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Simple Summary: Lung cancer patients have a high mortality risk due to brain metastases (BM). Un-
derstanding the molecular changes that contribute to BM is essential to identify potential therapeutic
targets. Previous research has focused on primary tumor alterations, with less attention given to BM.
This study examined a unique transcriptomic dataset assembled from previously reported RNA-seq,
microarray, and single-cell analyses of BM samples from lung adenocarcinoma (LUAD) patients in
pursuit of gaining a better understanding of the molecular landscape of BM. We found that dendritic
cells and neutrophils were present in LUAD-BM, which could contribute to an immunosuppressive
tumor microenvironment. The expression levels of 102 genes were altered, with CD69 and GZMA
identified as ‘hub’ genes, which could play a role in LUAD-BM. BM-specific gene expression was
also observed, further supporting the presence of an immunosuppressive tumor microenvironment.

Abstract: Lung tumors frequently metastasize to the brain. Brain metastasis (BM) is common
in advanced cases, and a major cause of patient morbidity and mortality. The precise molecular
mechanisms governing BM are still unclear, in part attributed to the rarity of BM specimens. In
this work, we compile a unique transcriptomic dataset encompassing RNA-seq, microarray, and
single-cell analyses from BM samples obtained from patients with lung adenocarcinoma (LUAD).
By integrating this comprehensive dataset, we aimed to enhance understanding of the molecular
landscape of BM, thereby facilitating the identification of novel and efficient treatment strategies. We
identified 102 genes with significantly deregulated expression levels in BM tissues, and discovered
transcriptional alterations affecting the key driver ‘hub’ genes CD69 (a type II C-lectin receptor) and
GZMA (Granzyme A), indicating an important role of the immune system in the development of BM
from primary LUAD. Our study demonstrated a BM-specific gene expression pattern and revealed
the presence of dendritic cells and neutrophils in BM, suggesting an immunosuppressive tumor
microenvironment. These findings highlight key drivers of LUAD-BM that may yield therapeutic
targets to improve patient outcomes.

Keywords: lung cancer; bioinformatics; brain metastasis; immune cell; tumor microenvironment (TME)

1. Introduction

Brain metastases (BM) are a common and serious complication in patients with lung
cancer, with tumors of the lung being the most prevalent cause of brain metastases [1–5].
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The incidence of BM in lung cancer varies according to tumor histology where non-small-
cell lung cancer (NSCLC), which accounts for approximately 85% of all lung cancer cases,
has an incidence of BM ranging from 10 to 50% [6,7]. Lung adenocarcinoma (LUAD) is the
predominant histological subtype of NSCLC, and represents approximately 40% of all lung
cancer cases. LUAD is frequently diagnosed at an advanced stage and characterized by the
presence of metastases, with the brain being one of the main metastatic sites [8].

BM is associated with a wide range of symptoms, including headaches, seizures,
and changes in vision, speech, and/or behavior [9]. These symptoms significantly impair
patient quality of life, and the presence of LUAD-linked BM is associated with a dismal
prognosis [10] and a median survival of approximately 15 months [10]. Treatment options
for BM are limited but may include surgery, radiation therapy, and chemotherapy: ulti-
mately, the choice of treatment depends on multiple factors including the patient’s overall
health and the extent of the metastasis [9,11].

Recent advances in targeted therapies and immunotherapies have shown promise
in treating lung cancer, including BM. However, it is essential to conduct more research
to improve outcomes since treating BM remains a persistently serious and difficult chal-
lenge [12–15]. Previous investigations have mainly focused on studying primary tumors
with and without metastasis, in order to shed light on the underlying mechanisms of BM
in lung cancer patients, paving the way for developing treatment strategies [16–20]. The
molecular landscape of lung cancer-related BM has been recently reviewed comprehen-
sively [11]. There is an urgent need for more research, since most studies are limited by
small sample sizes and include patients with different disease subtypes lacking a complete
description of patient clinical data. Therefore, further investigations are warranted, as the
previous data have not been translated into clinical practice to provide discernible benefits
to patients.

At present, targeted drugs available for the treatment of BM in lung cancer only
benefit a subset of patients, are very costly, and associated with toxicity and development
of resistance [12,13]. Therefore, it is of utmost importance to perform large-scale molecular
studies of BM tissues to develop biomarker-based therapies. Genomic analyses of BM
and corresponding primary tumors and other extracranial metastases have revealed that
BM may harbor potentially actionable driver mutations [21]. The identification of specific
molecular targets for BM will likely contribute to improved outcomes of patients who
develop BM.

Here, we integrated data from different sequencing technologies (bulk RNA-seq,
microarray, and single-cell RNA-seq) to provide a more comprehensive and detailed un-
derstanding of the molecular mechanisms and microenvironment components involved
in BM from LUAD. In particular, we aimed to unravel transcriptomic changes that were
specific to metastatic tumor cells within the brain, which might differ from the primary
tumor. Furthermore, we employed CIBERSORTx [22], a widely utilized analytical tool in
tumor immunity research, to extract information on cell subsets from bulk gene expression
data, with the objective of identifying potential biomarkers for BM and evaluating the
presence of immune cells in LUAD patients’ BM tissues. Finally, we sought to determine
immune-related genes that could be applicable for diagnosing and treating brain metastasis
by calculating the correlation between immune cells and ‘hub’ genes. This integrated
approach holds promise in identifying novel therapeutic targets and fostering the develop-
ment of more precise treatment approaches for this complex disease. A schematic overview
of the methodology employed in our study is shown in Figure 1.
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Figure 1. The experimental design and the significant findings of this study. BM: Brain metas-
tasis; DEGs: Differentially expressed genes; PMN-MDSCs: Polymorphonuclear myeloid-derived
suppressor cells; PPI: Protein–protein interaction.

2. Materials and Methods
2.1. RNA-Seq and Microarray Data Selection for Meta-Analysis

We searched for brain metastasis from lung adenocarcinoma-related RNA-seq and
microarray datasets in different public repositories and databases using the following
search terms: “brain metastasis”, “brain metastasis AND lung adenocarcinoma”, “brain
metastasis AND transcriptome”, “brain metastasis AND transcriptomics”, “brain metas-
tasis AND microarray”, ”brain metastasis AND RNA-seq”. We included eight databases
or repositories: Human Cancer Metastasis Database (HCMDB) [23], ArrayExpress [24],
Restructured GEO (ReGEO) [25], European Genome-phenome Archive (EGA) [26], NCI
Genomic Data Commons (GDC) [27], Sequence Read Archive (SRA) [28], The Database of
Genotypes and Phenotypes (dbGaP) [29,30] and Gene Expression Omnibus (GEO) [31]. The
search was performed on 12 September 2021. We selected the datasets using the following
criteria: (1) gene expression data from BM tissue of patients diagnosed with LUAD as the
primary tumor, (2) gene expression data from the primary tumor tissue of LUAD patients
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diagnosed with BM, (3) all BM locations were considered, (4) all platforms were considered.
Exclusion criteria were: (1) leptomeningeal metastases, (2) studies that used only cell lines
or animal models, and (3) review studies. The transcriptomic data used in this study were
divided according to the sequencing technology: RNA-seq (n =13 BM; 11 Primary tumor),
and microarray (n = 63 BM; 77 Primary tumor).

2.2. Identification of Differentially Expressed Genes Using RNA-Seq Data

The bam or fastq files were obtained from different repositories. The datasets ob-
tained from SRA were downloaded using the SRA Toolkit (v.2.8.0) (available online at:
https://www.ncbi.nlm.nih.gov/sra/docs/sradownload/, accessed on 1 October 2021)
and converted from sra format to fastq using the fastq-dump --split-3 identifier. The
datasets obtained from EGA were access-controlled; therefore, for each dataset, access
was required through the Data Access Committees (DAC), providing documentation
of the data access agreement. Once access was authorized, the bam files were down-
loaded using the EGA download client tool [32]. The arguments used were pyega3 -cf
</Path/To/CREDENTIALS_FILE> datasets. The bam files were converted to fastq using
Samtools [33]. The quality of the data was initially assessed with FastQC (v.0.11.9) [34]
and summarized with MultiQC (v.1.10) [35]. All the reads were filtered by quality in
SeqyClean (v.1.10.09) [36] using Phred (QS) 30 and 30 for the mean and edge minimum
score values and a minimum length of 65 bp. SeqyClean was also used to remove contami-
nant sequences from primers and vectors using the Univec database [37]. The reads were
aligned with the Ensembl human genome assembly GRCh38 (release 99) using STAR 2-pass
alignment method (v.2.7.8a) [38], and the expression count matrix was generated using
HTSeq (v.0.11.1) [39]. Qualimap (v.2.2.1) [40] was used for quality control of the sequence
alignment. Combat-Seq (v.3.36.0) [41,42] was used to remove batch effects between datasets.
The EdgeR package was used to identify differentially expressed genes (DEGs) between
BM and primary tumor. The p-value was adjusted by the Benjamini–Hochberg method to
control the false discovery rate (FDR). Genes with the cutoff criteria of |logFC| > 2 and adj.
p < 0.05 were considered DEGs. DEGs were visualized as a volcano plot using the package
(v.3.3.5) [43]. The gplots (v.3.1.1) [44], and biomaRt (v.3.13) [45,46] packages were used to
build the heatmap and convert the ensembl_gene_id to hgnc_symbol, respectively.

2.3. Identification of Differentially Expressed Genes Using Microarray Data

Microarray data were obtained from the Gene Expression Omnibus (GEO) and Array-
Express public databases. The E-MTAB-8659 dataset obtained from ArrayExpress based on
the Illumina HumanHT-12 V4.0 expression beadchip platform included 63 brain metastasis
samples from patients diagnosed with adenocarcinoma as the primary tumor. Additionally,
we selected a GEO dataset (accession: GSE60645) that included 77 tissue samples from the
primary LUAD tumor profiled using the Illumina HumanHT-12 V4.0 expression beadchip
platform (there is no information about the presence or absence of BM in these data). Only
datasets generated from the Illumina HumanHT-12 V4.0 expression beadchip platform were
processed in order to minimize cross-platform variation. The microarray datasets were pro-
cessed and normalized using limma (v.3.50.0). After normalization, limma [47] was used to
identify DEGs between BM and the primary tumor. FDR value < 0.05 and |logFC| > 1.5 were
used as cutoff criteria for DEGs. The DEGs were visualized as a volcano plot using the ggplot2
package (v.3.3.5) [43]. The gplots package (v.3.1.1) was used for building the heatmap [44].

2.4. Identification of Differentially Expressed Genes (DEGs) Overlap between RNA-Seq Data
and Microarray

To identify common DEGs between RNA-seq data and microarray data, only tran-
scripts with HGNC-approved nomenclature were considered (available online at: www.
genenames.org, accessed on 15 October 2021). The HGNC is responsible for approving
unique symbols and names for human loci, including protein-coding genes, noncoding
RNAs, and pseudogenes, to facilitate an unambiguous report. HGNC generally does

https://www.ncbi.nlm.nih.gov/sra/docs/sradownload/
www.genenames.org
www.genenames.org
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not assign gene symbols to transcripts alternative or splice variants [48]. Genes common
between both technologies were presented as a Venn diagram using the VennDiagram
(v.1.7.1) [49]. Only the genes with consistent direction of expression change among the
sequencing technologies were considered.

2.5. Functional and Pathway Enrichment Analyses

In order to obtain information about the biological function of the identified genes, we
performed functional annotation and pathway enrichment analyses. To explore Gene
Ontology (GO), we used the enrichGO() function from the R package clusterProfiler
(v. 4.0.5) [50]. Additionally, we simplified the GO enrichment output by removing the
redundancy of enriched GO terms using the simplify() function. The GO annotation
file for the human species was obtained from the Gene Ontology (available online at:
http://geneontology.org/, accessed on 1 October 2021) [51,52]. For the Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis, we used the enrichKEGG() function,
also from clusterProfiler. The DOSE package (v.3.14) from Bioconductor was used for dis-
ease ontology enrichment analysis based on the Disease Ontology (DO) database (available
online at: https://disease-ontology.org/, accessed on 1 October 2021) [53], as well as en-
richment analysis based on the Network of Cancer Genes (NCG) database (available online
at: http://ncg.kcl.ac.uk/index.php, accessed on 1 October 2021) [54]. For these analyses,
the enrichDO(), and enrichNCG() functions were used, respectively. In all analyses, the
p-value was adjusted using the Benjamini–Hochberg method to control the false discovery
rate (FDR). Categories with a cutoff of p. adj < 0.05 were considered significant. Ggplot2
and GOplot packages were used to visualize the results [43,55].

2.6. Protein–Protein Interaction Network Construction for Selected Modules and Hub
Genes Identification

Gene symbols for the common DEGs were converted to UniProt IDs using the
org.Hs.eg.db (v.3.17) package [56]. Then, they were analyzed by the online tool STRING [57]
for the construction of a Protein–protein interaction (PPI) network. Active interaction
sources, including text mining, experiments, databases, co-expression, species limited to
“Homo sapiens” and an interaction score > 0.4 were applied to construct the PPI networks.
The results were visualized with CytoScape software (v.3.10.0) [58]. CytoHubba, a plug-in
of CytoScape, was used to identify the PPI network’s central elements [59]. Genes with the
top 20 maximal clique centrality (MCC) values were considered ‘hub’ genes. The adjusted
p-values (Benjamini–Hochberg method) were deemed significant at p < 0.05.

2.7. Immunophenotype of Brain Metastasis from Lung Adenocarcinoma

To estimate the immunological composition of the samples, we used the analytical
tool CIBERSORTx [60]. CIBERSORTx includes the LM22 file, a signature matrix composed
of 547 genes that distinguish 22 mature human hematopoietic populations, including seven
types of T cells, B cells, plasma cells, NK cells, and myeloid subsets. Before being submitted
to CIBERSORTx, the raw count data from RNA-seq was transformed into transcripts per
million kilobases (TPM) using the convertCounts() function of the R package DGEobj.utils
(v.1.0.4) [61]. The microarray data were processed by the limma package and used to
validate the findings obtained with RNA-seq data. All samples were analyzed for immune
cell profiles using CIBERSORTx with the number of permutations set to 1000 in order to
obtain high statistical accuracy, and quantile normalization was turned off for RNA-seq
data. The output files were downloaded as tab-delimited text files and imported into the
R software (v.4.1.1) [62], which was used to identify differences in immune composition
between BM and T. The normality test was performed using the shapiro.test() function.
Differences were considered significant when p < 0.05 by the Wilcoxon–Mann–Whitney
test. Then, we explored the association between the populations of immune cells in the
studied groups; for this, the Spearman correlation analysis was calculated using the rcorr()
function of the Hmisc package (v.4.6-0) [63]. Additionally, we analyzed the correlation

http://geneontology.org/
https://disease-ontology.org/
http://ncg.kcl.ac.uk/index.php
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between the infiltration of the 22 cell types of the immune system and the expression of
the ‘hub’ genes. The function chart.Correlation() from the PerformanceAnalytics package
(v.2.0.4) [64] was used to obtain the expression scatter plots of the ‘hub’ genes along
with Spearman correlation and estimated statistical significance. Values were considered
significant when p < 0.05. Gene expression levels were determined with log2 TPM. The
heat and chord plots were generated using the packages ggplot2 (v.3.3.5) [43], and circlize
(v.0.4.13) [65].

2.8. Single-Cell RNA-Sequencing Data Processing and Analysis

Single-cell RNA sequencing (scRNA-seq) data for LUAD-BM samples were down-
loaded from Gene Expression Omnibus [31] (GSE131907, n = 10; GSE143423, n = 3;
GSE202371, n = 10). Seurat (v.4.0.2) [66,67] was used for data quality control, integra-
tion, and analysis. Briefly, Seurat objects were created from individual expression matri-
ces. Cells expressing <200 or >9000 genes (outliers) or with a percentage of mitochon-
drial genes higher than 10%, and genes expressed in less than 3 cells were all excluded
(Figures S3 and S4). For the remaining cells, gene expression matrices were normalized
using the NormalizeData function in the Seurat package. Seurat FindVariableFeatures were
applied to select the top 2000 genes exhibiting the highest cell-to-cell variation. Gene expres-
sion matrices from different samples were then integrated. The batch effects were removed
by canonical correlation analysis and mutual nearest neighbors-anchors using the functions
SelectIntegrationFeatures, FindIntegrationAnchors, and IntegrateData. Subsequently, the
integrated, batch-corrected expression matrix for all cells was scaled with the Seurat Scale-
Data function to apply a linear transformation. Principal component analysis (PCA) and
uniform manifold approximation and projection (UMAP) were used for dimensionality re-
duction. We determined the dimensionality of the dataset using the JackStrawPlot function.
The top 15 principal components (PCs) were selected for dimensionality reduction. Before
clustering the cells, a shared nearest neighbor graph based on the Euclidean distance in
PCA space was conducted using Seurat FindNeighbors. Clustering was then performed
with Seurat FindClusters with a resolution of 1.2. Marker genes for each cluster were
determined with the Wilcoxon rank-sum test using Seurat FindAllMarkers. For each cluster,
only genes that were expressed in more than 25% of cells with at least 0.25-fold difference
were considered. The annotations of cell identity on each cluster were defined by the
expression of known marker genes.

3. Results
3.1. Datasets Selected for Meta-Analysis

We performed an extensive search in different public databases that contain transcriptomic
data using microarray platforms and/or high-performance sequencing (RNA-seq). The search
resulted in six studies: four reporting gene expression data from BM tissue of patients
diagnosed with LUAD as the primary tumor; one study reporting gene expression data
from primary tumor tissue of LUAD patients diagnosed with BM; and one study with
both of the above information. The description of the publicly available studies is shown
in Table 1. Dataset BioProject: EGAD00001007973 was excluded from our analyses as we
were not able to access the raw data. Therefore, transcriptome expression data from five
studies was included in our analysis, four with RNA-seq data and one with microarray data.
Additionally, we selected a dataset (accession: GSE60645) based on the Illumina HumanHT-
12 V4.0 expression beadchip platform that included 77 tissue samples from the primary
LUAD tumors. The clinical information for the studies included in the meta-analysis is
provided in Supplementary Table S1.
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Table 1. Description of publicly available transcriptomic data used in this meta-analysis.

Study Database Access Technology Platform Tissue Number of Samples Reference

1 EGA EGAS00001004078 RNA-seq Illumina HiSeq 2000 BM/T 5 BM
4 T [68]

2 EGA EGAS00001004006 RNA-seq Illumina HiSeq X Ten T 7 [69,70]
3 SRA PRJNA510710 RNA-seq Illumina HiSeq 2500 BM 2 [71]
4 GEO GSE141685 RNA-seq Illumina HiSeq X Ten BM 6 NA

5 ArrayExpress E-MTAB-8659 microarray Illumina HumanHT-12
V4.0 expression beadchip BM 63 NA

6 GEO GSE60645 microarray Illumina HumanHT-12
V4.0 expression beadchip T 77 [72]

EGA: European Genome-phenome Archive; GEO: Gene Expression Omnibus; BM: Brain metastasis; T: Primary
tumor. NA: Not available.

3.2. Integration of RNA-Seq and Microarray Datasets Identified 102 Differentially Expressed
Genes in Brain Metastasis from Lung Adenocarcinoma

After quality control, mapping, and data normalization (Supplementary Figures S1 and S2
and Supplementary Tables S1–S3), we proceeded with differential expression analysis. A total
of 164 samples (88 primary tumors and 76 BM) were included for differential expression
analysis (Figure 1). Analysis was performed using the R programming language using
two packages: edgeR and limma. Due to the large size of the tested genes, raw p-values
were adjusted according to Benjamini and Hochberg’s method for false discovery rate
correction. The selection criteria were strengthened with a threshold of |logFC| > 2 and
adj. p < 0.05 for RNA-seq and FDR value < 0.05 |logFC| > 1.5 for microarray data. These
thresholds were chosen to detect significant gene expression changes against the inherent
technical and biological variation within each platform. Volcano plots were generated
to illustrate the distribution of each gene according to the logFC and adjusted p-value
(Figure 2). In RNA-seq data, these parameters generated a list of 6426 differentially
expressed genes (DEGs) in BM in comparison to the primary tumor, with 1850 upreg-
ulated and 4576 downregulated genes (Figure 2A) (Table S4). Within the microarray data,
268 genes were significantly differentially expressed in BM in comparison to the primary
tumor, with 18 upregulated and 250 downregulated genes (Figure 2B) (Table S5). Interest-
ingly, among the sequencing technologies, 106 DEGs (1.58%) (Table S6) were overlapping
between RNA-seq and microarray, while 102 DEGs (1.52%) showed the same expression
direction between the two sequencing platforms (Figure 3A) (Table S7). JSRP1, CAMK1G,
COX7A1, and NCALD did not show agreement in the direction of gene expression changes
identified between sequencing technologies and were thus removed from subsequent
analyses (Figure 3B).

3.3. Pathway Enrichment Analysis Showed Pathways in BM Are Associated with the
Immune System

To obtain information about functional mechanisms regulated by the 102 DEGs, analyses
of functional annotation and pathway enrichment were performed. In the analysis of the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway, enrichment of the following molecular
pathways was identified: cell adhesion, chemokine signaling, cytokine–cytokine receptor
interaction, and Th1, Th2, and Th17 cell differentiation pathways (Figure 4A) (Table S8).
The dysregulated expression of these genes may play a crucial role in modulating immune
responses and cell-to-cell communication processes. Furthermore, functional enrichment
analysis was conducted to predict the biological functions associated with the DEGs. This
analysis identified biological processes related to the immune response, chemokine response,
and extracellular matrix organization. These findings suggest that the DEGs may be involved
in immune-related processes. Moreover, the enrichment of cellular component terms mainly
associated with the cell membrane indicates that the DEGs may have important roles in
membrane-associated functions and signaling processes (Figure 4B) (Table S9).
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Figure 2. (A) Volcano plot indicating differentially expressed genes (DEGs) in brain metastases (BM)
compared to the primary tumor (T) in RNA-seq data (red and green colors indicate |logFC| > 2
and adj. p < 0.05; other genes are colored gray. (B) Hierarchical cluster showing the expression
profile of the top 100 DEGs in the RNA-seq data. (C) Volcano plot indicating differentially expressed
genes (DEGs) in brain metastases (BM) in comparison to the primary tumor (T) in the microarray
data (red and green colors indicate |logFC| > 1.5 and adj. p < 0.05; other genes are colored gray.
(D) Hierarchical clustering showing the expression profile of the top 100 DEGs on the microarray data.

3.4. Brain Metastasis from Lung Adenocarcinoma Exhibits Distinctive Characteristics That
Distinguish It from All Other Types of Cancer

In order to gain insights into the functional mechanisms regulated by the DEGs, we
conducted analyses of functional annotation. One aspect we explored was the relationship
of the DEGs in the context of diseases. To achieve this, we utilized the DOSE package [73]
for disease ontology enrichment analysis. Disease ontology provides a framework for
annotating human genes within the context of specific diseases, facilitating the translation of
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molecular findings into clinical relevance. Using gene set enrichment analysis, we identified
significant associations between the DEGs and interstitial lung disease. Specifically, out of
the 102 DEGs, nine genes (CTSK, COL1A2, CCL5, AEBP1, CXCL9, CXCL10, CCL18, PDGFRA,
CCL19) exhibited significant associations with this condition (Figure 5A) (Table S10). We
also identified significant associations between the DEGs and bacterial infection disease (TF,
HLA-DPB1, CD247, CCL5, CD27, HLA-DQA1, GZMA, CXCL9, CXCL10, VCAM1, SH2D1A,
and CCR7).
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Figure 4. Functional annotation and enrichment analysis. (A) Enrichment analysis interaction
network from the Kyoto Encyclopedia of Genes and Genomes (KEGG). The node size represents the
number of genes according to each KEGG category, and the color of the nodes represents the logFC
value per gene within each enriched KEGG category, as shown by the legend. Borders highlight
interactions between the KEGG category and the genes that enrich it. (B) Enrichment dot plot of the
term Genetic Ontology. The graph presents the top 10 enriched ontologies for each of the instance
terms (biological process, molecular function, and cellular component) with adj. p-value < 0.05. The
X-axis presents the number of genes that enrich the ontology term, and the point size is proportional
to this number.

Additionally, we performed an enrichment analysis based on the Network of Cancer
Genes database to further explore the relationship between the DEGs and specific types
of cancer. Surprisingly, our results did not reveal any significant associations between
the DEGs and particular cancers, indicating that metastatic brain tumors possess unique
characteristics that distinguish them from other types of cancer (Figure 5B) (Table S11).
These findings highlight the distinct molecular features and underlying mechanisms of
metastatic brain tumors.

3.5. Protein–Protein Interaction Network Constructed from DEGs Reveals the Biological Network
of Brain Metastasis from Lung Adenocarcinoma Is Associated with the Immune System

In order to understand the functional relationship of DEGs and the biological phenomena
involved, we investigated the functional interactions of the proteins encoded by these genes
through the construction of a connectivity network using the database STRING. This tool
allows for achieving a comprehensive and objective global network, including direct (physical)
and indirect (functional) protein interactions. The network of genes related to BM (Figure 6A)
has 101 nodes. The network nodes represent proteins (each node represents all proteins
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produced by a single protein-coding gene locus) and 279 edges (edges represent protein–
protein associations). Regarding the centralities of the network, the network presents the
average of the local clustering coefficient = 0.509 and average degree = 5.52. The clustering
coefficient is a measure of how connected the network nodes are. Highly connected networks
have values close to 1. The average degree of a node is the number of how many interactions
a protein has on average in the network and indicates the regulatory relevance of this protein.
The PPI enrichment value was p < 1.0 × 10−16. This indicated that the proteins are biologically
significantly connected. The interaction with the highest combined score was between the
CD3D and CD247 proteins (combined score = 0.999) (Table S12). The combined score is a
confidence indicator, that is, the probability that the STRING considers an interaction to be
true, according to the evidence available. All scores are ranked from 0 to 1, with 1 being the
highest possible confidence.
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Figure 5. Gene set enrichment analysis. (A) Bar plot of Disease Ontology enrichment analysis. The
plot was created using clusterProfiler and Disease Ontology annotations from the DO database.
The x-axis represents the number of genes enriching the ontology term, and the color of the bars
represents the adjusted p-value. (B) Bar plot of enrichment analysis based on the Network of Cancer
Genes database. The x-axis represents the number of genes enriching the ontology term, and the
color of the bars represents the adjusted p-value.
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Figure 6. (A) Protein–protein interaction network (PPI) visualized with Cytoscape. The nodes
represent the proteins. Borders highlight interactions between proteins. Upregulated genes are
marked in red and downregulated genes are marked in green. (B) ‘Hub’ genes. The color red to
yellow represents the degree of connectivity from top to bottom. (C) Bar chart indicating logFC
values and expression direction of the 20 ‘hub’ genes.

After building the PPI network, we built a co-expression network using the maximal
clique centrality (MCC) algorithm from the CytoHubba plug-in from Cytoscape. The tool
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allows for inferring the importance of nodes and helps to identify the central elements
of a biological network. The MCC method classifies nodes (proteins) into high- and low-
grade categories. The protein grade is a measure that indicates the degree of correlation
between the protein and the essentiality of its corresponding gene, i.e., proteins with higher
grades are more likely to be essential proteins in the biological network. Based on this
analysis, we identified 20 key network elements (Figure 6B), referred to as ‘hub’ genes. The
‘hub’ genes and the score grades are shown in Table S13. Among these, the CD69 gene
showed the highest degree of connectivity (score = 396,192). Notably, all of these genes
were downregulated (Figure 6C).

Related to the ‘hub’ gene enrichment analysis, key enriched terms of the biological
process include T-cell activation, chemokine response, and upregulation of cell–cell ad-
hesion (Table S14). For enrichment analysis of cell components, the results are related to
cell membrane components. The corresponding molecular function terms are represented
in related terms, mainly chemokine activity (Table S14). In the enrichment analysis of
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, the main pathways
identified were T-cell activation, Th1 and Th2 cell differentiation, and the TNF signaling
pathway (Table S15).

3.6. The Fraction of Neutrophils Is Greater in Brain Metastasis Compared to the Primary Tumor

Considering that the tumor immune microenvironment is known to play an important
role in metastatic progression, and that our DEG analysis revealed enrichment of immune-
related pathways and processes in LUAD-BM, we investigated the composition of immune
cell infiltrates in the BM samples using the CIBERSORTx algorithm. Figure 7A summarizes
the results obtained from the analysis of 13 BM samples and 11 primary tumors (RNA-seq
data). In both groups, resting memory CD4 T cells comprised the largest cellular fraction
of the total immune cells, with 17.4% of the total immune cells in BM and 15.24% in
primary tumors (Figure 7A). After estimating the composition of immune cell infiltrates,
we identified significant variations between the studied groups. We found that the fraction
of resting dendritic cells (also referred to as immature dendritic cells) was significantly
lower in BM compared to the primary tumor (T); while the neutrophil fraction was higher
in the BM compared to the primary tumor (T) (Figure 7B,C).

We also explored the correlation between 22 immune cell subtypes in BM and the
primary tumor by Spearman’s correlation (Tables S16 and S17, respectively). We identified
several highly positive relationships between infiltrating immune cells in BM samples, while
the mutual relationship between immune cells was reduced in primary tumor samples
(Figure 8A,B). In BM, the highest positive correlation was between follicular T helper cells
and plasma cells (Rho = 0.77, p-value = 0.001); while in primary tumors, the highest positive
correlation was between plasma cells and monocytes (Rho = 0.80, p-value = 0.002). We further
explored the correlation between the infiltration of the 22 cell types of the immune system and
the expression of the 20 previously identified ‘hub’ genes in the BM samples (Figure 8C). The
CD27, CXCL13, and CD79B were the genes that showed the highest number of correlations
between their expression and the infiltration of immune cells, a total of seven significant
correlations were identified for each of these genes. All genes were significantly correlated
with the expression of CD8 T cells, naive CD4 T cells, monocytes, M1 macrophages, and
resting mast cells; all correlations were positive except for resting mast cells (Rho = −0.77;
−0.65 and−0.63, p-value < 0.05) and naive CD4 T cells (Rho =−0.56; −0.76 and−0.68, p < 0.05).
Related to immune cells, CD8 T cells, naive CD4 T cells, regulatory T cells, and monocytes
were the cell subtypes that showed the highest number of correlations significant with the
expression of the ‘hub’ genes. Monocyte infiltration was correlated with the expression of
18/20 ‘hub’ genes (CD69, CCR7, CD27, CD2, CCL5, CD247, GZMA, CD3D, GZMK, IL2RB,
CXCL9, CCL19, CXCL13, CXCL10, CD48, VCAM1, CD79B and SLAMF6), followed by CD8
T-cell infiltration correlated with expression of 16/20 ‘hub’ genes (CD69, CD27, CD2, CCL5,
CD247, GZMA, CD3D, GZMK, IL2RB, CXCL9, CCL19, CXCL13, CXCL10, CD48, CD79B and
SLAMF6). Naive CD4 T cells and regulatory T cells were both correlated with the expression
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of 15 ‘hub’ genes (p < 0.05). Therefore, ‘hub’ genes were correlated with immune-infiltrated
cells in BM from LUAD.
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Figure 7. (A) Infiltrating immune cell composition in brain metastasis (BM) and primary tumor (T)
is summarized from mean values calculated for each group. The bar graph shows the difference
between CIBERSORTx immune cell fractions between brain metastases (BM) and primary tumors (T).
(B) Results were generated using microarray data. (C) Results were generated using RNA-seq data.

3.7. scRNA-Seq Data Reveals an Immunosuppressed Tumor Microenvironment in BM from
Lung Adenocarcinoma

To explore the function of neutrophils and dendritic cells in LUAD-BM we obtained a
total of 57,774 cells from three different datasets (GSE131907, n = 24,508 cells; GSE143423,
n = 12,196 cells; GSE202371, n = 21,070 cells) (Figure 9A). We applied the uniform manifold
approximation and projection (UMAP) method and successfully classified the cells into
43 separate clusters (Figure 9B). Sub-clustering of 13,427 dendritic cells was identified,
as shown in Figure 9C (Table S18). For a more comprehensive analysis, we reclassified
DCs into six subsets using markers previously described [74,75]. These subsets included
CD1c+ DCs (Langerhans cells, LCs), CD141+ DCs, CD207 + CD1a+ LCs, pDCs (plasma-
cytoid DCs), CD163 + CD14+ DCs, and activated DCs (Figure 4D). Interestingly, a subset
of activated DCs was not identified (Figure S5), only CD163 + CD14+ DCs were found
(Figure 9D). The cluster of neutrophils containing 3762 cells was identified as polymor-
phonuclear myeloid-derived suppressor cells (PMN-MDSCs) (Figure 9). We next carried
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out a pathway analysis which showed that PMN-MDSCs was enriched in the IL-17 signal-
ing pathway and NF-kappa B signaling pathway (Figure 9E) (Table S19). Then, we found
that CD163 + CD14+ DCs showed increased expression of HLA genes and antigen pro-
cessing and presentation pathway (Figure 9F). They also showed high expression of CCL3,
CCL2, and CXCL3 (Table S20), which might be involved in the recruitment of activated
T cells to inflammation sites [76].
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Figure 8. Correlation matrix of all 22 immunological proportions. (A) Brain metastasis. (B) Primary
tumor. * represents significant correlations (p < 0.05). (C) Correlation plot (Spearman correlation
coefficients) of ‘hub’ gene expression and proportion of infiltrating immune cells in brain metasta-
sis. Colors in the heatmap indicate the strength of the correlation. Asterisks indicate the level of
significance (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Figure 9. (A) The distribution of cells in each cluster according to the dataset. (B) 57,774 cells were
divided into 43 separate clusters. (C) After annotation of cell type dendritic cells and neutrophils were
found. (D) Violin plots of the expression of marker genes of neutrophil and dendritic cell subtypes.
The violin plots to all the markers are shown in Figure S4. (E) Bar chart of enrichment analysis based
on KEGG database for PMN-MDSCs. The X-axis shows the number of genes that enrich the pathway
and the color of the bars represents the adjusted p value. (F) Bar chart of enrichment analysis based
on KEGG database for CD163 + CD14+ dendritic cells. The X-axis shows the number of genes that
enrich the pathway, and the color of the bars represents the adjusted p value.

4. Discussion

In the present study, we conducted a comprehensive search of public databases to
obtain transcriptomic data of BM from patients diagnosed with adenocarcinoma as the
primary tumor (LUAD-BM). Differential expression analysis is the most commonly used
method for identifying genes expressed aberrantly in the context of interest. These differ-
entially expressed genes are then explored through functional annotation analyses and
enrichment of specific deregulated pathways. Despite the clear convenience of the approach,
it is limited by a high level of noise in gene expression data, difficulty in the reproducibility
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of results, and individual differences due to factors such as age, sex, genotype, and disease
stage. Additionally, different treatment stages and variations in cohort and experimental
methods can also result in disparities between studies. Therefore, combining multiple stud-
ies represented a powerful strategy to address these issues and extract relevant information
from various datasets. The variability in transcriptome analysis technologies (RNA-seq
and arrays) expands transcriptional profiles, increasing the number of possibilities for
identifying key molecular pathways associated with BM in lung adenocarcinoma.

As can be observed in Table 1, most studies have a limited number of samples, and
therefore, a comprehensive and integrative analysis of these data can reveal new molecular
components that are not identified when these studies are analyzed individually. We recently
comprehensively reviewed the transcriptomic changes that are associated with the develop-
ment of LUAD-BM, including alterations in gene expression in both coding and non-coding
RNAs [11]. Here, by combining multiple datasets, we have systematically identified con-
sistently altered expression levels of 102 genes across a larger number of BM from LUAD.
Remarkably, the majority of differentially expressed transcripts showed decreased expres-
sion in BM. Although our meta-analysis identified mainly protein-coding genes, noncoding
RNAs, such as long non-coding RNAs (lncRNA) and circular RNAs (circRNA), represent an
unexplored resource for identifying new contributors to LUAD-BM [11].

Results from KEGG pathway analysis indicated that these genes were enriched in
pathways involving cell adhesion molecules, chemokine signaling, cytokine–cytokine
receptor interaction, and differentiation pathways of Th1, Th2, and Th17 cells (Table S8). It
is important to note that the most significantly altered immune-related pathway found was
the cytokine–cytokine receptor interaction, which included 11/102 differentially expressed
genes associated with BM from LUAD (IL2RB, CCL5, CD27, CXCL13, CXCL9, CCL14,
CXCL10, CCL18, CCL19, CCR7, and LTB). Cytokine–cytokine receptor interactions can
regulate immune responses by activating or inhibiting immune cells, including T cells,
B cells, and natural killer (NK) cells [77]. These data suggest tissue specificity in the
expression of some genes in BM and the regulation of pathways mainly related to the
immune system. Similar findings were reported by Tsakonas et al., who identified a pattern
of decreased gene expression in BM of NSCLC-related genes primarily involved in immune
response, immune cell activation, and cytokine and chemokine receptors [78]. Previous
studies have demonstrated that inflammatory chemokines and their receptors regulate
tumor cell migration and participate in tumor growth, metastasis, angiogenesis, and
invasion through the interaction between mesenchymal cells and neoplastic cells [79,80].

To explore the specific characteristics of LUAD-BM, we analyzed the 102 genes related
to BM in the specific context of the disease using the DO database and their cancer-specific
relationship using the Network of Cancer Genes database. Our results showed no signif-
icant associations with specific cancers. These data suggest that LUAD-BM are distinct
entities compared to the primary tumor, as reported in previous studies [16,20,81].

Additionally, protein–protein interactions among the DEGs were predicted. The
interaction with the highest combined score was between the CD3D and CD247 proteins
(combined score = 0.999). Both proteins are part of the TCR-CD3 complex present on
the surface of T lymphocytes, which plays an essential role in the adaptive immune
response. When antigen-presenting cells (APCs) activate the T-cell receptor (TCR), signals
mediated by the TCR are transmitted through the cell membrane by the CD3, CD3D,
CD3E, CD3G, and CD3Z chains [82]. In addition to its signaling role in T-cell activation,
CD3D plays an essential role in thymocyte differentiation by participating in the assembly
and proper surface expression of the intracellular TCR-CD3 complex. In the absence of
a functional TCR-CD3 complex, thymocytes are unable to differentiate properly. CD3D
also interacts with CD4 and CD8 and thus serves to establish a functional link between
the TCR and the CD4 and CD8 co-receptors, which is necessary for the activation and
positive selection of CD4 or CD8 T cells [83]. The TCR-CD3 complex represents a promising
avenue for immunotherapy in metastatic brain cancer. The potential benefits of TCR-
CD3-based interventions include potentiation of antigen recognition, immune activation,
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and immunosuppression reversal (for example, by providing T-cell-activating stimuli).
There are several preclinical and clinical uses of CD3 modulators that may benefit patients
suffering from brain metastasis [84].

After constructing the PPI network, we built a co-expression network in which we
identified the top 20 elements of the network, also known as ‘hub’ genes. Of the 20 ‘hub’
genes, the CD69 gene had the highest degree (score = 396.192). The protein encoded by this
gene is involved in lymphocyte proliferation and functions as a signal transduction receptor
in lymphocytes, NK cells, and platelets. It also regulates the differentiation of regulatory
T cells (Tregs) as well as the secretion of IFN-γ, IL-17, and IL-22 [85]. These results support
the hypothesis that the immune system plays a significant role in the development of
LUAD-BM and suggests that targeting the immune system may be a promising approach
for the treatment and management of LUAD-BM.

Previous studies have provided compelling evidence for the involvement of the
immune system in the development of BM as reviewed by Leibold et al. [86]. It is well-
established that the immune system plays a crucial role in regulating various stages of can-
cer progression, including the development and dissemination of metastatic tumors [87,88].
In the context of BM, immune cells and their interactions with cancer cells and the tumor
microenvironment have been shown to have significant implications for progression [89].
Cytokines, chemokines, and growth factors play critical roles in the complex interplay
between cancer cells and their surrounding environment during the development and
progression of BM [90]. Recent studies have focused on identifying immunological char-
acteristics specific to BM from NSCLC. Kudo et al. conducted a comparative immune
gene profiling analysis and demonstrated elevated infiltration of M2 macrophages in BM
compared to paired NSCLC samples [91]. Zhang et al. observed increased expression
of CD163 M2 macrophages in the tumor brain microenvironment, which was correlated
with a significant promotion of neo-angiogenesis [92]. Furthermore, Berghoff et al. found
notable differences in the infiltration patterns of microglia and M2 macrophages between
BM originating from NSCLC and melanoma [93]. Song et al. examined the expression of
770 genes related to the immune system across 28 different tissues, including primary
tumors and BM of NSCLC. Utilizing the NanoString, Seattle, Washington, United States,
nCounter PanCancer Immune Profiling Panel, they discovered that BM from EGFR-mutated
adenocarcinoma exhibited increased activation of various immune-related pathways when
compared to EGFR-wild-type adenocarcinoma. However, these same pathways were not
observed in the primary tumors [94]. Additionally, the study discovered that the majority of
immune cell subsets were reduced in BM in comparison to primary tumors. The reduction
in immune cell subsets suggests the existence of possible immunosuppressive mechanisms
within the environment of BM [94]. Recently, Najjary et al. used a combined approach
based on NanoString’s nCounter, immunohistochemistry, and the GeoMx™ Digital Spatial
Profiler (DSP) to demonstrate a more extensive infiltration of immune cells in BM from
lung adenocarcinoma compared to BM from breast cancer [95]. Furthermore, the authors
confirmed the higher protein expression of immune-related targets in BM-LUAD (CD14,
CD163, GZMA, BCL-6, BAD, BCLXL, 4-1BB, VISTA, and IDO1). Interestingly, the gene
GZMA was identified as a ‘hub’ gene in the present study.

GZMA, a member of the serine protease family, is primarily found in the cytolytic
granules of cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. It plays a signifi-
cant role in cell-mediated cytotoxicity, which is a crucial immune response against tumor
cells [96–98]. Previous studies have highlighted the importance of GZMA as a key effector
molecule in regulatory T-cell function within the context of cancer [99,100]. Moreover,
GZMA has been identified as a vital factor in inhibiting tumor growth, promoting apopto-
sis, and stimulating antigen-specific cytotoxic CD8+ T-lymphocytes [101]. Notably, Zhou
et al. demonstrated that GZMA, derived from cytotoxic lymphocytes, specifically activates
the gasdermin-B protein, contributing to the elimination of target cells [102].

Recent investigations by Huo et al. have revealed lower GZMA expression in breast
cancer tissue compared to normal tissue. Additionally, a correlation has been observed
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between GZMA and T-cell checkpoints, including PD-1, PD-L1, and CTLA-4, in breast
cancer [103]. Furthermore, quantitative immunofluorescence analysis has demonstrated
a positive association between GZMA expression and the presence of dendritic cells and
CD8+ T cells infiltrating breast cancer tissue. These findings suggest a positive association
between GZMA expression and enhanced infiltration of dendritic and CD8+ T cells in
breast cancer. In our study, we observed a significant positive correlation (p < 0.05) between
GZMA expression and the infiltration of CD8 T cells and dendritic cells. Additionally, we
found a positive correlation (p < 0.05) between CD8 T-cell infiltration and monocytes, which
represent another subset of myeloid cells. Interestingly, GZMA expression was found to
be associated with immune stimulators such as CD48 and CD27 [103]. These genes were
identified as downregulated hub genes in our study. Based on these observations, we
hypothesize that the downregulation of GZMA in LUAD-BM may play a crucial role in
modulating immune cell infiltration and contribute to the establishment of a suppressive
immune microenvironment.

Furthermore, our study revealed that the proportions of resting memory CD4 T cells
comprised the largest cellular fraction of the total immune cells, accounting for 17.4% of
the total immune cells in BM and 15.24% in primary tumors. Compared to primary tumors,
the proportions of resting dendritic cells and neutrophils showed statistical significance by
the Wilcoxon-Mann-Whitney test (p < 0.05). Resting DCs were reduced in BM compared
to primary tumors, while neutrophils showed an increased fraction. DCs are known for
their essential role in activating the anti-tumor immune response through phagocytosis
and the presentation of antigens from apoptotic tumor cells to CD4+ and CD8+ T cells.
Normally, DCs are not found in the normal brain parenchyma but are present in vascular-
rich compartments such as the choroid plexus and meninges [104]. In the context of
pathological conditions such as cancer, DCs can migrate to the brain through afferent
lymphatic vessels or endothelial venules [105].

Supporting our findings, Kim et al. also demonstrated the presence of DCs in LUAD-
BM using scRNA-seq analysis [106]. Specifically, they identified CD163 + CD14+ DCs as
the predominant subset in LUAD-BM [106]. Notably, CD163 + CD14+ DCs were found to
be abundant in early- and advanced-stage lung cancer primary tissues but less abundant
in metastatic lymph nodes and LUAD-BM [106]. DCs play a crucial role in the immune
response by recognizing pathogens, coordinating both innate and adaptive immune re-
sponses, and secreting inflammatory mediators. DCs are unique in their ability to activate
and direct naive T cells towards various effector cell types, such as Th1, Th2, Th17, and
Tregs, depending on the specific cytokine and costimulatory signals they provide [107,108].
CD163 + CD14+ DC subset has been shown to possess a strong Th17 polarizing capacity,
as evidenced by the pro-Th17 gene signature [109], which was consistent with our results
(Figure 9E). Interestingly, our analysis revealed a lower fraction of DCs in BM compared
to the primary tumor. This decrease in DC abundance within the BM microenvironment
suggests the presence of an immunosuppressive environment that may have implications
for the optimal presentation of tumor antigens in LUAD-BM. Furthermore, the absence
of activated DCs in the BM microenvironment further supports the notion of an immuno-
suppressive setting. These findings highlight the possibility of sub-optimal tumor antigen
presentation within LUAD-BM, potentially impairing the generation of effective anti-tumor
immune responses. The immunosuppressive microenvironment observed in BM may con-
tribute to the evasion of immune surveillance and facilitate tumor progression. However,
further investigation is necessary to elucidate the underlying mechanisms responsible
for the observed decrease in DCs abundance and the absence of activated DCs in the
BM microenvironment.

Furthermore, our findings support the notion that polymorphonuclear myeloid-
derived suppressor cells (PMN-MDSCs) may play a role in creating an immunosuppressive
microenvironment. PMN-MDSCs have emerged as a distinct population of myeloid cells
with immunosuppressive properties [110]. In the context of cancer, PMN-MDSCs have
been implicated in the establishment of an immunosuppressive microenvironment that
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facilitates tumor growth and inhibits anti-tumor immune responses [110]. These cells
have the ability to suppress the activity of various immune cells, including T cells, natural
killer cells, and dendritic cells, thereby impairing the host’s capacity to mount an effective
immune response against cancer cells. Additionally, PMN-MDSCs contribute to tumor
progression by promoting angiogenesis, tissue remodeling, and metastasis [110]. In line
with our observations, Sun et al. have also identified the presence of PMN-MDSCs in
gliomas and lung cancer brain metastases [111]. Notably, the authors demonstrated a
high expression of L-selectin in PMN-MDSCs, which has been reported to regulate human
neutrophil transendothelial migration [112].

Previous studies have shed light on the immune cell composition within primary brain
tumors, with macrophages being identified as the predominant immune cell type, often
constituting up to 30% of the tumor mass [113–115]. Wang et al. specifically demonstrated
an increase in type-2 (M2) polarized macrophages in mesenchymal gliomas [116]. Fur-
thermore, Liang et al. showed that neutrophils contribute to glioblastoma progression by
supporting the expansion of the glioma stem cell pool through a S100 protein-dependent
mechanism [117]. S100 proteins have been associated with the dissemination of breast
cancer and are upregulated in the premetastatic brain, promoting neutrophil recruitment
and subsequent metastatic seeding [118,119]. Interestingly, our observations in LUAD-BM
align with these findings, suggesting potential common immune microenvironment fea-
tures between BM and primary brain tumors. As a result, there may be opportunities for
immunotherapeutic strategies, such as targeting tumor-associated neutrophils (TANs), that
could be applicable to both LUAD-BM and primary brain tumors. Moreover, significant
progress in the development of efficient delivery methods for immunotherapy, including
nanocell-based drug delivery systems and drug repurposing [120], reinforces the potential
of utilizing immunotherapy in treating LUAD-BM as well as primary brain tumors.

Overall, our study provides valuable insights into the complex immune microenviron-
ment of LUAD-BM. The identified genes and pathways offer potential targets for therapeutic
interventions aimed at overcoming immunosuppression and improving patient outcomes.
However, further investigations are needed to elucidate the underlying mechanisms re-
sponsible for the observed changes in immune cell subsets and the immunosuppressive
microenvironment in BM. Additionally, exploring the role of PMN-MDSCs could provide
further insights into their contribution to the immunosuppressive tumor microenvironment.

5. Conclusions

In conclusion, we identified 102 genes with altered expression levels related to LUAD-
BM, with most showing decreased expression in BM. Pathway analysis revealed enrichment
in genes involved in cell adhesion molecules, chemokine signaling, cytokine–cytokine re-
ceptor interaction, and differentiation pathways of Th1, Th2, and Th17 cells. Our analysis
also identified key ‘hub’ genes, including CD69 and GZMA, which are involved in lym-
phocyte proliferation, immune cell activation, and cytokine regulation. We found that the
downregulation of GZMA in LUAD-BM may contribute to the establishment of a suppres-
sive immune microenvironment. Furthermore, we observed alterations in immune cell
populations in the brain metastatic microenvironment, including a decrease in dendritic
cells and an increase in neutrophils, indicating the presence of an immunosuppressive
environment within LUAD-BM.

Our findings highlight the importance of the immune system in the development and
progression of LUAD-BM. Targeting the immune system may hold promise as a therapeutic
approach for the treatment and management of BM in patients with adenocarcinoma.
Further investigation is warranted to elucidate the underlying mechanisms driving the
immune system dysregulation in LUAD-BM and to explore potential immunotherapeutic
strategies to improve patient outcomes.
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