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Immune checkpoint inhibitors (ICIs) are pharmaceutical agents capable of disrupt-
ing immune checkpoint signaling, leading to T-cell activation and a robust anti-tumor
response [1]. The first anti-cancer ICI was aimed at targeting Cytotoxic T-Lymphocyte
Associated Protein 4 (CTLA4) (Ipilimumab). It showed promising outcomes in pre-treated
patients with melanoma, including anticancer response rates and improved overall sur-
vival (OS) [1]. Subsequent advancements yielded a range of ICIs focusing on Programmed
cell death protein-1/Programmed death-ligand 1 (PD1/PDL1) (i.e., Pembrolizumab, Ate-
zolizumab, Durvalumab, and Nivolumab), which have been utilized as primary treatments
for refractory melanoma, advanced and metastatic NSCLC, and other malignancies encom-
passing solid tumors and hematological malignancies. All these ICIs have demonstrated
clinical advantages in terms of objective response rate (ORR) and survival, resulting in
first-line therapeutic options administered alone or in conjunction with complementary
strategies such as chemotherapy or radiotherapy [2–4]. Nonetheless, not all patients
respond equally to these treatments, prompting the need for predictive biomarkers to
optimize treatment selection and elevate patient outcomes. In addition, ICIs are associ-
ated with immune-related adverse events (IRAEs). These events not only induce patient
discomfort but can also compel the temporary or permanent halt of immunotherapy [5].
Because many of these IRAEs are intricately tied to the mechanisms underlying ICIs, the
pursuit of predictive biomarkers for IRAEs holds immense significance and often intersects
with biomarkers used to evaluate ICIs’ effectiveness [6–8]. Notably, evidence from studies
suggests that IRAEs correlate with substantial enhancements in ORR and patient survival,
underscoring their predictive value [9].

PDL-1 expression, as assessed through immunohistochemistry (IHC), was the first
marker to gain approval and practical application in conjunction with ICIs. Patients with
high PDL-1 expression (PDL-1 > 50%) tend to exhibit a more favorable response to the
treatment. However, intriguingly, certain patients with lower PDL-1 expression (PDL-
1 < 10%; PDL-1 < 5%; PDL-1 < 1%) have demonstrated enhanced ORR and prolonged
survival, while some with elevated PDL-1 expression exhibited resistance to therapy [10–12].
Furthermore, it is noteworthy that the predictive value of PDL-1 expression does not remain
consistent across all types of ICIs and cancer varieties [13]. This disparity arises, in part,
from the spatiotemporal heterogeneity of the tumor, the variations in the methods utilized
to assess PDL-1 expression, including techniques for IHC, the types of cells analyzed (cancer
cells, immune cells, or both), and the specific antibody type employed [14]. As a result, there
is a pressing need to standardize and refine the methods for analyzing PDL-1 expression.
Circulating soluble PDL-1 (sPDL-1) has displayed encouraging potential. Despite certain
contrasting findings, systematic reviews and meta-analyses provided evidence for a positive
correlation between high levels of sPDL-1 and worse survival in individuals undergoing
ICI treatment for solid cancer, including NSCLC and gastric cancer [15–17]. As previously
mentioned, it is evident that PDL-1 expression alone is insufficient for patient stratification.
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Hence, in addition to PD-L1 expression, several other biomarkers are currently in the
process of being developed.

Tumor mutational burden (TMB) quantifies the number of mutations harbored by
tumor cells within a specific neoplasm. This mutational burden is closely associated with
antigen processing and load in MHC-I, consequently impacting anti-tumoral immunity.
For this instance, the study of Robert M. Samstein et al. demonstrated a positive correlation
between high TMB and efficacy of ICIs across diverse cancer types and for different types
of ICIs, as revealed by better ORR and longer survival in a robust cohort of 1662 cancer
patients treated with different ICIs (Atezolizumab, Avelumab, Durvalumab, Ipilimumab,
Nivolumab, Pembrolizumab, or Tremelimumab) [18]. This conclusion was further con-
firmed in several studies, as demonstrated by the systematic analysis of Kim et al., who
examined 26 studies focused on immune checkpoint inhibitors (ICIs) in cancer. All these
studies converge to show a correlation between high TMB, better response, longer overall
survival (OS), and progression-free survival (PFS). This collective evidence supports the
idea that TMB could serve as an effective biomarker associated with the use of ICIs [19,20].

The genetic variation in the DNA mismatch repair (MMR) pathway is one source
of a high TMB load, which can lead to genome instability and microsatellite instability
(MSI). For instance, as revealed by the Phase II CheckMate 142 Study, the application of
ICIs in metastatic colorectal cancer (mCRC) demonstrated that defects in MMR and/or
MSI (dMMR/MSI-H) are predictive indicators for the effectiveness of Pembrolizumab,
Nivolumab, and Nivolumab in combination with low-dose Ipilimumab [21,22]. Notably,
this correlation has also been observed across various other cancer types, including lung
cancer, melanoma, renal cell carcinoma, and many others [23,24]. Additionally, as suggested
by Schrock et al. and validated by emerging data, the utilization of TMB in conjunction
with dMMR/MSI-H enhances the predictive value for ICIs compared to using dMMR/MSI-
H alone [24]. Nevertheless, the pragmatic implementation of TMB in the clinical care
of patients poses challenges. For instance, the use of genome sequencing or advanced
next-generation sequencing tools to assess TMB load, though informative, can introduce
complexity and prove burdensome when integrating them into everyday clinical rou-
tines [25]. Although the use of next-generation sequencing for targeted gene panels has
somewhat alleviated this burden, the lack of a well-defined consensus on the cutoff ratio
across various studies underscores the need for harmonization efforts [26].

In the pursuit of identifying alternative biomarkers, researchers have directed their
efforts towards analyzing intermolecular interactions within tumor cells [27]. This ex-
ploration has extended to encompass the evaluation of various molecules, i.e., signaling
molecules, cytokines/chemokines, and different cell types present in the tumor microen-
vironment, including tumor-associated fibroblasts (CAF), tumor-associated macrophages
(TAM), mesenchymal stroma cells, and infiltrating immune cells. Additionally, it en-
compasses the examination of circulating and systemic markers within the host [4,28,29].
These encompass immune gene signatures [30], tumor-infiltrating lymphocytes (TILs),
diverse T cell populations (such as CD8+, regulatory T cells, and T helper cells) [24,25],
myeloid-derived suppressor cells (MDSCs) [31], and even the composition of the gut micro-
biome [32]. Thanks to advanced omics techniques, advancements in computational tools,
the application of artificial intelligence, and a systems biology approach, emerging studies
combine multiple markers to define expression patterns or nomograms that may accurately
predict the outcomes of ICIs [30,33,34]. However, while the clinical feasibility of such an
approach, as well as the utilization of single markers, necessitate further investigation, the
validation and standardization of these methodologies across different cancer types and
treatment contexts remain crucial challenges.

A majority of the biomarkers currently under investigation encompass cellular factors
or molecules intricately engaged in immune evasion. These components operate within a
coordinated framework, either fostering an environment favoring anti-inflammatory pro-
cesses or contributing to the creation of a suppressive tumor niche that hampers anticancer
immunity, ultimately culminating in resistance to ICIs [35,36]. The current challenges
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reside in effectively implementing experimental models that replicate interactions among
immune, stromal, and cancer cells. For instance, the classic two-dimensional (2D) coculture
models often entail cultivating immune effector cells (T, B, and NK cells) on monolayers
of cancer or stromal cells, encompassing various components such as MSCs, fibroblasts,
and macrophages [37]. This model is frequently complemented by animal models or three-
dimensional (3D) culture systems and organs-on-chips, offering the advantage of emulating
the intricate cellular dynamics and mechanical complexity observed in patients [38–40]. By
integrating these preclinical models with advanced high-resolution imaging and real-time
monitoring, a complete comprehension of the dynamic interactions can be achieved, not
only deepening our understanding of the mechanisms underlying resistance to ICIs, but
also highlighting potential drug targets that could enhance the efficacy of ICIs [40,41].

In conclusion, the collaborative efforts of researchers and clinicians in deciphering the
intricacies of immune responses offer a pathway to personalized treatment strategies driven
by biomarkers. This holds the potential to enhance the effectiveness of cancer therapy and
ultimately lead to better patient outcomes. A holistic endeavor towards validating, stan-
dardizing, and incorporating biomarkers will pave the road towards achieving precision
medicine within the realm of immune checkpoint inhibitors and cancer treatment.
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