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Simple Summary: AML is a type of leukemia with a very unfavorable prognosis. Some of the new
therapeutic targets that are being investigated by researchers worldwide are chemokines of the CXC
subfamily, which includes CXCL12. Although this chemokine has been very well studied, other CXC
chemokines has been less frequently examined in AML. There is also a lack of a review summarizing
the role of CXC chemokines other than CXCL12 in AML. For this reason, this review describes the
significance of the ligands for receptors CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 in AML. The
focus is on clinical aspects as well as molecular cancer processes in AML.

Abstract: Acute myeloid leukemia (AML) is a type of leukemia known for its unfavorable prognoses,
prompting research efforts to discover new therapeutic targets. One area of investigation involves
examining extracellular factors, particularly CXC chemokines. While CXCL12 (SDF-1) and its receptor
CXCR4 have been extensively studied, research on other CXC chemokine axes in AML is less
developed. This study aims to bridge that gap by providing an overview of the significance of
CXC chemokines other than CXCL12 (CXCR1, CXCR2, CXCR3, CXCR5, and CXCR6 ligands and
CXCL14 and CXCL17) in AML’s oncogenic processes. We explore the roles of all CXC chemokines
other than CXCL12, in particular CXCL1 (Gro-α), CXCL8 (IL-8), CXCL10 (IP-10), and CXCL11 (I-
TAC) in AML tumor processes, including their impact on AML cell proliferation, bone marrow
angiogenesis, interaction with non-leukemic cells like MSCs and osteoblasts, and their clinical
relevance. We delve into how they influence prognosis, association with extramedullary AML,
induction of chemoresistance, effects on bone marrow microvessel density, and their connection to
French–American–British (FAB) classification and FLT3 gene mutations.

Keywords: leukemia; AML; chemokine; interleukin-8 (IL-8); interferon-gamma-inducible protein
10 kDa (IP-10); bone marrow; blood; macrophage migration inhibitory factor (MIF)

1. Introduction

Acute myeloid leukemia (AML) is a type of leukemia with very unfavorable prog-
noses [1]. It is estimated that the median survival for AML patients is approximately
one year from diagnosis [2–5]. The worldwide incidence of this type of leukemia stands
at approximately 1.5 cases per 100,000 population [6]. However, in Western countries,
this incidence is higher, estimated at around 2.4 cases per 100,000 population in Western
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Europe and North America [6]. The average mortality rate caused by AML globally is
around 1.3 cases per 100,000 population, while in Western Europe and North America, it
is approximately 2.2 cases per 100,000 population [6]. The proximity of mortality rates to
incidence figures underscores the severity of the disease.

Due to the unfavorable outlook, research is being conducted to develop new thera-
peutic approaches for AML. One such avenue of research involves examining extracellular
factors, including chemokines.

CXC chemokines (α-chemokines) belong to a subfamily of chemokines and are chemo-
tactic cytokines responsible for guiding immune system cells (Table 1) [7]. They play an
essential role in the functioning of the immune system. α-chemokines possess a conserva-
tive CXC motif at the N-terminus, distinguishing them from other types like β-chemokines
and δ-chemokines, which have CC and CX3C motifs at the N-terminus, respectively. In
humans, there are 16 representatives of α-chemokines: CXC motif chemokine ligand
(CXCL)1–17, except CXCL15, which is a mouse chemokine [7]. α-chemokines activate
one of the six α-chemokine-specific receptors: CXC motif chemokine receptor (CXCR)1–6.
The expression levels of most of these receptors and chemokines in AML cells are closely
associated with patient prognosis [8–10]. This suggests that α-chemokines play a significant
role in AML’s oncogenic processes and might represent potential therapeutic targets for this
leukemia. Currently, compounds targeting the CXCR4 receptor are being tested [11–13].
However, drugs targeting other α-chemokine axes in AML, in particular, CXCR1, CXCR2,
and CXCR3 ligands, have not yet been explored. Additionally, there is no comprehensive
review summarizing the significance of α-chemokines, other than the CXCL12–CXCR4
axis, for AML. This review aims to generate interest in these other cytokines within the
scientific community.

Table 1. Basic information on CXC chemokines (α-chemokines).

Receptor Ligands Notes, Properties

CXCR1 (CD181)

CXCL6, CXCL8,
at high concentrations also
CXCL1, CXCL2, CXCL3,

CXCL5, CXCL7

The axis is significant in infiltration by neutrophils

CXCR2 (CD182)
CXCL1, CXCL2, CXCL3,
CXCL5, CXCL6, CXCL7,

CXCL8, MIF

Pro-angiogenic properties; axis significant in infiltration
by neutrophils

CXCR3 (CD183) PF-4, CXCL9, CXCL10,
CXCL11

Anti-angiogenic properties; the crucial axis in CD4+ and CD8+
T cell infiltration; CXCR3 exists in three isoforms generated by
alternative splicing—CXCR3A, CXCR3B, and CXCR3alt. All

CXCR3 ligands activate all three isoforms of this receptor except
for platelet factor-4 (PF-4), which activates only CXCR3B

CXCR4 (CD184) CXCL12 Pro-angiogenic properties; the crucial axis in the functioning of
bone marrow

CXCR3 (CD183), CXCR5
(CD185) CXCL13 The crucial axis in the functioning of B cells

CXCR4 (CD184), atypical
chemokine receptor 2 (ACKR2),

G protein-coupled receptor
(GPR)85,

insulin-like growth factor-1
receptor (IGF-1R)

CXCL14
Anti-angiogenic properties. The chemokine may be crucial for B

cells, macrophages, and dendritic cells. Positive allosteric
modulator for CXCR4

CXCR6 (CD186) CXCL16

Pro-angiogenic properties. CXCL16 exists in two forms:
membrane-bound CXCL16 and soluble CXCL16 released by

proteases. The membrane-bound form of CXCL16 can bind to
CXCR6, activating CXCR6 and promoting cell adhesion. The
crucial axis in the functioning of monocytes, macrophages, B
cells, CD4+ and CD8+ T cells, dendritic cells, natural killer T

(NKT) cells, and natural killer (NK) cells
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Table 1. Cont.

Receptor Ligands Notes, Properties

GPR35 CXCL17
Pro-angiogenic properties. The crucial

chemokine in the functioning of monocytes and
dendritic cells

CXCR7 CXCL11, CXCL12
CXCR7 forms a heterodimer with CXCR4, thus
functioning together with the CXCR4–CXCL12

axis

2. CXCR1 and CXCR2 Ligands
2.1. Basic Information about CXCR1 and CXCR2 Receptors and Their Ligands

In humans, there are seven chemokines that act as ligands for CXCR2 (CD182) [7,14]:

• CXCL1, also known as growth-regulated oncogene (Gro)-α, melanoma growth stimu-
latory activity (MGSA),

• CXCL2, also known as Gro-β,
• CXCL3, also known as Gro-γ,
• CXCL5, also known as epithelial cell-derived neutrophil-activating factor 78 (ENA-78),
• CXCL6, also known as granulocyte chemoattractant protein 2 (GCP-2),
• CXCL7, also known as neutrophil-activating protein 2 (NAP-2), encoded by the

pro-platelet basic protein (PPBP) gene in the form of pro-peptide, which is then
proteolytically shortened to connective tissue-activating peptide III (CTAP-III), β-
thromboglobulin (β-TG), and CXCL7 [15,16],

• CXCL8, also known as IL-8, NAP-1, GCP-1.

Additionally, macrophage migration inhibitory factor (MIF) can act as a ligand for
CXCR2 [17,18], but it is not classified as a CXC chemokine. Both CXCL6 and CXCL8 can also
activate CXCR1 (CD181) at low concentrations [19]. Therefore, this section will also discuss
the significance of CXCR1 in AML. On the other hand, the other chemokines mentioned
activate CXCR1 only at much higher concentrations than they do CXCR2 [19–21].

Among leukocytes, CXCR1 and CXCR2 expression is mainly found on neutrophils [22,23],
making the discussed CXCR2 ligands chemoattractants for these cells [24]. CXCR2 expression
is also present on basophils [7,25], indicating that CXCR2 ligands can also affect these cells.
Additionally, CXCR2 is expressed on endothelial cells, leading the discussed chemokines to
possess pro-angiogenic properties [26,27]. CXCR2 ligands play an important role in solid
tumor oncogenic processes [28,29] and in AML.

2.2. Levels of CXCR2 Ligands in Patients with AML

In patients with AML, the level of CXCR2 ligands in the blood is higher compared to
healthy individuals. Specifically, adult AML patients show elevated levels of CXCL1 [30],
CXCL8 [31–34], and MIF [35] in their blood compared to healthy individuals. In particular,
adults aged below 65 years have higher levels of CXCL8 in their blood compared to healthy
individuals of the same age [36]. Older AML patients, above 65 years, exhibit even higher
levels of CXCL8. However, in healthy individuals of the same age, CXCL8 levels are
elevated due to the aging process. Therefore, AML patients aged over 65 do not have
elevated CXCL8 levels compared to healthy individuals of the same age [36]. The higher
levels of CXCL8 in the blood could result from the production of this chemokine by AML
cells and the activation of endothelial cells by AML cells [37], leading to an increase in
CXCL8 production by endothelial cells.

Additionally, adults with AML exhibit increased production and levels of CXCR2
ligands in the bone marrow. In particular, higher expression of CXCL2, CXCL3, and MIF, as
well as CXCL1 and CXCL8 levels, is found in the bone marrow of AML patients compared
to healthy individuals [38,39].
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2.3. Expression of CXCR2 Ligands in AML Cells

In 1/3 of AML patients, AML cells secrete large amounts of CXCL1 [40,41]. However,
another study indicates that the expression of these two chemokines in AML cells is low [42].
The expression of CXCL1 in AML cells may not be related to the French–American–British
(FAB) classification [8,10]. Additionally, the expression of CXCL2 in AML cells may be
low compared to the expression of other CXCR2 ligands [42]. The expression of CXCL2 in
AML cells may not be related to the Frenc–American–British (FAB) classification [8,10]. The
higher expression of CXCL2 in AML cells, especially in cytogenetically normal AML-M5
cells, may be due to the action of GATA-binding protein 2 (GATA2) [43,44]. CXCL2 in
these cells enhances GATA2 activation, indicating a positive feedback loop between the
two proteins.

Moreover, the expression of CXCL3 in AML cells may be low compared to the expres-
sion of other CXCR2 ligands [42]. CXCL3 expression in AML cells with the FAB M0–M2
phenotype is higher than in AML cells with the FAB M4–M5 phenotype [8,10]. In 1/3
of AML patients, AML cells secrete large amounts of CXCL5 [40,41]. However, another
study indicates that the expression of these two chemokines in AML cells is low [42]. The
expression of CXCL5 in AML cells may not be related to the FAB classification [8,10].

AML cells also produce CXCL6, but in quantities 10 times smaller than CXCL5 and
CXCL8, and only in less than half of AML patients [40]. The expression of CXCL6 in AML
cells may not be related to the FAB classification [8,10].

The expression of PPBP and MIF in AML cells has not been extensively studied.
However, a screening conducted on the UALCAN portal suggests that the expression
levels of PPBP and MIF in AML cells are significantly higher compared to other CXCR2
ligands [8,10]. The highest expression of PPBP is found in AML cells with the FAB M7
phenotype [8,10].

On the other hand, around 95% of AML patients have AML cells that secrete large
amounts of CXCL8 [40–42]. AML cells also secrete more CXCL8 than bone marrow mononu-
clear cells in pediatric AML patients [45]. Nevertheless, another study shows that AML
cells express CXCL8 mRNA but do not secrete CXCL8 [46].

Considering the FAB classification, CXCL8 expression is highest in AML cells with
the FAB M0 phenotype, while it is lowest in AML cells with the FAB M3 and M5 pheno-
types [8,10,47]. However, another study shows that in most cases of AML with the FAB
M4–M5 phenotype, CXCL8 is expressed in AML cells, while in AML with the FAB M0–M3
phenotype, CXCL8 is expressed in only less than 1/3 of cases [48]. However, some studies
have not confirmed this association [49].

Analyzing AML cases excluding FAB M3 AML, CXCL8 expression is higher in AML
cells with fms-related receptor tyrosine kinase 3 (FLT3) internal tandem duplication (ITD)
mutation compared to cases without this mutation [47]. CXCL8 expression in AML cells
may also be higher in cases of translocation t(8;16)(p11;p13) [50]. This translocation leads
to the formation of the monocytic leukemia zinc finger protein (MOZ)–CREB-binding
protein (CBP) fusion gene. MOZ-CBP acts with steroid receptor coactivator-1 (SRC-1),
leading to increased activation of nuclear factor-κB (NF-κB) and expression of NF-κB-
dependent genes, including CXCL8. MIF expression is highest in AML cells with the FAB
M7 phenotype and lowest in AML cells with the FAB M0 phenotype [8,10].

The high expression of individual CXCR2 ligands in AML cells may vary indepen-
dently among different patients. Production of CXCL1 and CXCL8 in AML cells has been
shown to be correlated. However, in other patients, two other CXCR2 ligands, CXCL5 and
CXCL6, are correlated with the production of CC motif chemokine ligand (CCL)13, CCL17,
CCL22, and CCL24 [40]. This suggests that in these two groups of AML patients, CXCR2
ligands may have the same role in oncogenic processes, but the most crucial CXCR2 ligand
depends on the specific case.
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2.4. The Level of Expression of CXCR1 and CXCR2 Receptors in AML Cells

The expression of CXCR1 on AML cells is very low compared to the expression of other
chemokine receptors such as CC motif chemokine receptor (CCR)1, CCR2, and CXCR4 [40].
The expression of this receptor is highest in AML cells with the FAB M5 phenotype [51].
CXCR1 expression on AML cells is higher in medium/high-risk group patients with the
mentioned leukemia than in the low-risk group [51].

On the other hand, the level of CXCR2 expression on AML cells is high compared to
other chemokine receptors [33]. However, the level of CXCR2 expression does not differ
between CD34+ AML cells and CD34− AML cells [40]. CXCR2 expression is highest in
AML cells with the FAB M4–M5 phenotype and lowest in AML cells with the FAB M3
phenotype [8,10,51,52]. The expression of CXCR2 is higher in AML cells with FLT3 gene
mutations than in those without this mutation [52]. Additionally, CXCR2 expression on
AML cells is higher in medium/high-risk group patients with the mentioned leukemia
compared to the low-risk group [51]. The level of CXCR2 expression in AML cells in adult
patients is not associated with white blood cell (WBC) counts and bone marrow blast
percentages [52].

2.5. The Association of the Expression Levels of CXCR1 and CXCR2 Receptors along with Their
Ligands with Outcomes for Patients with AML

Higher levels of CXCR2 receptor expression on AML cells are associated with poorer
prognoses for adult patients [51,52]. The same correlation occurs with CXCR1 expres-
sion [53]. Another available study indicates that higher CXCR1 expression in AML cells is
associated with a tendency (p = 0.052) for poorer prognoses [51].

Moreover, the level of CXCR2 ligand expression in AML cells is closely related to
patient prognoses. According to the UALCAN website (https://ualcan.path.uab.edu,
accessed on 10 July 2023), there is a tendency (p = 0.069) for poorer prognoses with higher
CXCL1 expression in AML cells [8,10]. Furthermore, patient survival analysis on the GEPIA
portal (http://gepia.cancer-pku.cn, accessed on 10 July 2023) indicates that considering
the highest and lowest quartiles of expression, higher CXCL1 expression in AML cells is
associated with poorer prognoses [9,52]. Additionally, higher CXCL1 expression in the
bone marrow of AML patients is associated with worse prognoses [54].

The expression level of other CXCR2 ligands is also linked to prognoses. Specifi-
cally, higher CXCL2 expression in AML cells is associated with poorer prognoses [55,56].
According to the GEPIA portal (http://gepia.cancer-pku.cn, accessed on 10 July 2023),
considering the highest and lowest quartiles of expression, higher CXCL2 expression in
AML cells is related to a tendency (p = 0.055) for poorer prognoses [9]. Moreover, higher
CXCL2 expression in AML cells in adult patients with cytogenetically normal AML-M5 is
associated with poorer prognoses [43,44]. Additionally, higher CXCL2 expression in the
bone marrow is related to a tendency (p = 0.055) for poorer prognoses in AML patients [54].

According to the GEPIA portal (http://gepia.cancer-pku.cn, accessed on 10 July 2023),
higher expression of CXCL3, CXCL5, and PPBP in AML cells is associated with poorer
prognoses for patients with the described leukemia [9,52]. Other bioinformatic analyses also
confirmed that higher CXCL5 expression in AML cells is related to poorer prognoses [57].
According to the UALCAN portal (https://ualcan.path.uab.edu, accessed on 10 July 2023),
there is a tendency (p = 0.093) for poorer prognoses with higher PPBP expression in AML
cells [8,10].

Regarding CXCL8, higher expression of this chemokine in AML cells is associated
with poorer prognoses, but only in cases of AML without FAB M3 [47].

Another CXCR2 ligand that is not a chemokine is MIF. Higher expression of MIF in
AML cells is related to poorer prognoses [38] or tendency (p = 0.053) for poorer prognoses
in AML patients [8,10].

https://ualcan.path.uab.edu
http://gepia.cancer-pku.cn
http://gepia.cancer-pku.cn
http://gepia.cancer-pku.cn
https://ualcan.path.uab.edu
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2.6. The Association of CXCR2 Ligands with the Remaining Clinical Characteristics of Patients
with AML

In addition to the strong association between the expression levels of CXCR2 ligands
in AML cells and prognoses, similar relationships are observed with other clinical aspects.
Higher CXCL8 expression in AML cells is also associated with chemotherapy failure and a
high likelihood of recurrence after chemotherapy [34]. Furthermore, lower CXCL8 levels
in the blood of adult AML patients are associated with a higher probability of developing
graft-versus-host disease (GVHD) after bone marrow transplantation [58].

2.7. Mechanisms Regulating the Production of CXCR2 Ligands in the Bone Marrow of Patients
with AML

The gathered data indicate a significant association between CXCR2 ligands and the
prognosis of AML patients. Therefore, it can be inferred that CXCR2 ligands are involved
in the tumorigenic processes in AML. They may act in the bone marrow, where their
expression and levels are elevated in AML patients compared to healthy individuals [39].
The higher level of CXCL8 in the bone marrow of AML patients may originate from AML
cells themselves [40] as well as from mesenchymal stromal cells (MSCs) [59], with MSCs
likely being the main source [59]. Hypoxia may be a factor that increases the expression of
CXCR2 ligands in the bone marrow. Under such conditions, CXCL8 production in AML
cells is increased [47,60]. Hypoxia in the bone marrow also upregulates MIF expression
in AML cells [61], a process dependent on hypoxia-inducible factor-1 (HIF-1). Moreover,
hypoxia increases the expression of CXCR2 on AML cells [56], leading to enhanced action
of CXCR2 ligands on AML cells in the bone marrow.

Another factor that may increase CXCL8 production in the bone marrow is R-2-
hydroxyglutarate, but only in cases of AML with mutations in the isocitrate dehydroge-
nase (IDH)1 or IDH2 genes [62]. Mutations in these genes result in the production of
an oncometabolite, R-2-hydroxyglutarate, in AML cells. This compound induces NF-κB
activation in bone marrow stromal cells, leading to increased CXCL8 production in these
cells.

Interaction between AML cells and non-leukemic cells in the bone marrow may also
contribute to elevated levels of CXCR2 ligands. AML cells secrete CXCR2 ligands, especially
CXCL8, which promotes the migration of MSCs to these cells [47]. As a result of the inter-
action between AML cells and MSCs, the production of CXCL1, CXCL5, CXCL8 [41,59,63],
CXCL3, and CXCL6 [64] is increased. This has been shown in co-culture experiments with
these two types of cells.

MIF, which is produced by AML cells [61,65], may be responsible for increased CXCL8
production in MSCs. Interaction between AML cells and osteoblasts also leads to increased
CXCL8 production [66]. Additionally, exosomes released by AML cells can increase CXCL8
production in bone marrow stromal cells [67]. All these factors contribute to increased
production and levels of CXCR2 ligands in the bone marrow. In the bone marrow, CXCR2
ligands participate in tumorigenic processes in AML.

2.8. The Significance of CXCR2 Ligands in the Angiogenesis in the Bone Marrow of Patients
with AML

AML patients exhibit increased microvessel density in the bone marrow compared to
healthy individuals [68,69]. After successful AML treatment, the number of vessels in the
bone marrow returns to the levels observed in healthy individuals. Pro-angiogenic factors,
particularly those secreted by AML cells, are responsible for the increased number of vessels
in the bone marrow of AML patients [69]. AML cells secrete various factors, including
vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), basic fibroblast
growth factor (bFGF), matrix metalloproteinase (MMP)2, and MMP9 [69–71].

CXCR2 ligands may also be among these factors in AML patients. Studies in adults [72]
and pediatric AML patients [45] confirm this. Among all CXCR2 ligands, CXCL8 may
play a key role in the increased microvessel density in the bone marrow of AML patients.
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However, it should be noted that CXCR2 ligands are not the only factors responsible for
increased angiogenesis in the bone marrow of AML patients.

2.9. The Significance of CXCR2 Ligands in the Proliferation of AML Cells

CXCR2 ligands may directly affect AML cells and, thus, influence their proliferation.
However, only in some patients do CXCR2 ligands increase or decrease the proliferation of
AML cells [40]. In most cases, CXCR2 ligands do not affect the proliferation of AML cells.

2.10. The Significance of CXCR2 Ligands in the Formation of Extramedullary AML

Another role of CXCR2 ligands in AML-related tumorigenic processes and their impact
on prognosis may involve the participation of these chemokines in the migration of AML
cells to different organs. Approximately 14% of AML patients experience extramedullary
AML, where AML cells infiltrate tissues other than the bone marrow and blood, such as
the skin, central nervous system (CNS), and others [73].

Patients with extramedullary AML exhibit higher CXCR2 expression on AML cells
than patients with AML cells found only in the blood and bone marrow [52]. This suggests
the involvement of the CXCR2 axis in the infiltration of different tissues by AML cells. How-
ever, the precise mechanism of CXCR2 involvement in the development of extramedullary
AML has not been elucidated. The expression of CXCR2 ligands in the skin and CNS is low
compared to other tissues [74], indicating the existence of other mechanisms responsible
for the development of extramedullary AML involving CXCR2.

2.11. CXCR2 Ligands Induce Chemoresistance in AML Cells

Another possible mechanism of action of CXCR2 ligands in prognosis is their role in
causing chemoresistance to anti-leukemic drugs (Figure 1). Studies have demonstrated
that CXCR2 ligands, particularly CXCL8, are associated with resistance to cytarabine [37],
etoposide [67], and daunorubicin [75].

Exposure of AML cells to daunorubicin leads to increased expression of histone
deacetylase 8 (HDAC8) in these cells. Consequently, this results in enhanced activation of
NF-κB and increased expression of genes dependent on this transcription factor, including
CXCL8. This chemokine then leads to daunorubicin resistance [75].

Additionally, CXCL8 in the bone marrow causes etoposide resistance in AML cells [67].
Moreover, a higher level of CXCL8 in the blood of AML patients is indicative of etoposide
resistance [67].

Furthermore, CXCR2 ligands induce resistance to FLT3 tyrosine kinase inhibitors.
CXCR2 ligands, including MIF, increase the survival of AML cells exposed to FLT3 tyro-
sine kinase inhibitors such as gilteritinib [76]. Notably, gilteritinib itself activates NF-κB2,
leading to increased MIF expression in AML cells. Subsequently, MIF enhances the expres-
sion of CXCR2 and various CXCR2 ligands in AML cells, including CXCL1, CXCL5, and
CXCL8 [76]. Activation of this axis results in resistance to FLT3 tyrosine kinase inhibitors.
Blocking CXCR2 activity using an inhibitor increases the susceptibility of AML cells to
FLT3 tyrosine kinase inhibitors, potentially offering a promising therapeutic approach in
treating AML with FLT3 gene mutations.
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Figure 1. Significance of CXCL8 in AML. The chemokine CXCL8 is secreted by AML cells, and in
the bone marrow, hypoxia increases the expression of this chemokine in AML cells. CXCL8 causes
migration of MSCs to AML cells, facilitating intercellular communication between them. MIF, secreted
by AML cells, increases the expression of CXCL8 in MSCs in the bone marrow. CXCL8 induces
angiogenesis in the bone marrow, leading to increased microvessel density in the bone marrow of
patients with AML. It should be noted that this process is not solely dependent on CXCL8 but also on
other pro-angiogenic factors. Additionally, CXCL8 in the bone marrow acts on AML cells; in some
cases, it increases the proliferation of AML cells. CXCL8 also causes chemoresistance and participates
in the development of extramedullary AML.

2.12. Drugs Targeting CXCR2 as Anti-Leukemic Agents

The association between higher expression of CXCR2 ligands and CXCR1 and CXCR2
receptors on AML cells and poorer prognosis suggests a potential therapeutic target in
anti-leukemic therapy (Tables 2 and 3). A study in mice engrafted with U937 cells indicates
that blocking CXCR2 activity in these cells increases the survival of these laboratory
animals [42]. Moreover, the use of CXCR2 inhibitors, such as SB225002, may enhance
the effectiveness of FLT3 tyrosine kinase inhibitors. An in vitro study on the MV4–11 cell
line confirmed this finding [76]. It should be noted that SB225002 may act independently
of CXCR2. This compound can destabilize microtubules, which may account for its anti-
cancer properties [77]. However, research on the implementation of CXCR2 inhibitors in
AML therapy is still in its early stages.

Table 2. Description of CXCR2 ligands in AML.

Trait/Ligand CXCR2
Analyzed CXCL1 CXCL2 CXCL3 CXCL5

Expression levels in
patients with AML

Higher blood levels in
AML patients. Higher
levels in the bone
marrow

Higher expression in
bone marrow

Higher expression in
bone marrow No available studies

Expression in AML
cells

In 1/3 of AML patients,
AML cells secrete large
amounts of CXCL1.
However, another
study indicates that the
expression of this
chemokine in AML
cells is low

The expression of
CXCL2 in AML cells
may be low compared
to the expression of
other CXCR2 ligands

The expression of
CXCL3 in AML cells
may be low compared
to the expression of
other CXCR2 ligands

In 1/3 of AML patients,
AML cells secrete large
amounts of CXCL5.
However, another
study indicates that the
expression of this
chemokine in AML
cells is low
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Table 2. Cont.

Trait/Ligand CXCR2
Analyzed CXCL1 CXCL2 CXCL3 CXCL5

Expression level due
to FAB classification

Independent of FAB
classification

Independent of FAB
classification

Expression in AML
cells with FAB M0–M2
phenotype is higher
than in AML cells with
FAB M4–M5 phenotype

Independent of FAB
classification

Dependence of
expression level on a
given mutation

Impact on prognosis
Higher expression in
AML cells is associated
with a worse prognosis

Higher expression in
AML cells is associated
with a poorer
prognosis. Notably,
higher CXCL2
expression in AML
cells in adult patients
with cytogenetically
normal AML-M5 is
associated with poorer
prognoses

Higher expression in
AML cells is associated
with a worse prognosis

Higher expression in
AML cells is associated
with a worse prognosis

Induction of
chemoresistance

The chemokine causes
resistance of AML cells
to gilteritinib

No data No data
The chemokine causes
resistance of AML cells
to gilteritinib

Association with
extramedullary AML No data No data No data No data

Effects on bone
marrow microvessel
density

No data No data No data No data

Trait/ligand CXCR2
analyzed CXCL6 PPBP CXCL8 MIF

Expression levels in
patients with AML No available studies No available studies

Higher blood levels in
AML patients,
especially those
younger than 65.
Higher levels in the
bone marrow

Higher levels in the
blood, and higher
expression in bone
marrow relative to
healthy individuals

Expression in AML
cells

In half of AML patients,
AML cells produce low
amounts of CXCL6

High expression
In most patients, AML
cells produce large
amounts of CXCL8

High expression

Expression level due
to FAB classification

Independent of FAB
classification

The highest expression
in AML cells with FAB
M7 phenotype

Depending on the
study, the highest
expression in AML
with FAB M0
phenotype, lowest in
FAB M5, or expression
level does not differ by
the FAB classification

Lowest in AML with
FAB M0 phenotype,
highest in AML with
FAB M7 phenotype

Dependence of
expression level on a
given mutation

Higher expression with
FLT3-ITD mutation.
Higher expression at
translocation
t(8;16)(p11;p13) with
presence of MOZ-CBP
fusion gene
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Table 2. Cont.

Trait/Ligand CXCR2
Analyzed CXCL1 CXCL2 CXCL3 CXCL5

Impact on prognosis

No studies available on
the association of the
expression of this
chemokine with
prognosis

Higher expression in
AML cells is associated
with a worse prognosis

Higher expression of
this chemokine in AML
cells is associated with
poorer prognoses, but
only in cases of AML
without FAB M3

Higher expression in
AML cells is associated
with a worse prognosis

Induction of
chemoresistance No data No data

The chemokine induces
resistance in AML cells
to cytarabine,
etoposide, gilteritinib,
and daunorubicin.
Higher level of CXCL8
in the blood of AML
patients is indicative of
etoposide resistance

The chemokine causes
resistance of AML cells
to gilteritinib

Association with
extramedullary AML No data No data No data No data

Effects on bone
marrow microvessel
density

No data No data

Association of CXCL8
with angiogenesis in
the bone marrow of
patients with AML

No data

Table 3. Description of CXCR1 and CXCR2 receptors in AML.

Trait/Receptor Analyzed CXCR1 CXCR2

Expression in AML cells Very low compared to other chemokine
receptors.

High compared to other chemokine
receptors. CXCR2 expression does not
differ between CD34+ AML cells and
CD34− AML cells.

Expression level due to FAB
classification

The highest expression is in AML cells
with the FAB M5 phenotype.

The highest expression is in AML cells
with the FAB M4–M5 phenotype, while
the lowest is in the FAB M3 phenotype.

Dependence of expression level on a
given mutation

Higher in medium/high-risk group
patients than in the low-risk group.

Higher in medium/high-risk group
patients compared to the low-risk group.
Higher in AML cells with FLT3 gene
mutations.

Impact on prognosis Higher expression in AML cells is
associated with poorer prognoses.

Higher expression in AML cells is
associated with poorer prognoses.

Induction of chemoresistance

CXCL8, when acting on AML, induces
resistance to etoposide and daunorubicin,
but it is not known which receptor is
responsible for this property.

Activation of AML cells induces
resistance to cytarabine and gilteritinib.
CXCL8, when acting on AML, induces
resistance to etoposide and daunorubicin,
but it is not known which receptor is
responsible for this property.

Association with extramedullary AML No data.
Higher expression on AML cells is
associated with a higher likelihood of
extramedullary AML.

Effects on bone marrow microvessel
density

A significant association between CXCL8 and bone marrow microvessel density in
patients with AML has been demonstrated. However, it is not known which CXCL8
receptor is responsible for this property.

3. CXCR3 Ligands
3.1. Basic Information about CXCR3 and Its Ligands

Regarding CXCR3 ligands, CXCR3 (CD183) exists in three alternative splice vari-
ants: CXCR3A, CXCR3B, and CXCR3alt [78]. CXCR3 activation leads to different signal
transduction pathways depending on the alternative splice variants. The ligands for
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CXCR3 include PF-4 (also known as CXCL4), CXCL9 (also known as monokine induced
by interferon (MIG)), CXCL10 (also known as interferon-γ-inducible protein 10 (IP-10)),
and CXCL11 (also known as interferon-inducible T cell a-chemoattractant (I-TAC)) [7,14].
CXCL9, CXCL10, and CXCL11 can activate all variants of CXCR3, while PF-4 can only
activate CXCR3B [78,79].

CXCR3 is expressed on NK cells and T cells [80], making CXCR3 ligands significant in
the function of these cells. Furthermore, the CXCR3 axis is also crucial in AML tumorigenic
processes. Another property of the discussed axis is the inhibition of angiogenesis [26].

3.2. Expression of CXCR3 in AML Cells

The expression level of CXCR3 on AML cells does not differ from the expression level
of this receptor on bone marrow CD34+ cells [49]. The expression of CXCR3 is highest in
AML cells with the FAB M3 and M7 phenotypes [8,10,51]. The expression of CXCR3 is
lower in AML cells with FLT3 or nucleophosmin 1 (NPM1) mutations compared to AML
cells without these mutations [51].

Additionally, the expression level of CXCR3A on AML cells may depend on other
factors. CD34+ AML cells have higher CXCR3A expression than CD34− AML cells [40],
suggesting that the discussed axis may be significant for AML stem cells.

3.3. Expression of CXCR3 Ligands in AML Cells

AML cells in the majority of patients produce PF-4 and CXCL10. Approximately
40% of patients have AML cells that produce detectable levels of CXCL9 and CXCL11 [40].
CXCL9 expression may be highest in AML cells with the FAB M7 phenotype, while CXCL10
and CXCL11 expression is lowest in AML cells with the FAB M3 phenotype [8,10].

The higher expression of CXCR3 ligands in AML cells may be correlated with other
chemokines, suggesting a certain AML subtype with specific tumorigenic mechanisms.
The expressions of CXCL9, CXCL10, and CXCL11 are correlated with each other and with
the expression of CCL5 and CCL23 [40].

3.4. Levels of CXCR3 Ligands in Patients with AML

In adult patients with AML, there is a higher level of CXCL10 in the blood compared to
healthy individuals [32]. However, another study indicated that elevated levels of CXCL9
and CXCL10 in the blood were observed only in adult patients younger than 50 years
old [58,81]. Additionally, research has shown that the level of CXCL10 in the blood of
pediatric and adult AML patients is lower than that in healthy individuals and decreases
even further after bone marrow transplantation [30].

The blood level of CXCL10 is not associated with FAB classification or FLT3 gene
mutation in AML cells [81]. Notably, the lower blood levels of CXCL9 and CXCL10 in adult
AML patients may also be associated with the development of GVHD after bone marrow
transplantation [58].

In the bone marrow of adult AML patients, there are higher expression and levels
of CXCL9 and CXCL10 compared to healthy individuals [39]. The increased CXCL10
level may result from the interaction of AML cells with MSCs [64,81], fibroblasts, and
osteoblasts [81]. Co-culture studies of AML cells with these cells have shown that the
interaction leads to increased CXCL10 expression. However, another study suggests that
the co-culture of AML cells with MSCs only minimally affects the production of CXCR3
ligands or not at all [41].

In contrast, hypoxia may not influence the expression of CXCL9, CXCL10, and CXCL11
in AML cells [60]. Additionally, higher CXCL10 expression in the bone marrow may result
from mutations in AML cells in the IDH1 and IDH2 genes, leading to the production of
R-2-hydroxyglutarate by these cells. Experiments on StromaNKtert cell lines have shown
that R-2-hydroxyglutarate increases CXCL10 expression in bone marrow stromal cells [62].



Cancers 2023, 15, 4555 12 of 22

CXCR3 ligands in the bone marrow can inhibit the proliferation of hematopoietic
progenitor cells [82], leading to disrupted hematopoiesis observed in AML patients [83,84].
Similar properties have been demonstrated for CCL3 [85].

3.5. The Association of CXCR3 Receptor Expression along with Its Ligands with the Outcomes for
Patients with AML

The discussed chemokine axis plays a crucial role in the tumorigenic processes of AML.
This is evidenced by the association between the expression level of the CXCR3 receptor and
its ligands and the survival of AML patients. Higher expression of CXCR3 [8,10], PF-4 [8,10],
CXCL10 [8–10,86], and CXCL11 [8,10] in AML cells is associated with poorer prognoses.
The mechanisms underlying the involvement of this axis in tumorigenic processes in AML
have not been fully elucidated and understood.

3.6. The Significance of CXCR3 Ligands in the Proliferation of AML Cells

CXCR3 ligands may increase the proliferation of AML cells in some patients [40,87].
However, these chemokines may also decrease the proliferation of AML cells in the bone
marrow in some patients. Furthermore, CXCR2 ligands, particularly PF-4 and CXCL10,
in combination with hematopoietic cytokines such as c-kit ligand, granulocyte colony-
stimulating factor (G-CSF), granulocyte–macrophage colony-stimulating factor (GM-CSF),
and interleukin-3 (IL-3), may reduce the proliferation of AML cells [87,88].

3.7. The Significance of CXCR3 Ligands in the Development of Extramedullary AML

In approximately 14% of AML patients, leukemic cells may be present not only in the
bone marrow and blood but also in other tissues. The most common location for AML
cells besides the bone marrow and blood is the skin [73], referred to as extramedullary
AML of the skin. CXCR3 ligands may be responsible for AML cell homing to the skin in
adult patients [89]. However, there is low expression of CXCR3 ligands in the skin [74].
Therefore, the exact molecular mechanism responsible for the homing of AML cells with
high CXCR3 expression to the skin is not known.

3.8. The Association of CXCR3 Ligands with the Condition of AML Patients

CXCR3 ligands not only directly impact the tumorigenic mechanisms in AML but can
also influence the patient’s condition. It has been shown that the level of CXCL10 in the
blood is correlated with cancer-related fatigue [90]. However, the exact mechanism linking
cancer-related fatigue in AML patients with CXCL10 has not been fully understood.

3.9. Conclusions

The involvement of the described chemokine axis in the tumorigenic processes of
AML has not been well understood (Figure 2). The expression level of the CXCR3 receptor
and its ligands in AML cells is closely associated with the prognosis of patients with
this leukemia [8–10,86]. This indicates that the described axis plays a significant role
in the tumorigenic processes of AML, which needs further exploration. Additionally, it
is desirable to investigate whether targeting CXCR3 or its ligands has any therapeutic
potential in AML patients (Table 4).
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Figure 2. The significance of CXCL10 in AML-related processes. In the bone marrow of AML patients,
there is a higher level of CXCL10 compared to healthy individuals. This is associated with CXCL10
production by AML cells. The source of this chemokine in the bone marrow may also depend on
interactions between AML cells and other cells such as MSCs, fibroblasts, and osteoblasts. CXCL10
in the bone marrow affects AML cells, leading to changes in the intensity of their proliferation.
Depending on the research model, CXCL10 can either increase or decrease the proliferation intensity
of AML cells. CXCR3 is also associated with extramedullary AML of the skin; however, the exact
molecular mechanism of AML cell homing to the skin is not precisely known.

Table 4. Description of CXCR3 and ligands of this receptor in AML.

Trait PF-4 CXCL9 CXCL10 CXCL11 CXCR3

Expression levels
in patients with
AML

No available
studies

Higher blood
levels than in
healthy
individuals,
especially those
younger than 50.
In the bone
marrow of AML
patients, levels
elevated

Higher blood
levels than in
healthy people,
especially those
younger than 50.
Other studies
indicate that levels
are lower than in
healthy people. In
the bone marrow
of AML patients,
levels are elevated

No available
studies

Expression in
AML cells

AML cells in the
majority of
patients produce
PF-4

AML cells in
approximately 40%
of patients produce
detectable levels of
CXCL9

AML cells in the
majority of
patients produce
CXCL10

AML cells in
approximately 40%
of patients produce
detectable levels of
CXCL11

No differences
between AML cells
and bone marrow
CD34+ cells

Expression level
due to FAB
classification

The expression
does not depend
on FAB
classification

Highest in AML
cells with the FAB
M7 phenotype

Lowest in AML
cells with the FAB
M3 phenotype

Lowest in AML
cells with the FAB
M3 phenotype

The expression of
CXCR3 is highest
in AML cells with
the FAB M3 and
M7 phenotypes

Dependence of
expression level
on a given
mutation

Lower expression
with a mutation in
FLT3 and NPM1
genes
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Table 4. Cont.

Trait PF-4 CXCL9 CXCL10 CXCL11 CXCR3

Impact on
prognosis

Worse prognosis
with higher
expression in AML

No link between
expression and
prognosis

Worse prognosis
with higher
expression in AML

Worse prognosis
with higher
expression in AML

Worse prognosis
with higher
expression in AML

Induction of
chemoresistance No data No data No data No data No data

Association with
extramedullary
AML

The expression of the CXCR3 receptor is associated with extramedullary AML in the
skin. However, there is low expression of CXCR3 ligands in the skin. The molecular
mechanism of AML cell homing with high CXCR3 expression in the skin remains
unknown

Higher expression
of CXCR3 on AML
cells is associated
with a greater
likelihood of
extramedullary
AML in the skin

Effects on bone
marrow
microvessel
density

No data available. The axis exhibits anti-angiogenic properties; however, it is not known whether it plays a
role in bone marrow angiogenesis in patients with AML

4. CXCR5 Ligand: CXCL13

CXCL13 is a chemokine that activates CXCR5 (CD185) [91] and CXCR3 (CD183) [92].
Another name for CXCL13 is B-cell-attracting chemokine 1 (BCA-1), and it is associated with
important functions for B cells [91,93,94]. CXCL13′s angiogenic properties appear to vary
depending on the specific model employed. Research findings suggest that CXCL13 can ex-
hibit either pro-angiogenic or anti-angiogenic characteristics [95,96]. Notably, CXCL13 does
not appear to directly influence the proliferation or migration of endothelial cells, as demon-
strated in experiments involving human umbilical vein endothelial cells (HUVECs) [96].
However, it is worth noting that CXCL13 can diminish the effects of bFGF on these cells,
which could be interpreted as an anti-angiogenic effect. Interestingly, CXCL13 has been
observed to facilitate endothelial progenitor cell (EPC) homing, ultimately contributing to
angiogenesis, particularly in models related to rheumatoid arthritis [95].

AML cells have higher CXCR5 expression compared to controls [51]. However, AML
with FLT3 gene mutation shows lower CXCR5 expression than AML cases without this
mutation [51]. The level of CXCR5 expression on AML cells does not impact prognosis
in adult patients [8,10,51]. The ligand for this receptor, CXCL13, is produced in small
amounts by AML cells in half of the patients [40]. AML cells with the FAB M5 phenotype
show the highest CXCL13 expression [8,10]. CXCL13 may promote proliferation in a few
patients with AML [40]. However, the lack of associations between CXCL13 and CXCR5
expression levels and prognosis suggests that this axis may not play a significant role in the
pathogenesis of AML.

5. CXCL14

Chemokine CXCL14 is a chemoattractant for monocytes [97], macrophages [98], B
cells [98], and dendritic cells [99]. Additionally, this chemokine may also play a role in acti-
vating dendritic cells [100]. Its previous name is breast- and kidney-expressed chemokine
(BRAK). The receptor for CXCL14 is not well defined, but it seems that CXCL14 can ac-
tivate CXCR4, ACKR2 [101], IGF-1R [102], and GPR85 [103]. CXCL14 can also bind to
CXCR4 [104]. Interestingly, it appears that CXCL14 may act as a positive allosteric modula-
tor for CXCR4 [105]. Furthermore, CXCL14 exhibits anti-angiogenic properties [106].

The level of CXCL14 expression in AML cells does not correlate with patient outcomes
(Table 5) [8,10]. Furthermore, CXCL14 does not influence the proliferation of AML cells [40].
Therefore, it is likely that CXCL14 does not participate in the oncogenic processes in AML
and has no clinical significance in this disease.
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Table 5. Description of CXCL13, CXCL14, and CXCR5 in AML.

Trait CXCL13 CXCR5 CXCL14

Expression in AML cells
CXCL13 is produced in small
amounts by AML cells in half
of the patients

Higher expression in AML
cells compared to the control

Expression level due to FAB
classification

The highest expression is
observed in AML cells with
the FAB M5 phenotype

The expression level is
independent of FAB
classification

The expression level is not
dependent on FAB
classification

Dependence of expression
level on a given mutation

AML with FLT3 gene
mutation shows lower CXCR5
expression

Impact on prognosis Without an impact on
prognoses

Without an impact on
prognoses

Without an impact on
prognoses

Induction of
chemoresistance

No available data on the
association

No available data on the
association

No available data on the
association

Association with
extramedullary AML

No available data on the
association

No available data on the
association

No available data on the
association

Effects on bone marrow
microvessel density

No available data on the
association

No available data on the
association

No available data on the
association

6. Ligand CXCR6: CXCL16

CXCL16 is synthesized as a transmembrane protein [107]. In this form, CXCL16 can act
as an adhesion molecule by binding to its receptor CXCR6 (also known as CD186) [108]. The
membrane-bound form of CXCL16 can also undergo proteolytic cleavage by a disintegrin
and metalloproteinase 10 (ADAM10) [109,110] and ADAM17 [110], resulting in the release
of soluble CXCL16, which functions as a chemokine by acting on the CXCR6 receptor.
The CXCL16–CXCR6 axis is significant in the functioning of monocytes, macrophages, B
cells, CD4+ and CD8+ T cells [111], dendritic cells, NKT cells [112], and NK cells [111].
Additionally, CXCL16 is considered a pro-angiogenic chemokine [113,114].

In adult AML patients, the bone marrow exhibits higher levels of CXCL16 compared
to healthy individuals [39]. Bone marrow endothelial cells may be responsible for this, as
they show higher CXCL16 expression in AML patients than in healthy individuals [115].

Additionally, AML cells secrete CXCL16, with the lowest expression observed in
AML cells with the FAB M3 phenotype [8,10]. Higher CXCL16 expression in AML cells is
associated with worse outcomes for AML patients [86], suggesting a significant role for this
chemokine in AML tumor progression.

AML cells exhibit higher expression of CXCR6 than control cells [51]. The level of
CXCR6 expression on AML cells is associated with FAB subtypes, with AML cells with
FAB M0 and M7 phenotypes showing the highest expression [8,10]. AML patients with
FLT3 gene mutation also display lower CXCR6 expression than those without this muta-
tion [8,10,51]. Similar trends are observed in AML cases with NPM1 gene mutation [51].
Furthermore, higher CXCR6 expression is associated with the medium/high-risk group of
AML patients compared to the low-risk group.

The level of CXCR6 expression in the blood of AML patients may be associated with
better outcomes [57], but conflicting results have been reported [51].

The significance of the CXCL16–CXCR6 axis in AML oncogenesis is not fully under-
stood. CXCL16 may directly affect AML cells, and in some patients, it may increase AML
cell proliferation [40]. However, for the majority of cases, CXCL16 does not influence AML
cell proliferation. Exploring the influence of the immune system on AML cells through the
CXCL16–CXCR6 axis requires further investigation.

7. CXCL17

CXCL17 is a recently discovered chemokine that remains poorly studied. This chemokine
can activate GPR35 [116] and promotes the migration of monocytes and dendritic cells [117].
CXCL17 can be considered a pro-angiogenic chemokine as it enhances VEGF expression in
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macrophages [118]. CXCL17 may also enhance the proliferation and migration of certain
tumor cells, such as hepatocellular carcinoma [119] and breast cancer [120].

Currently, the role of CXCL17 and GPR35 in AML has not been thoroughly inves-
tigated. Data from the UALCAN portal (https://ualcan.path.uab.edu, accessed on 25
June 2023) showed that the expression levels of CXCL17 and GPR35 in AML cells do
not influence patient outcomes [8,10]. However, a trend (p = 0.058) towards worse out-
comes was observed with higher GPR35 expression on AML cells. On the GEPIA portal
(http://gepia.cancer-pku.cn/index.html, accessed on 25 June 2023), higher GPR35 expres-
sion on AML cells was associated with poorer patient outcomes [9]. The portal’s data
also showed that GPR35 expression is higher on AML cells compared to control cells [9].
According to UALCAN, GPR35 expression is highest in AML cells with the FAB M4–
M5 phenotype, while CXCL17 expression is highest in AML cells with the FAB M0–M1
phenotype [8,10].

The CXCL17–GPR35 axis has not been thoroughly studied in AML (Table 6). The
impact of GPR35 expression on patient outcomes suggests that this receptor may play a
role in AML tumorigenesis. However, GPR35 can also be activated by other substances,
such as kynurenic acid [121]. Therefore, the significance of CXCL17 in AML tumorigenesis
remains uncertain and requires further investigation.

Table 6. Description of CXCL16, CXCL17, and CXCR6 in AML.

Trait CXCL16 CXCR6 CXCL17 GPR35
Expression in AML
cells I poziom
chemokin u pacjentów
z AML

In the bone marrow,
there is a higher level
of CXCL17 compared
to healthy individuals

Higher expression in
AML cells compared to
the control

No available data
Higher expression in
AML cells compared to
the control

Expression level due
to FAB classification

The lowest expression
is observed in AML
cells with the FAB M3
phenotype

AML cells with FAB
M0 and M7 phenotypes
show the highest
expression

The highest in AML
cells with FAB M0–M1
phenotype

Highest in AML cells
with FAB M4–M5
phenotype

Dependence of
expression level on a
given mutation

AML cells with FLT3 or
NPM1 gene mutations
exhibit lower CXCR6
expression. Moreover,
higher CXCR6
expression is associated
with the
medium/high-risk
group of AML patients

Impact on prognosis
Higher expression in
AML cells is associated
with poorer prognoses

Higher expression in
the blood is associated
with better prognoses.
However, other studies
have not confirmed this

Without an impact on
prognoses

Higher expression in
AML cells is associated
with poorer prognoses

Induction of
chemoresistance

No available data on
the association

No available data on
the association

No available data on
the association

No available data on
the association

Association with
extramedullary AML

No available data on
the association

No available data on
the association

No available data on
the association

No available data on
the association

Effects on bone
marrow microvessel
density

No available data on
the association

No available data on
the association

No available data on
the association

No available data on
the association

8. Conclusions

The best-characterized α-chemokine in the context of AML tumorigenesis is CXCL12.
Consequently, current investigations are focusing on anti-leukemic drugs that target its
receptor, CXCR4. The significance of CXCR2 and CXCR3 ligands is also well understood,
as their expressions in AML cells are closely associated with patient outcomes. However,
there is currently a lack of research on drugs targeting these two axes (ligands–CXCR2

https://ualcan.path.uab.edu
http://gepia.cancer-pku.cn/index.html
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and ligands–CXCR3) in AML therapy. This should be a direction of clinical research in the
near future.

Regarding other α-chemokines, CXCL16 appears promising from a clinical perspective.
Elevated expression of this chemokine in AML cells is strongly correlated with poorer
patient prognoses. Therefore, it is essential to investigate how CXCL16 participates in
AML tumorigenesis. Additionally, evaluating the potential therapeutic benefits of targeting
CXCL16 in AML patients should be a priority. Developing new drugs that target the axes
of ligands–CXCR2, ligands–CXCR3, and CXCL16–CXCR6 may significantly improve the
outcomes for AML patients.
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