrane protein, the tetramers are capable of being inserted into the membrane
(PRiMA-G4

A) [65]. When one, two, or three tetramers are bound to a collagen-type tail Q
(ColQ), the asymmetric forms A4, A8, and A12 are obtained [66]; these are present in the
neuromuscular junctions (Figure 4B).

The classical AChE-H subunit produces type I amphiphilic dimers in which each
subunit has a covalently linked glycophosphatidylinositol (GPI) moiety [67]. The carboxyl-
terminal end of the AChE-R subunit consists of a group of 30 amino acids that lack Cys
residues, whereby the subunits remain as monomers [68] (Figure 4B).

However, the E1e exon has an initiation codon, so the three mRNAs generated by
alternative splicing at the 3’ end containing the E1e exon produce proteins that have an N-
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terminal extension; these variants are called N-AChE-(T, H, or R) (Figure 4B). The extension
could serve as an anchoring domain of the plasma membrane [69].
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Figure 4. Structure and expression of the human acetylcholinesterase gene, molecular forms of the
AChE protein originated by oligomerizing the various subunits, and quaternary associations of other
proteins. (A) From 5′ to 3′, the ACHE gene has three exon 1 variants (E1e, E1c, and E1a, each with
a distinct promoter), three common exons (E2, E3, and E4, shown in gray) with all the information
necessary to produce catalytically active proteins, a pseudo intron (I4′, shown in yellow), and two
exons (5 and 6, shown in black and green, respectively). Introns are shown as bold solid lines, and
light lines connecting exons mean constitutive and alternative splicing. PolyA sites (blue and red
circles), initiation (ATG), and STOP codons (yellow hexagons) are also highlighted. Via transcription,
three different 5′ ends can be produced by activating different E1 promoters (alternative 5′ splicing),
and three other 3′ ends can be generated by alternative splicing of I4′, E5, and E6. Therefore, nine
types of mature mRNAs can be produced from AChE. For the six AChE mRNAs with exons E1c or
E1a that lack an initiation codon, translation begins at E2 and generates the identical isoforms of
AChE regardless of the E1 used. Therefore, three isoforms of AChE may differ at the C-terminal end
(the classical isoforms AChE-T, AChE-H, and AChE-R). The translation begins in this exon for the three
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AChE mRNAs with exon E1e, which has an initiation codon. The three isoforms generated will
contain an extension N-terminal (the N-extended isoforms N-AChE-T, N-AChE-H, and N-AChE-R).
(B) AChE-R consists of monomeric variants. AChE-H or AChE-E (hydrophobic or erythrocytic AChE)
produces amphiphilic membrane-anchored monomers and dimers via GPI. AChE-T or AChE-S
(synaptic AChE) generates globular components that may or may not have the PRiMA membrane-
binding protein or the collagen-type Q tail (ColQ) (asymmetric form). The N-AChE variants are
anchored to the membrane through the N-terminal generated by exon 1Ee, N-AChE-T (green),
N-AChE-R (yellow), and N-AChE-H (gray). Adapted from [62,63]. Created with Biorender.com
(accessed on 12 June 2023).

2. The Implication of Acetylcholinesterase in Tumor Development

Considerable evidence indicates that AChE performs other tasks outside the synapse,
including proliferation, cell adhesion, neurogenesis, hematopoiesis, and apoptosis [68,70,71].

In recent years, the role of AChE in the initiation and development of cancer has been
extensively studied. Tumors in which mutations in the ACHE gene were most frequently
found include ductal, lobular, and tubular breast carcinoma, in which deletions predomi-
nate (65.7%) over amplifications (22.9%) [72]. In addition, a relationship between tumor size
and amplifications of ACHE has been observed [72]. Similarly, Boberg and collaborators
found amplification in 62.5% of the sporadic breast cancer samples analyzed, making
clear the relationship between the modification in the ACHE gene and the development of
tumors [73].

In astrocytoma and melanoma, the levels of both mRNA AChE-T and mRNA-R
variants increase as the aggressiveness of the tumors rises [74]. On the other hand, in
colon cancer, the group led by Dr. Vidal found a decrease in the mRNA levels of AChE-R,
AChE-H, and AChE-T [75], whereas in lung cancer, they only found a decrement in the
mRNA levels of AChE-T [76]. No changes in expression have been observed in renal
carcinoma, skin cancer, or retinoblastoma [77,78]. All this indicates that the expression of
AChE in tumors depends on the tumor origin and probably the cancer stage.

The Cancer Genome Atlas (TCGA) contains information on the expression of ACHE in
diverse tumors that is integrated with clinical characteristics, including patient outcomes.
The ACHE gene was shown to be downregulated, upregulated, and unchanged in solid
tumors (Figure 5); therefore, using UALCAM [79,80] and KMplot [81] web tools, we
analyzed the expression profile of the ACHE gene at the mRNA level in the five common
causes of cancer death worldwide reported by the International Agency for Research on
Cancer in 2020 (lung, colorectum, liver, stomach, and breast cancer) [82,83].

In lung adenocarcinoma (LUAD), the expression of ACHE is elevated in the primary
tumor, and the increase is observed at all stages (Figure 6A). However, there are no sig-
nificant differences between stages (p > 0.05), suggesting that ACHE overexpression is
unrelated to tumor progression. Moreover, the survival analysis in the TCGA data set
of cancer patients revealed that a low ACHE expression correlated with a poor outcome
(Figure 7A). In lung squamous cell carcinoma (LUSC), unlike LUAD, the ACHE expression
did not show changes in the primary tumor at all stages (Figure 6B). However, the survival
analysis of the prediction outcome revealed that the high ACHE expression was associated
with poor prognosis (Figure 7B).
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paraganglioma (PCPG), and stomach adenocarcinoma (STAD). No changes were found in invasive 
breast carcinoma (BRCA), cervical squamous cell carcinoma (CESC), lung squamous cell carcinoma 
(LUSC), pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), sarcoma (SARC), 
cutaneous skin melanoma (SKCM), or thymoma (THYM). The data are from the UALCAN cancer 
database [79,80]. 
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Figure 5. AChE is dysregulated in several solid tumors. Downregulation was found in bladder
urothelial carcinoma (BLCA), colon adenocarcinoma (COAD), glioblastoma multiforme (GBM), head
and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), rectum adenocarcinoma
(READ), thyroid carcinoma (THCA), and uterine corpus endometrial carcinoma (UCEC). Upregula-
tion was found in cholangiocarcinoma (CHOL), esophageal carcinoma (ESCA), kidney renal clear
cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma
(LIHC), lung adenocarcinoma (LUAD), pheochromocytoma and paraganglioma (PCPG), and stomach
adenocarcinoma (STAD). No changes were found in invasive breast carcinoma (BRCA), cervical
squamous cell carcinoma (CESC), lung squamous cell carcinoma (LUSC), pancreatic adenocarcinoma
(PAAD), prostate adenocarcinoma (PRAD), sarcoma (SARC), cutaneous skin melanoma (SKCM), or
thymoma (THYM). The data are from the UALCAN cancer database [79,80].
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Figure 6. Expression of the ACHE gene in lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), rectum adenocarcinoma (READ), liver hepatocellular carcinoma (LIHC), stomach
adenocarcinoma (STAD), and invasive breast carcinoma (BRCA). (A) ACHE gene expression in LUAD
vs. normal samples (p = 1.00 × 10−12) [79,80] and ACHE gene expression in all stages of LUAD
vs. normal samples [79,80]. (B) ACHE gene expression in LUSC vs. normal samples [79,80] and
ACHE gene expression in all stages of LUSC vs. normal samples [79,80]. (C) ACHE gene expression
in READ vs. normal samples (p = 4.28 × 10−3) [79,80] and ACHE gene expression in all stages
of READ vs. normal samples [79,80]. (D) ACHE gene expression in LIHC vs. normal samples
(p = 2.36 × 10−5) [79,80] and ACHE gene expression in all stages of LIHC vs. normal samples [79,80].
(E) ACHE gene expression in STAD vs. normal samples (p = 3.75 × 10−4) [79,80] and ACHE gene
expression in all stages of STAD vs. normal samples [79,80]. (F) ACHE gene expression in BRCA vs.
normal samples [79,80] and ACHE gene expression in all stages of BRCA vs. normal samples [79,80].
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Figure 7. Survival analysis of the ACHE gene in lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), rectum adenocarcinoma (READ), liver hepatocellular carcinoma (LIHC), stomach
adenocarcinoma (STAD), and invasive breast carcinoma (BRCA). (A) Survival analysis for the ACHE
gene in LUAD [81]. (B) Survival analysis for the ACHE gene in LUSC [81]. (C) Survival analysis for
the ACHE gene in READ [81]. (D) Survival analysis for the ACHE gene in LIHC [81]. (E) Survival
analysis for the ACHE gene in STAD [81]. (F) Survival analysis for the ACHE gene in BRCA [81].

In rectum adenocarcinoma (READ), the expression of ACHE decreases in the tumor,
and the decrease is independent of the stage in which it is found (Figure 6C). These results
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suggest that AChE downregulation is unrelated to tumor progression; the survival analysis
did not show a relationship between gene expression and prognosis (Figure 7C).

In the case of liver hepatocellular carcinoma (LIHC), the ACHE gene was overexpressed
in the tumor and significantly increased with the tumor stage (Figure 6D). This trend
suggests a relationship between ACHE gene overexpression and tumor development.
However, the gene expression and prognosis relationship showed no changes between
patients with low and high ACHE expression (Figure 7D).

For stomach adenocarcinoma (STAD), the results are similar to those of the liver; the
ACHE gene is overexpressed in the primary tumor, and the increase is significant in stages
2 and 3 (Figure 6E). Furthermore, there are no changes in prognosis between patients with
low and high ACHE expression (Figure 7E). These data suggest that the upregulation of
AChE may be related to progression but not to poor outcomes.

Finally, in breast cancer (BRCA), the ACHE gene did not show changes in the primary
tumor at any stages (Figure 6F) or in the survival analysis (Figure 7F). These findings
indicate that the ACHE gene expression in tumors depends on the tumor origin. The gene
is overexpressed for tumors such as lung adenocarcinoma, hepatocellular carcinoma, and
stomach adenocarcinoma. For the cases of the liver and stomach, the progression of tumors
is related to overexpression of the ACHE gene, which could suggest that the high AChE
content and enzymatic activity have relevant participation in developing these types of
tumors. However, in rectal and colon adenocarcinoma, AChE is repressed, and there is no
relation between low expression and tumor progression or prognosis.

On the other hand, no changes were found in lung squamous cell carcinoma and breast
cancer, indicating that AChE expression could not have a relevant role in these tumors. In
contrast, the survival analysis showed the opposite results in lung cancer, and other cancers
did not show changes between high and low expression of the ACHE gene. These data
demonstrate that the analysis of tumor progression and patient survival based on AChE
expression levels does not show convincing results that indicate the relevance of AChE
in tumor progression and aggressiveness. However, an analysis of liver hepatocellular
carcinoma between the ACHE gene expression and poor prognosis showed that a high
expression level of AChE was associated with improved overall survival. Patients were
divided into three groups: (I) patients with low AChE expression, (II) patients with moder-
ate AChE expression, and (III) patients with high AChE expression. Significant differences
were found between groups I and II and between groups I and III, demonstrating that the
low expression was associated with a poor outcome [84]. Similar results were found in a
cohort of gastric cancer patients [85].

Mutations in the ACHE gene and transcriptional regulation must be reflected in the
protein synthesis and the catalytic activity. To highlight this point, Castillo-González and
coworkers found that tumors with low AChE activity were associated with poorer overall
survival, demonstrating that AChE activity could also indicate poor prognosis and have a
relevant role during tumor development [86,87]. Therefore, we will focus on analyzing the
levels of protein content and changes in the activity in different cancers. The objective is to
find a relationship between ACh and AChE and their role in cancer progression.

3. Acetylcholinesterase Activity in Tumors

In prostate cancer patients, Battisti and coworkers observed a decrease in AChE activity
in the blood [88]; this opened the possibility of proposing AChE as a cancer biomarker. On
the other hand, Nieto-Cerón and collaborators reported no significant changes in AChE
activity between prostate cancer and benign prostatic hyperplasia [89]; however, they
analyzed two types of tumors: metastatic and non-metastatic. These data indicate that
there are no enzymatic changes between different stages of cell differentiation; therefore, it
would be essential to analyze changes in the molecular form of AChE in different stages to
analyze whether changes occur at this level.

A decrement in the AChE activity has been observed in other tumors (Table 1); for
example, in lung cancer [76,90] and colorectal carcinoma, where a decrease was found
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in the expression of AChE-T, AChE-H, and AChE-R [75], and this was correlated with a
decrement in AChE activity. Also, a reduction in enzyme activity has been reported in
gliomas, and interestingly AChE tetramers contain a monomer of butyrylcholinesterase
(BuChE) [91]. Finally, in hepatic tumors [84,92], gastric cancer [85], and head and neck
carcinomas [86,87], a significant decrease in AChE activity was found. Interestingly, in
the head and neck, squamous cell carcinoma was associated with low AChE activity and
poorer overall survival [86,87]. In addition, some works report alterations in the ACHE
gene, such as in breast cancer; these alterations decreased the enzymatic activity in axillary
lymph nodes, which was heightened as the malignancy of the tumors progresses [93].

Regarding this phenomenon in breast cancer, Dr. Garrido’s group demonstrated in
the rat mammary gland that inhibition of AChE with physostigmine (eserine) induced
carcinogenesis, showing a relationship between the decrease in AChE activity and car-
cinogenesis [94]. On the other hand, Zhao and coworkers demonstrated in hepatocellular
carcinoma (HCC) patients that the expression was related to overall survival. They found
that high expression of AChE improved overall survival in patients with HCC and that low
AChE expression was an indicator of poor overall survival [84]. Similarly, gastric cancer
patients with high AChE levels also demonstrated better overall survival, and the low
AChE expression decreased overall survival [85].

There is a clear relationship between low AChE activity and poor prognosis in cancer
patients; however, it is relevant to figure out why a reduction in AChE activity and protein
content induces tumor progression and aggressiveness.

3.1. The Possible Role of Acetylcholinesterase in Tumors with Low Enzymatic Activity

The low AChE activity in tumors of diverse origins and the contribution of this protein
in apoptosis could be related to the control of ACh levels and the alternative function [70,71].

Regarding the participation of the AChE in apoptosis, Zhang and coworkers re-
ported that inducing apoptosis via different stimuli increased the expression of AChE-T
mRNA [70], suggesting a relationship between the synthesis and the catalytic activity of
AChE with this process. In H2O2-induced apoptosis, ACHE overexpression is mediated by
JNK signaling and the activation of the transcription factors AP-1 and ATF2 [71].

In PC12 neuroendocrine cells, the induction of the cytoplasmic Ca2+-dependent apop-
tosis promoted the overexpression of AChE-T through glycogen synthase kinase β (GSK3-
β) [95]. Transfection of the N-extended variant of AChE-T in embryonic kidney cells (HEK
2963), glioblastoma (U87MG), lung epithelium (T84), hamster ovary (CHO) cells, and pri-
mary cortical cells induced apoptosis via a mechanism dependent on GSK3-β [96]. These
data demonstrated a relationship between apoptosis and an increment in the synthesis and
enzymatic activity of AChE. In cancer, a decrease in AChE activity could be (but is not
necessarily) due to a reduction in the synthesis of this protein, thus avoiding apoptosis;
however, the question is: what is the role of the AChE in apoptosis?

Park and collaborators proposed that AChE protein participates in apoptosome for-
mation [97,98]; they showed via a co-immunoprecipitation assay that AChE interacts with
Apaf-1 and cytochrome c to induce apoptosis. The interaction between AChE with Apaf-1
and cytochrome c disappeared under the influence of a specific siRNA for AChE, and
apoptosis was significantly decreased [97]. They also demonstrated that AChE interacts
with caveolin-1 before binding to cytochrome c and Apaf-1; if the interactions are prevented,
the apoptosome formation is abolished (Figure 8) [98].
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Figure 8. Participation of acetylcholinesterase in apoptosome formation. Acetylcholinesterase binds
to caveolin-1, which allows the binding of Apaf-1 to cytochrome C, which consequently causes
cleavage of procaspase-9 to produce the active form. Then, caspase 9 promotes the activation of the
caspase cascade and apoptosis. Created with Biorender.com (accessed on 12 June 2023).

These findings place AChE as a central regulator of apoptosis. At the same time, the
deregulation and low content could highlight the participation in carcinogenesis and cancer
progression. These findings position AChE as a possible tumor-suppressor protein because
the apoptosis could be reduced, providing cancer cells with more remarkable survival. It is
essential to analyze whether enzymatic activity is also relevant in cancer. In this case, it is
crucial to explore the ACh levels and the relationship with the AChE activity.

ACh promotes cell proliferation and inhibits apoptosis through muscarinic and nico-
tinic receptors and a well-known signaling pathway (Figures 1 and 2). The decrement
in AChE activity could increase the local levels of ACh; this could contribute to tumor
development (Figure 3) [76,84,99].

In this regard, Professor Roskams’s group demonstrated the activation of progenitor
cells through a mechanism dependent on muscarinic type 3 receptor activation in hepatic
vagotomy in rats. In partial hepatectomy, the AChE content decreased, allowing ACh to
reach to its target in oval cells to promote proliferation and repair liver damage [100]. Based
on these data, it could be assumed that the decrease in AChE activity and the increase in
the local concentrations of ACh could contribute to tumor aggressivity.

In human lung tumors, high ACh levels are related to low AChE activity [76]; similar
findings can be found in human liver tumors and HCC cell lines, indicating that ACh
levels are inversely correlated with AChE activity [84,92]. The elevation of ACh concen-
trations could also be relevant to migration and invasion processes [101]. Our group has
demonstrated that the inhibition of AChE increases the cell proliferation rate and the
sphere-forming capacity in the HCC cell lines HepG2 and Huh-7 cells; this effect was
potentiated by the addition of ACh or an AChE inhibitor; therefore, the enzyme activity,
which has been shown to decrease in liver tumors, plays a significant role in the progression
of hepatic tumors because it is not enough to deactivate ACh (Figure 9) [92]. These findings
demonstrate that the low AChE activity could be strongly related to carcinogenesis and
tumor aggressivity.
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Figure 9. The role of AChE in tumorigenicity. AChE is an essential protein in regulating the ACh
levels in non-cholinergic organs, since this neurotransmitter promotes cell proliferation, inhibition
of apoptosis, migration, and invasion through acetylcholine receptors (AChRs). (A) In normal
conditions, AChE controls ACh levels by hydrolyzing this neurotransmitter, preventing the ACh
from reaching AChRs; therefore, the tumor growth is controlled, decreasing tumorigenicity and
proliferation. (B) When AChE is chemically inhibited (the BW248c51 inhibitor is impermeable to the
cell membrane) or the AChE activity decreases for another cause, the ACh levels are not modified;
therefore, this neurotransmitter reaches AChRs, promoting cell proliferation, inhibiting apoptosis,
and increasing migration and invasion. This is reflected in tumor growth, increasing tumorigenicity,
proliferation, and metastasis. Created with Biorender.com (accessed on 12 June 2023).

Although it is known that the AChE protein could be a potential tumor suppres-
sor [97,98], it is imperative to elucidate the mechanism that decreases the synthesis and
activity. It has been shown that exposing the pheochromocytoma cell line PC12 to H2O2
decreased Akt phosphorylation and AChE activity increments; this was associated with
cytochrome c cytosolic release and caspase activation [102]. Nevertheless, when the Nerve
Growth Factor (NGF) and H2O2 were added, Akt activation remained constant, showing
decreased AChE activity and reversing apoptosis [102]. This result suggests a relationship
between the PI3k/Akt signaling pathway and the downregulation of AChE activity. This is
relevant because the overactivation of the PI3k/Akt pathway is a frequent event in human
cancers [103,104]; therefore, we could hypothesize that the hyperactivation of PI3k/Akt
could decrease AChE content; this event affects the apoptosome formation and enzymatic
activity, allowing high ACh levels that promote cell proliferation and inhibition of apoptosis
through ACh receptors (AChRs) (Figure 10).
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Figure 10. The participation of the PI3K/Akt pathway in the deregulation of AChE. Activation of
the RTK receptors, nAChRs, and mAChRs could trigger the PI3K/Akt pathway, decreasing AChE
content and AChE activity. The low AChE activity could increase ACh levels that stimulate nAChRs
and mAChRs, increasing a sustained hyperactivation of the PI3k/Akt and MAP kinase pathways
that promote cell proliferation, survival, and sustained AChE decrement. The AchE decrement could
affect the apoptosome formation, increasing survival. Created with Biorender.com (accessed on 12
June 2023).

One of the primary mechanisms that sustain the activation of the PI3K/Akt pathway is
the silencing of the lipid phosphatase PTEN; this enzyme dephosphorylates phosphatidyli-
nositol 3,4,5-trisphosphate (PtdInsP3), the primary activator of Akt. A relationship has
been observed between the high content of the DNA methyl transferase 1 (DNMT1) and
the hypermethylation of the promoter region of the Pten gene, causing a low gene expres-
sion [105,106]; this promotes a constant activation of the PI3k/Akt pathway and could
cause a decrease in AChE content. However, another mechanism that could also participate
in the regulation of AChE is the direct epigenetic control; there is evidence that epige-
netic mechanisms could regulate AChE. It has been documented that in the regulation
of AChE by the DNMT1, the use of 5-Aza-2’-deoxycytidine, a DNMT1 inhibitor, restores
the levels of AChE content downregulated in HCC cells [107]. This is relevant because
DNMT1 is modulated in other cancers such as pancreatic, gastric, ovarian, brain, lung, and
liver [108–115].

The AChE also regulates cell proliferation. In the hepatoblastoma cell line, HepG2
treated with ciglitazone (an agonist of the nuclear peroxisome proliferator-activated receptor-
gamma) significantly increased the AChE content, inhibiting the cell cycle [116]; this is
supported by other works that provided the same evidence of arresting the cell cycle in the
G2/M-phase [84,117,118]. The possible mechanism of cell cycle arrest proposed for HCC
has been related to a downregulation of the MAPK and Akt pathways, the activation of
GSK3β, the degradation of β-catenin, and the suppression of cyclin D1 [84] (Figure 11).
These events allow us to hypothesize that the blockade of the PI3K/Akt pathway causes an
increase in AChE content and enzymatic activity. Then, a reduction in ACh levels affects
cell proliferation.
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GSK3β, which allows reaching a stable level of β-catenin in the cytosol and translocating to the 
nucleus. This induces upregulation of cyclin D1. The Akt pathway can also decrease both the AChE 
content and AChE activity. Created with Biorender.com (accessed on 12 June 2023). 

AChE has different molecular forms; therefore, analyzing which specific molecular 
forms mediate in these processes is relevant. Although the evidence indicates that AChE-
T is the one that participates in the processes of apoptosis, the mRNA of this isoform 
encodes a wide variety of molecular forms. 

Patterns of AChE Molecular Forms Expressed in Tumors with Low Enzymatic Activity 
Analyses of molecular forms of AChE have been performed in some neoplasms and 

adjacent healthy tissues to determine whether there were differences in the profile of the 
molecular forms (Table 1). Could there be a relationship between the molecular forms of 
AChE and the regulation of proliferation and apoptosis in cancer? 

Table 1. Status of the acetylcholinesterase (AChE) forms in different tumors. 

Tumor Type AChE Activity Molecular Form Reference(s) 

Lung cancer 
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Colon cancer 
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Figure 11. AChE activity regulates cell proliferation in HCC. (A) High AChE activity hydrolyzes to
ACh, preventing nAChR and mAChR stimulation. These inactive MAPK and Akt pathways cause
a reduction in the GSK3β phosphorylation levels, resulting in greater GSK3β activation, β-catenin
degradation, and downregulation of cyclin D1. (B) A drop in AChE activity promotes high ACh
levels, stimulating nAChRs and mAChRs. This induces a triggering of the MAPK and Akt pathways,
promoting an increment in the GSK3β phosphorylation levels, resulting in the inactivation of GSK3β,
which allows reaching a stable level of β-catenin in the cytosol and translocating to the nucleus. This
induces upregulation of cyclin D1. The Akt pathway can also decrease both the AChE content and
AChE activity. Created with Biorender.com (accessed on 12 June 2023).

AChE has different molecular forms; therefore, analyzing which specific molecular
forms mediate in these processes is relevant. Although the evidence indicates that AChE-T
is the one that participates in the processes of apoptosis, the mRNA of this isoform encodes
a wide variety of molecular forms.

Patterns of AChE Molecular Forms Expressed in Tumors with Low Enzymatic Activity

Analyses of molecular forms of AChE have been performed in some neoplasms and
adjacent healthy tissues to determine whether there were differences in the profile of the
molecular forms (Table 1). Could there be a relationship between the molecular forms of
AChE and the regulation of proliferation and apoptosis in cancer?

Table 1. Status of the acetylcholinesterase (AChE) forms in different tumors.

Tumor Type AChE Activity Molecular Form Reference(s)

Lung cancer Low G1
A and G2

A [76,90]
High - -

Colon cancer
Low G1

A and G2
A

G2
H, G4

A, G4
H, and A4 (disappeared)

[75]

High - [119]

Brain tumor
Low G4 contains butyrylcholinesterase monomers [91]
High NA [120]
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Table 1. Cont.

Tumor Type AChE Activity Molecular Form Reference(s)

Liver cancer
Low NA [84,92]
High - -

Gastric cancer
Low NA [85]
High - -

Breast cancer
Low G1

A and G2
A &

G4
H, A4 y A8 (disappeared) & [93] &, [94]

High G1
A (low content) and G2

A [121]

Head and neck carcinoma
Low G1

A and G2
A (no enzymatic change)

G4
A (disappeared)

[86,87]

High - -

Renal cancer
Low - -
High G1

A (no change) and G2
A (high activity) [77,122]

Pancreatic cancer
Low - -
High NA [123]

Abbreviations: G1
A: amphiphilic monomers; G2

H: hydrophilic monomers; G2
A: amphiphilic dimers; G4

A:
amphiphilic tetramers; G4

H: hydrophilic tetramers; A4: asymmetric form with one tetramer; A8: asymmetric form
with two tetramers. &: Axillary lymph nodes; metastasis from breast cancer.

Martínez-Moreno and coworkers showed a decrease in mRNA-T expression in human
lung cancer compared with the other two mRNA types of AChE (H and R) [76]. This effect
should be reflected in the expression of the molecular forms. The molecular components
found in non-cancerous systems were mainly the dimers (G2

A) and, to a lesser extent, the
amphiphilic monomers (G1

A) [76]; the same results were found in lung carcinoma [76].
Although patterns of AChE forms were not affected by cancer, a decrease in the total
activity of AChE in both molecular forms was observed [76]. Changes in the monomers’
expression may favor these lung tumors’ survival. Monomers could be responsible for
the interaction with caveolin-1, which later participates in apoptosome formation. The
AChE must enter the nucleus and leave this compartment to join the apoptosome [98].
Therefore, the monomers could be the leading candidates to participate in this phenomenon.
Subsequent studies have shown that lung cancer cell lines (as well as lung tissue) presented
patterns of AChE dimers and monomers [90], pointing out that the variations in these two
molecular forms could contribute to the survival of the tumors.

In colon cancer patients, Dr. Vidal’s group demonstrated that several molecular forms
of AChE were present in healthy colon tissues: G1

A, G2
A, G2

H, G4
A, G4

H, and A4. When
they analyzed cancerous tissues, they only found G1

A and G2
A, observing a change and

noticing a decrease in the monomers [75]. Therefore, as in cancerous lung tissues, the
monomers change, which could favor the survival of the tumors.

A similar effect was observed in breast cancer metastasis. Dr. Vidal’s group analyzed
normal axillary lymph nodes and axillary lymph nodes with breast metastasis. In normal
tissues, the molecular forms determined were G1

A, G2
A, G4

H, A4 and A8, which showed
an essential change in the cancerous tissues, since only the presence of G1

A and G2
A forms

was observed along with a decrease in the monomers [93].
In head and neck squamous cell carcinoma patients, G1

A and G2
A molecular forms

were found with enzymatic activity comparable to normal tissues (except for G4
A, the

absence of which was noted in cancerous tissues) [86,87].
In the cases of colon cancer, metastasis from breast cancer to axillary lymph nodes,

and head and neck squamous cell carcinoma, there are changes in the patterns of molecular
forms that affect all enzymatic forms. However, it affects the molecular forms with a greater
hydrolytic capacity, such as tetramers and asymmetric forms. Therefore, this decrease could
not only affect the processes of apoptosis mediated by AChE, but these substantial changes
in the molecular forms could allow a local increase in the amount of ACh, favoring the cell
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proliferation and inhibition of apoptosis processes. It can be assumed that the changes in
the patterns of the molecular forms—either by decreasing their activity or changing their
proportions—would promote cell proliferation and cancer cells’ survival.

3.2. Enhanced Enzymatic Acetylcholinesterase Activity in Tumors

An increase in the enzyme has also been found in other types of tumors (Table 1). In
brain tumors, it has been found that AChE activity increases considerably as tumor malig-
nancy progresses [120]. Similar findings have been observed in renal [122], breast [121], and
pancreatic tumors [123]. These observations oppose the proposed function for the AChE as
a potential tumor suppressor. However, AChE also participates in cell adhesion [124], a
key event in metastasis.

3.2.1. The Possible Function of Acetylcholinesterase in Tumors with High
Enzymatic Activity

If AChE participates in cellular adhesion in tumors with more enzymatic activity,
AChE could favor metastasis. It is important to emphasize that based on neuroblastoma
observations, Johnson and collaborators proposed that the molecular forms of AChE
anchored to the plasma membrane G4

A are involved in the cell adhesion process. The
peripheral anionic site of the AChE is the zone involved in the mechanism. Therefore, high
AChE content could affect neuroblastoma development [125,126]. On the other hand, Dr.
Weber’s group has shown that in colon cancer, there is an increase in the AChE activity and
the binding of c-Myb to DNA accompanied by the cell adhesion; they showed that AChE
influences intracellular signal transduction [119]. This is important because the family of
the Myb transcription factor is involved in cell adhesion to fibronectin [127]. These data
suggest that the increase in AChE content could be related to metastasis.

Previously, we analyzed a relationship between high levels of ACh and low levels of
AChE activity and how this balance participates in cancer progression and aggressiveness
because the ACh induces cell proliferation, inhibition of apoptosis, invasion, and migration.
However, we can hypothesize an opposite balance in which there is high AChE activity
and low levels of ACh; therefore, the ACh effects could not take place, and the cancer
progression and aggressiveness would have to slow down. However, in these tumors, high
AChE activity is related to cancer progression and aggressiveness.

Through the receptor α7nAChR, ACh displays anti-inflammatory properties in im-
mune cells and regulates immune responses [128–131]. It is known that inflammation has
a role during tumorigenesis (from tumor initiation to progression to metastases); there-
fore, an inflammatory microenvironment is a critical component in all tumors [132,133],
and ACh could be a relevant participant during tumorigenesis. It has been observed
that the autonomous nervous system impacts cancer. The high vagal activity predicted a
better prognosis in colon, non-small lung, prostate, and breast cancer patients [134–136].
Vagotomy has been related to an increased risk of gastric, colorectal, prostate, and lung
cancers [137–140]; therefore, high levels of ACh could be participating in generating an
improved prognosis in cancer by decreasing the inflammation. However, in a tumor with
high AChE activity, these effects could decline due to the high amount of hydrolysis of
ACh. Based on this, the high levels of AChE activity in the tumors could disrupt the
anti-inflammatory properties of ACh; hence, the ACh does not reach immune cells. This
phenomenon could allow inflammation increases. In this context, in a developing tumor,
macrophages are the most abundant immune cells (tumor-associated macrophages (TAMs))
at all tumor stages. We can find classically activated (M1) and alternatively activated (M2)
macrophages. M1 macrophages display anti-tumoral properties, while M2 macrophages
are associated with a pro-tumoral role because they fail to eliminate tumoral cells and
contribute to cancer progression; these latter macrophages resemble TAMs [141–143], and a
high TAM content correlates with poor prognosis [144]. Dr. Demir’s group demonstrated
that in pancreatic cancer with high AChE expression, the inhibition of AChE or the ad-
ministration of ACh reduced both TAM infiltration and serum pro-inflammatory cytokine
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levels [123]. Therefore, high levels of ACh could reduce TAM and hence decrease cancer ini-
tiation, progression, and metastasis. Clinical results have demonstrated that the expression
of α7nAChR in TAMs was associated with a low incidence of liver metastasis in colorectal
cancer patients and that α7nAChR knockdown in THP-derived macrophages increases the
migration and invasion of colorectal cancer cells [145]. These findings demonstrated an
indirect role of AChE activity during cancer development, indicating that high enzymatic
activity is relevant to induce inflammation and an increment in TAMS through a reduction
in ACh levels. These events are related to poor prognosis in cancer; therefore, the high
AChE activity could favor an environment that is positive for cancer development and
promotes metastasis.

3.2.2. Patterns of Molecular Forms Expressed in Tumors with High Enzymatic Activity

It has been proposed that the molecular form G4 participates in cell adhesion pro-
cesses [125,126]. AChE activity in breast tumors has been detected compared with the
control. The molecular forms found were G1

A and G2
A, which had a lower content of

monomers [121]. Similarly, G1
A and G2

A molecular forms have been described in renal
tumors. Although no changes were found in molecular form patterns, the increase in
the enzymatic activity in these tumors was due to the dimers anchored to the cellular
membrane by a glycosylphosphatidylinositol (GPI) and not due to the monomers [77,122].
In this regard, it can be assumed that in tumors with high AChE activity and tumors with
low enzymatic activity, the monomers decrease to evade programmed cell death. However,
these tumors showed a high enzymatic activity governed by a high content of dimers
anchored to the membrane by the GPI anchor. It could be assumed that a high dimer
content regulates the local ACh concentration, allowing the inflammation to increase and
simultaneously realizing the cell adhesion function, since this process may not be unique to
tetramers; therefore, the membrane-anchored dimers by GPI could perfectly perform this
function. On the other hand, the low content of the monomers could favor tumoral cells’
survival because it is not sufficient for the formation of the apoptosome. Therefore, the
high dimer content decreases the local ACh concentration, hence the inflammation increase,
while the low monomer content increases the tumors’ survival because the apoptosome
cannot form.

4. Conclusions

We reviewed the current evidence supporting the participation of AChE in developing
different types of tumors. Changes in the activity of AChE favor cancer progression. In
this regard, tumors with differential AChE activities coincide at a critical point to decrease
the content of the amphiphilic monomer. This implies that changes in the amphiphilic
monomer content could favor or impair apoptosome formation; reducing monomer content
could cause the tumors’ high survival. That is why it would be relevant to prove the
participation of monomers in the apoptosome formation, since the monomers could (via in-
tracellular signals for programmed cell death) avoid the exocytosis pathway and pass from
the endoplasmic reticulum to the cytosol through the ERAD pathway (the endoplasmic
reticulum-associated degradation system) [146,147].

It was demonstrated that AChE activity has essential participation in cancer. High
AChE activity in tumors affects the tumoral microenvironment because of ACh hydrolysis,
and inflammation increases, favoring tumor development. Low AChE activity in tumors
directly affects the tumor rather than the microenvironment. Low AChE activity increases
the local ACh concentrations, causing tumoral growth, aggressiveness, and metastasis.

Although these findings were found in different cancer types and tumoral stages, it
led us to formulate a hypothesis involving AChE from tumor initiation to progression
to metastasis. We could hypothesize that in the initial cancer stages, initiated cells could
have high AChE activity, diminishing the local ACh concentrations, causing both the
inflammation and TAMs to increase for a long time and resulting in the appearance of
tumors. As tumors develop, enzyme activity levels and AChE content could decrease due
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to the overactivation of the PI3k/Akt survival pathway and overexpression of DNMT1.
This phenomenon could cause an increment in the local ACh concentrations, which could
promote proliferation (tumoral growth), inhibition of apoptosis (survival), migration, and
invasion (metastasis). This could leave clear the relevant participation of the AChE in
cancer (Figure 12).
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