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Simple Summary: Early lung cancer detection is vital. Next-generation sequencing (NGS) enables
cell-free DNA (cfDNA) liquid biopsy to detect genetic changes, such as copy number variations
(CNVs). Recent machine learning (ML) analyses using cancer markers can identify anomalies, and
developing methods based on ML for patient big data analysis is crucial for predicting cancer. We
analyzed blood samples of 92 lung cancer patients and 80 healthy individuals, detecting significant
differences in cancer markers, cfDNA concentrations, and CNV screening. Here, we used three
algorithms of ML, such as Adaptive Boosting (AdaBoost), Multi-Layer Perceptron (MLP), and
Logistic Regression (LR). ML analysis using cancer markers, cell-free DNA, and CNV individually
exhibited relatively low discriminative power between cancer patients and healthy individuals.
However, integrating multi-omics data into ML significantly improved accuracy, suggesting potential
for precise cancer diagnosis. This study suggests the prospect of effectively distinguishing and
diagnosing lung cancer from healthy individuals through blood-based ML analysis.

Abstract: Early detection of lung cancer is crucial for patient survival and treatment. Recent advance-
ments in next-generation sequencing (NGS) analysis enable cell-free DNA (cfDNA) liquid biopsy to
detect changes, like chromosomal rearrangements, somatic mutations, and copy number variations
(CNVs), in cancer. Machine learning (ML) analysis using cancer markers is a highly promising tool
for identifying patterns and anomalies in cancers, making the development of ML-based analysis
methods essential. We collected blood samples from 92 lung cancer patients and 80 healthy indi-
viduals to analyze the distinction between them. The detection of lung cancer markers Cyfra21
and carcinoembryonic antigen (CEA) in blood revealed significant differences between patients and
controls. We performed machine learning analysis to obtain AUC values via Adaptive Boosting (Ad-
aBoost), Multi-Layer Perceptron (MLP), and Logistic Regression (LR) using cancer markers, cfDNA
concentrations, and CNV screening. Furthermore, combining the analysis of all multi-omics data
for ML showed higher AUC values compared with analyzing each element separately, suggesting
the potential for a highly accurate diagnosis of cancer. Overall, our results from ML analysis using
multi-omics data obtained from blood demonstrate a remarkable ability of the model to distinguish
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between lung cancer and healthy individuals, highlighting the potential for a diagnostic model
against lung cancer.

Keywords: liquid biopsy; multi-omics; machine learning; lung cancer; cell-free DNA; copy number
variation; non-invasive; tumor marker; genomics

1. Introduction

Lung cancer is one of the leading causes of cancer-related deaths worldwide [1,2].
While numerous genetic and molecular alterations have been identified in lung cancer,
the complex interplay of these alterations remains largely unknown. Early screening of
lung cancer is important because it can lead to early detection and diagnosis of the disease,
which can improve treatment outcomes and patient survival rates [2,3].

Analysis of liquid biopsies of cell-free DNA (cfDNA) is promising for non-invasive
cancer genome analysis that has several potential applications in cancer diagnosis, moni-
toring, and treatment [4,5]. Small fragments of cfDNA are released into the bloodstream
by cancer cells and can be detected and analyzed using NGS technology, making them
advantageous for detecting cancer at an early stage [6–8]. Through the analysis of cfDNA
in the bloodstream, cancer-specific genetic alterations, including somatic mutations, copy
number variations, and chromosomal rearrangements, can be detected. These findings
hold the potential to facilitate early stage cancer diagnosis [9].

New cancer diagnosis technologies, such as copy number variation (CNV), somatic
mutation, and methylation analysis of the cancer genome using next-generation sequenc-
ing (NGS) technology hold great promise for improving cancer diagnosis and treatment
outcomes [10,11]. NGS technology has revolutionized cancer genomics by enabling high-
throughput analysis of the cancer genome, helping to identify genetic alterations and epi-
genetic modifications that are associated with cancer development and progression, which
can be used to develop more effective detection and personalized cancer treatments [12,13].

CNVs are common in cancer and play a role in tumor development. They can arise
from errors in DNA replication, recombination, and chromosome segregation [14,15]. CNV
analysis involves detecting and quantifying copy numbers in cancer cells compared with
normal cells, with techniques like fluorescence in situ hybridization, comparative genomic
hybridization, and NGS being used. NGS is particularly valuable for high-resolution data
on CNVs, detecting small-scale CNVs, and identifying CNVs in non-coding regions, which
is crucial in cases with a mix of tumor and normal cells, like cell-free DNA analysis [16,17].

Accurate early stage cancer diagnosis requires integrating multiple screening results.
Cancer is a complex disease involving genetic and epigenetic changes across various bio-
logical levels [18]. Multi-omics analysis has shown great potential in improving diagnosis,
predicting treatment responses, and discovering therapeutic targets. However, dealing
with large and complex multi-omics datasets poses challenges for traditional statistical
methods in uncovering intricate healthcare data relationships [19]. Moreover, the com-
bination of multi-serum tumor markers has the potential to amplify the sensitivity of
the detection methodology [20]. This augmentation is particularly advantageous in the
context of early disease detection, contributing to the overall enhancement of diagnostic
procedures’ efficacies.

Hence, machine learning (ML) plays an important role in digital healthcare for the
early detection, prediction, and treatment of medical diseases. By utilizing large amounts of
data, machine learning algorithms can detect patterns and anomalies that may indicate the
presence of a disease at an early stage and also analyze patient data to predict the likelihood
of developing a disease, rendering it as a valuable diagnostic tool [21,22]. Various ML
algorithms, such as logistic regression (LR), random forest (RF), support vector machine
(SVM), and neural networks, can be used in disease diagnosis, medical imaging analysis,
drug discoveries, and personalized treatments [23,24]. In a recent study, the potential of
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methylation-based cancer diagnosis using deep neural networks (DNNs) has been empha-
sized. This approach shows promise in effectively classifying cancer and normal samples,
while also accurately identifying the tissue origin of cancer [25]. The predictive and differ-
entiating capabilities of machine learning could play a pivotal role in improving patient
survival rates and enabling early cancer detection, personalized treatments, predicting
treatment responses, and enhancing treatment efficiency.

In this study, various omics data from lung cancer patients and healthy control in-
dividuals were collected and integrated with multi-omics analysis of blood samples in
order to obtain a more comprehensive understanding of the mechanisms underlying lung
cancer. Machine learning algorithms, such as Adaptive Boosting (AdaBoost), Multi-Layer
Perceptron (MLP), and Logistic Regression (LR), were then applied to the integrated data
to develop predictive models that could aid in diagnosis and early detection. Our results
indicated that the integration of multi-omics data obtained from blood samples using
machine learning algorithms has great potential for improving the diagnosis and early
detection of lung cancer patients. By combining different types of data, such as CNVs
from cell-free DNA, multiple protein biomarkers, and cell-free DNA concentrations, it
is possible to develop more accurate and comprehensive models for cancer classification
using non-invasive liquid biopsy approaches.

2. Materials and Methods
2.1. Patients and IRB

This study retrospectively analyzed 92 patients diagnosed with lung cancer and
80 healthy controls at Samsung Seoul Hospital from December 2020 to December 2021. The
healthy control group consisted of subjects who were regarded as healthy according to the
guidelines of the Gangnam Major Hospital Genome Project. Data on gender, age, tumor
marker test results, TNM stage, and pathological findings in lung cancer patients were
recorded. This study was conducted with the approval of the Samsung Seoul Hospital
Research Ethics Committee (IRB No. 2018-01-081) and the Gangnam Major Hospital
Genome Project Research Ethics Committee (IRB No. DR_CPLX_001).

2.2. Sample Preparation and cfDNA Extraction

This study enrolled 92 patients with lung cancer ranging from stage I to stage IV,
as well as 80 healthy controls. A total of 10 mL of blood was collected from both cancer
patients and healthy donors using Vangenes Cell-Free DNA Tubes (Vangenes, Torrance, CA,
USA) centrifuged at 1900 g for 15 min at room temperature. cfDNA was isolated from 4 mL
plasma by using Chemagic 360 (Perkin Elmer, Waltham, MA, USA) under the Chemagic
Circulating NA 4K 360 H24 protocol. The quantification of cfDNA was performed using
Qubit 2.0 using a dsDNA HS Assay Kit (Life Technologies, Carlsbad, CA, USA), which was
used as input data for the S-can test.

2.3. Library Preparation and NGS Sequencing

A total of 5 ng cfDNA was used for library preparation with an NEBNext Ultra II
DNA Library Prep Kit for Illumina (New England Biolabs, Ipswich, MA, USA) according to
the manufacturer’s protocol. The library fragment size was determined by the 4200 TapeS-
tation (Agilent Technologies, CA, USA) using High-Sensitivity D1000 ScreenTape (Agilent
Technologies, Santa Clara, CA, USA). The libraries were then pooled and sequenced on an
Illumina NextSeq Dx (Illumina, San Diego, CA, USA) with 75 cycles high-output kit with
paired-end reads.

2.4. Serum Cancer Protein Marker Tests

The measurements for immunoassay testing were performed on cobas e602 (Roche,
Basel, Switzerland) with Cyfra 21-1, CA 15-3, AFP, CEA, and CA 19-9 markers using
500 µL of plasma according to the manufacturer’s protocol. Statistical analysis was per-
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formed to compare lung cancer patients and healthy controls. The p-values of both groups
were considered significant if they were less than 0.05.

2.5. Copy Number Profiling from Cell-Free DNA

Raw reads were mapped to the human reference genome (GRCh37/hg19) using
BWA [26]. SAMtools (v1.4.1) [27] was used to sort and index bam files, removing those
with a mapping quality below 1. After dividing the whole normalized genome into
10 Mb bins, the change in chromosome number was called using WisecondorX (v1.1.2) [28].
The detected CNV was separated into two classes, copy gain and copy loss, while several
CNV regions from each chromosome were merged. For analysis, a total of 44 features were
created by combining information from the two classes on the 22 autosomes.

2.6. Nested Cross-Validation

Machine learning analysis using multi-omics data followed the process shown in
Figure 1. First, five tumor markers (Cyfra 21-1, CA15-3, AFP, CEA, and CA19-9), cfDNA
extraction amount, and CNV data were used as input features. To enhance classification
accuracy and mitigate overfitting, we utilized nested cross-validation, as previously de-
scribed [29]. This approach involves an extended version of standard cross-validation,
where each initial dataset partition (outer fold), comprising the training set, is subdivided
into nested (inner fold) training and validation sets. Nested cross-validation was performed
through a combination of outer cross-validation and inner cross-validation to evaluate the
model’s predictive performance. The optimal hyperparameter value is determined in the in-
ner cross-validation when the validation set is evaluated using a 5-fold cross-validation on
the training set of each fold of the outer cross-validation. In the outer cross-validation, pre-
diction and performance evaluation are performed on the test dataset with the parameters
found in the inner cross-validation.
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Figure 1. Overview of ML analysis using multi-omics data in accurately classifying lung cancer
patients. The schematic illustrates the process of machine learning analysis using multi-omics data.
Each square at the bottom represents each of the data sets analyzed in this study, with the training set
shown in light blue, the test set in blue, and the validation set in dark blue.
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2.7. Machine Learning

All classifiers for the machine learning algorithm described in this study were built in
the Python 3.5 environment and performed using the Scikit-learn library [30]. AdaBoost is
a powerful ensemble classification method, combining weak classifiers into a strong one
by dynamically adjusting sample weights. MLP is a feed-forward neural network with
hidden layers, commonly trained using back-propagation for classification and regression
tasks. LR is a popular and interpretable supervised learning algorithm that estimates class
probabilities, making it effective for medical diagnosis, including cancer prediction from
labeled patient data [31–33].

3. Results
3.1. Tumor Markers Are Significantly Increased in the Blood of Lung Cancer Patients

To determine whether the expression of cancer markers in cancer patients differed
from that in healthy individuals (Table 1), we analyzed the protein levels in the blood.
Protein markers were measured and analyzed to distinguish lung cancer from health control
cases. Markers included CA 125 for ovarian cancer, Cyfra21-1 for lung cancer, CA15-3 for
breast cancer, CA19-9 for pancreatic cancer, carcinoembryonic antigen (CEA) for colorectal,
pancreatic, breast, and lung cancer, and alpha-fetoprotein (AFP) for liver cancer [34–36].
Lung cancer patients had significantly higher levels of Cyfra21-1, CA15-3, CEA, and CA19-9
compared with healthy controls (Table 2). The AFP level was not significant. The observed
significant increase in cancer markers in patients provides evidence of their potential for
distinguishing them from healthy individuals.

Table 1. Characteristics for participants with patients of lung cancer and healthy individuals.

Characteristics Normal Lung Cancer

Enrollment 80 92

Gender
Male 43 65
Female 37 27
Median 32 65Age
Range 18–72 40–80

Stage

I - 30
II - 10
III - 23
IV - 29
Adenocarcinoma - 56
Squamous cell carcinoma - 22
Large-cell neuroendocrine
carcinoma - 1

Non-small-cell lung cancer - 7
Small-cell lung cancer - 2

Cancer Type

Not specified - 2

Table 2. Measurement of tumor markers in patients with lung cancer and healthy subjects.

Lung Cancer Healthy
Protein Marker

n Mean ± SEM n Mean ± SEM
p-Value

Cyfra_21-1 (ng/mL) 92 5.87 ± 1.14 80 1.4 ± 0.09 0.0000
CA_15-3 (U/mL) 92 18.65 ± 3.07 80 8.68 ± 0.54 0.0009
AFP (ng/mL) 92 6.9 ± 4.74 80 2.27 ± 0.12 0.1659
CEA (ng/mL) 92 42.75 ± 14.97 80 1.84 ± 0.15 0.0037
CA_19-9 (U/mL) 92 40.21 ± 13.75 80 9.06 ± 0.64 0.0130
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3.2. Low Specificity Observed in Machine Learning (ML) Analysis Using Individual Cancer
Marker Expression

To identify the lung cancer diagnostic performance of each tumor marker, we per-
formed five-fold cross-validation in three machine learning models using lung cancer
patients and healthy controls. The ROC curve results are presented in Figure 2. For each
marker, the AUCs for the AdaBoost, MLP, and LR models were as follows: Cyfra21-1 (0.734,
0.756, and 0.781), CA15-3 (0.555, 0.603, and 0.612), AFP (0.482, 0.510, and 0.484), CEA (0.713,
0.797, and 0.791), and CA19-9 (0.570, 0.558, and 0.556) (Figure 2, Table 3). Among markers
Cyfra21-1 and CEA had higher AUC values, followed by CA15-3, CA19-9, and AFP.
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Figure 2. ROC curves based on machine learning model in lung cancer-screening tumor markers.
The diagnostic performance validation results for the five tumor markers (AFP, CA15-3, CA19-9,
CEA, and Cyfra21-1) using machine learning models ((A), AdaBoost; (B), MLP; (C), LR) are shown as
ROC curves. The word “area” represents the ‘area under the curve (AUC)’. The x-axis and y-axis
indicate the false positive rate (FPR) and true positive rate (TPR), respectively. The performance of
the Cyfra21-1 tumor marker is represented by blue lines, while the CA15-3 marker is shown with
orange lines. The AFP marker results are displayed in green, CEA in red, and CA19-9 in purple.
Dashed line represents Random prediction.

Table 3. Performance of machine learning models evaluated with a combination of Cyfra21-1 and
CEA, known lung cancer markers, and other tumor markers.

Tumor Makers AdaBoost MLP LR
Cyfra21-1 0.734 0.756 0.781
CA15-3 0.555 0.603 0.612
AFP 0.482 0.510 0.484
CEA 0.713 0.797 0.791
CA19-9 0.570 0.558 0.556
Cyfra21-1 + CEA 0.828 a,b 0.821 a,b 0.821 a,b

a p < 0.05 compares with Cyfra21-1, b p < 0.05 compared with CEA.

ROC curve analysis was conducted on the lung cancer diagnostic performance using
a combination of lung cancer-related markers, and the AUC values of the three machine
learning models are presented in Table 3. With the AdaBoost model, the combined use of
Cyfra21-1 and CEA resulted in the highest AUC of 0.828, which was statistically higher than
the AUCs of 0.734 and 0.713 when using Cyfra21-1 or CEA individually, respectively. For
the MLP model, the combination of Cyfra21 and CEA also yielded the highest AUC of 0.821,
which was statistically significantly higher than the AUCs of 0.756 and 0.797 when using
Cyfra21-1 or CEA individually, respectively (p < 0.05). With the LR model, the combined
use of Cyfra21-1 and CEA also resulted in the highest AUC of 0.821, outperforming the
AUCs of 0.781 and 0.791 when using Cyfra21-1 or CEA individually, respectively (p < 0.05).
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3.3. The ML Analysis Utilizing the Concentration of Extracted cfDNA and the CNV Score
Demonstrated a Notably High Level of Specificity

We conducted machine learning analysis to investigate whether lung cancer patients
could be distinguished from healthy individuals using cfDNA concentration and CNV score
as features. In the ROC curve analysis, the blood cfDNA concentration had AUC values of
0.706, 0.760, and 0.736 for AdaBoost, MLP, and LR models. For CNV, the corresponding
AUC values were 0.856, 0.921, and 0.835 (Figure 3). No significant differences in analysis
were observed among the three ML methods. These results demonstrate that cancer patients
and healthy individuals can be distinguished using the cfDNA concentration and CNV
score as features.
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3.4. Selection of the Best Combination of Multi-Omics Data for Lung Cancer Diagnosis

In order to enhance the accuracy of lung cancer diagnosis through the utilization of
multi-omics data, we combined protein markers, cfDNA concentration + CNV screening,
and all markers. Among the tumor markers, Cyfra21-1, CEA, and CA15-3 exhibited a
statistically significant difference between lung cancer patients and healthy controls, but
only Cyfra21-1 and CEA were used for subsequent analysis, as they are commonly used
for lung cancer diagnosis. Clinical studies have shown that lung cancer patients with high
serum levels of Cyfra21-1 and CEA in the advanced stages (III and IV) exhibit shorter
survival rates and are deemed to be good candidates for adjuvant chemotherapy [37,38].

This study assessed the performance of each machine learning model when using
a single data type and compared the results with a multi-omics approach, which are
summarized in Table 3 and Figure 4. Each sensitivity value was calculated with a fixed
specificity of 90%, making it easier to assess the trade-off between sensitivity and specificity,
which is vital in determining the overall accuracy of a test. When analyzing solely the
cfDNA concentration, the AUC results from AdaBoost, MLP, and LR were 0.706, 0.760,
and 0.736, respectively (Figure 3). When utilizing solely CNV data, the AUC results from
AdaBoost, MLP, and LR were 0.856, 0.921, and 0.835, respectively (Figure 3). The AUCs
of each model when using the combination of all three omics were 0.914, 0.931, and 0.914,
with the MLP model producing the highest AUC (Figure 4, green line). Furthermore, we
evaluated whether the use of cancer score values was effective in distinguishing between
cancer patients and healthy individuals. A substantial difference in cancer scores between
the normal and cancer groups suggested an enhanced ability to classify these two groups
(Figure 5). Notably, the analysis of multi-omics data revealed that the combination of
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all multi-omics data yielded the most distinct separation between the cancer scores of
the two groups (Figure 5D). Overall, when comparing the performance across all omics
combinations, the AUC using all multi-omics data yielded the highest value.
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Figure 4. ROC curve based on a machine learning model using lung cancer multi-omics data. The
performance of lung cancer diagnosis using combinations of multi-omics data was calculated and
presented using the ROC curve. The results based on the machine learning models of AdaBoost,
MLP, and LR are shown in (A–C). The blue lines represent the utilization of the markers Cyfra21-1,
CEA, and concentration of cfDNA. The combination of cfDNA% and CNV is indicated by orange
lines, and green indicates the combination of the four data sets. See the legend of Figure 2 for further
information. Dashed line represents Random prediction.

3.5. Comparison of Detection Probabilities for Lung Cancer Patients by Stage Using
Multi-Omics Data

While identifying cancer in the early stages is essential for identifying appropriate
treatment solutions, assessing the cancer detection performance at each stage is a critical
factor in determining a patient’s prognosis and treatment options. Incorporating blood
cancer markers (Cyfra21-1 + CEA) into the three ML analyses exhibited varying AUC
values across different stages. The AUC for stage I was poor, hovering around 0.6, whereas
stages II and III exhibited substantial improvement, reaching around 0.8. Remarkably, stage
IV consistently exceeded 0.9, indicating a notably high level of accuracy. These findings
highlight the efficacy of ML utilizing blood cancer markers, particularly for identifying
cancer patients in high-risk stage IV (Figure 6A).

The analysis of the cfDNA concentration across different lung cancer stages consis-
tently revealed trends among models (AdaBoost, MLP, and LR). The AUC values for stages
I, II, and III ranged from 0.626 to 0.845, indicating relatively modest performances. Even for
stage IV, the AUC values ranged from 0.729 to 0.811 (Figure 6B). In terms of the CNV score,
stage I exhibited AUC values between 0.752 and 0.876 across models. For higher-risk stages
II and III, the AUC values varied from 0.768 to 0.880. Remarkably, stage IV displayed an
AUC exceeding 0.9, demonstrating strong discriminatory power (Figure 6C). These findings
underscore the potential of the cfDNA concentration and CNV score in distinguishing
cancer stages.

The analysis based on the integration of all multi-omics data for different cancer stages
demonstrated remarkably high AUC values in the machine learning analysis. The three
ML models (AdaBoost, MLP, and LR) displayed values around 0.8 for stage I (0.797, 0.874,
and 0.861), and over 0.9 for stages II (0.938, 0.964, and 0.875) and III (0.900, 0.903, and 0.889).
Notably, for stage IV (0.983, 0.966, and 0.966), AUC values exceeding 0.966 were observed,
indicating an exceptionally high level of discrimination (Figure 6D). Supplementary Figure
S1 shows the overall sensitivity at the 95% confidence interval of each machine learning
model in different stages of lung cancer. The average sensitivity percentages for ML models,
calculated at a specificity of 90%, were as follows: stage 1 (50.0%, 63.6%, and 68.2%), stage 2
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(80.0%, 90.0%, and 80.0%), stage 3 (69.6%, 73.9%, and 65.2%), and stage 4 (96.6%, 93.1%, and
89.7%), with the highest sensitivity observed for stage 4. Overall, these results underscore
the significant effectiveness of integrated multi-omics data in predicting the stages of lung
cancer patients, enhancing the potential for early cancer detection and the development of
potential screening methods.

In summary, Figure 7 displays the AUC values for the single and combined multi-
omics data in AdaBoost, emphasizing the performance improvement achieved with multi-
omics machine learning analysis, showcasing an AUC of 0.914 and AUC of 0.986 for
all-stage and stage IV patients, respectively.
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Figure 5. Comparison of cancer scores for each machine learning model in each data set. The
cancer scores of various data sets using three machine learning models (AdaBoost, MLP, and LR) are
represented by whisker plots. Blue dots show the calculation results of normal groups, and scores
from lung cancer patients are indicated by orange dots. The x-axis represents the machine learning
model used, while the AUC values are shown on the y-axis. (A) shows cancer scores using tumor
markers (Cyfra21-1 + CEA), and (B) is the result of analysis using cfDNA%. Cancer scores based on
CNV are represented in (C), and the results from the four data sets are shown in (D).
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Figure 6. ROC curve based on a machine learning model using multi-omics data for the stage
of lung cancer. The performance of diagnosis using blood marker (Cyfra21-1+CEA) (A), cfDNA
concentration (B), CNV (C), and combinations of multi-omics data (Cyfra21-1+CEA+cfDNA+CNV)
(D) was calculated and presented using the ROC curve for the stages of lung cancer. Results based on
the machine learning models AdaBoost, MLP, and LR are shown. The blue line represents stage I, the
orange line represents stage II, the green line represents stage III, and the red line represents stage IV.
The analysis of ROC curves for single or multi-omics data was represented in each figure.
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4. Discussion

Lung cancer is a serious disease that is associated with high morbidity and mortality
rates [39]. It is the leading cause of cancer-related deaths worldwide, accounting for
approximately 1.8 million deaths each year [40]. Lung cancer is often asymptomatic in
the early stages, and by the time symptoms develop, the disease may have progressed
to an advanced stage, which can be difficult to treat [41]. As a result, early detection
and diagnosis of lung cancer are critical for improving treatment outcomes and patient
survival rates.

The current widely used screening test for lung cancer Is low-dose computed tomogra-
phy (LDCT). While LDCT has the benefit of being quick and painless, the scan can produce
a high rate of false positives that can lead to unnecessary follow-up procedures and, in
some cases, early stage lung cancer may not even be detected by the scan [42,43]. In this
study, we were able to accurately classify lung cancer patients and healthy controls based
on a machine learning model using multi-omics data. We observed that the prediction
probability was modest in the detection method using a single blood marker, but the proba-
bility was increased in the detection method of multi-blood markers [20]. This led to the
discovery that accuracy calculations yielded significantly higher detection probabilities.
The multi-omics data combination consisted of blood tumor markers, the cell-free DNA
(cfDNA) extraction amount, and DNA copy number variation (CNV) data from 92 lung can-
cer patients and 80 healthy control samples and analysis was performed using AdaBoost,
MLP, and LR machine learning models. When utilizing Cyfra21-1 and CEA, recognized as
lung cancer-associated tumor markers in Adaboost, the AUC values were 0.734 and 0.713,
respectively (Table 3). However, their combined application resulted in a notably increased
AUC value of 0.828. Similar results were observed in the machine learning analysis of MLP
and LR (Table 3). In the ML analysis utilizing solely cfDNA concentration data and CNV
screening, the AdaBoost algorithm yielded AUC values of 0.706 and 0.856, respectively
(Figure 3A). The combined analysis of ML in the cfDNA concentration and CNV screening
yielded an AUC value of 0.880 in AdaBoost (Figure 4A red line). When all three combina-
tions of multi-omics were used, the AUC value was 0.914 in AdaBoost (Figure 4A green
line), which was the highest and exhibited the best classification performance among the
other omics combinations. Similar results were observed in the machine learning analysis
of LR (Figure 4C). In the context of the MLP algorithm, the AUC value for CNV alone was
0.921 (Figure 3B), surpassing the AUC value of 0.903 achieved by combining the cfDNA
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concentration and CNV screening (Figure 4B red line). However, when all multi-omics
factors were integrated, the AUC value reached 0.931 (Figure 4B green line), representing
the highest performance. The integration of protein markers, cfDNA concentration, and
CNV screening through the ML algorithm led to an increased AUC value, indicating the
potential for a diagnostic model against lung cancer.

ML analysis techniques have enhanced the integration of multi-omics approaches by
enabling the comprehensive interpretation of large and complex datasets, which can be
difficult to analyze using traditional statistical methods [44]. For example, by using machine
learning algorithms, it may be possible to identify patterns of CNV, tumor markers, and
cfDNA concentrations that are associated with a specific cancer type, stage, and individual
patient, and use this information to develop a predictive model for cancer diagnosis and
treatment [45]. AUC is a commonly used performance metric in ML to evaluate the accuracy
of a classification model. Our high AUC values, namely 0.914 in AdaBoost, 0.931 in MLP,
and 0.914 in LP, obtained through the comprehensive integration of all multi-omics data
demonstrate the exceptional discriminatory ability of the model in distinguishing between
lung cancer patients and healthy individuals. Moreover, the application of combined
multi-omics data revealed notably elevated AUC values in stage IV (0.983, 0.966, and 0.966
for AdaBoost, MLP, and LP respectively), indicating the efficacy of our analytical approach
in stage-specific prediction and discrimination. These results suggest the potential for a
diagnostic model against lung cancer in oncological research.

The use of various omics technologies, such as somatic mutation detection, CNV,
proteomic and epigenetic analysis using NGS, and array technology, holds great promise for
improving the accuracy of cancer detection and diagnosis [18]. It is also important to note
that the results of multi-omics cancer analysis using machine learning for early diagnosis
can potentially be applied to other types of cancer diagnosis and early detection, as changes
in CNV, the protein tumor marker levels, and cfDNA concentration are commonly observed
in many types of cancer. However, each type of cancer is unique, and cancer is a complex
disease that involves genetic and epigenetic changes, which can be reflected in the CNV
of certain genes. Additionally, many types of cancer are associated with changes in the
levels of specific protein biomarkers in the bloodstream, and the level can be affected by
other non-cancer factors [46]. Furthermore, the cfDNA concentration can be altered in
many types of cancer, and the concentration of cfDNA can be also affected by inflammation
and infection [47]. Recently, characteristics of cfDNA, such as fragment size, preferred
ends, end motifs, and single-stranded jagged ends, have been utilized in the field of
cancer diagnosis. The levels of reduction in short fragment size, preferred ends, and the
end motif “CCCA” are being examined for their potential in differentiating patients with
hepatocellular carcinoma and healthy individuals. Further analysis of these characteristics
of cfDNA is likely to enhance the probabilities of predicting and distinguishing cancer
with even greater accuracy [48–50]. Therefore, it is important to note that the optimal
biomarkers and machine learning models for each type of cancer may vary. Further
research and validation of multi-omics approaches using machine learning algorithms will
be necessary to fully realize the potential for multi-cancer diagnosis and early detection.

While our results exhibited a remarkably high accuracy in distinguishing cancer
patients, it can be argued that the sample size representing lung cancer patients was too
small. Due to the limited scale of the patient group, consisting of cases of lung cancer, we
iteratively examined whether various detection methods, such as blood markers, cfDNA,
and CNV, yielded similar outcomes for each approach. Given the modest patient group
size, we repeatedly verified these analyses. To clarify whether these research findings hold
true in a larger population, an increase in external validation data through the expansion of
the patient group is required to obtain more accurate and meaningful results. To solve the
matter of a small cohort, we are currently conducting further research that uses an enlarged
patient cohort for investigation.

Despite its numerous advantages, multi-omics cancer analysis has some limitations
that should be taken into consideration. Integrating data from different omics technologies



Cancers 2023, 15, 4556 13 of 15

is a complex task that requires specialized knowledge and expertise, and the process may
be hindered by issues such as data quality, batch effects, and differences in technology
platforms [51]. In addition, multi-omics analysis involves analyzing large amounts of
data, which can be computationally intensive and require high-performance computing
resources [52].

5. Conclusions

Overall, the integration of multi-omics cancer analysis approaches in liquid biopsy
using machine learning techniques has great potential in significantly improving cancer
diagnosis and treatment, which may lead to the development of more effective and per-
sonalized non-invasive cancer therapies, predicting treatment responses, and enhancing
treatment efficiency, as well as early detection. The continual development and valida-
tion of robust predictive models and usage of additional biomarkers can present more
meaningful diagnostics and treatment for a wide variety of cancer types.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cancers15184556/s1. Supplementary Figure S1. Sensi-
tivity plot representing stage-wise cancer detection performance of each machine learning model.
The sensitivity values of the three machine learning models, AdaBoost (blue dots), MLP (dark red
dots), and LR (dark green dots), are presented using a dot plot. The x-axis shows the stages of
lung cancer and ‘N’ indicates the number of patients. The y-axis represents the sensitivity values.
The lines extending above and below each dot represent the 95% confidence interval for that value,
considering a specificity of 90%. Supplementary Figure S2. Feature importance score of combined
multi-omics data in AdaBoost model. Feature importance, encompassing all multi-omics data, for
the AdaBoost (A), MLP (B), and LR (C) models in lung cancer prediction, quantified as the mean
absolute values. The legend indicates the significance of the blood cancer markers (Cyfra21-1 and
CEA), cfDNA concentration (Input_amount), and copy number variation (CNV, Gchr1~Lch22).
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