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Simple Summary: This study explored the role of CT-based deep learning in detecting colorectal
cancer tumor location and preoperatively predicting the stage and RAS gene mutation status of
colorectal cancer patients. The deep learning model we built achieved excellent performance. The
detection network based on Yolov7 realized the detection and preoperative staging of colorectal
cancer with an average mean accuracy of 0.98 in the validation cohort. The vision transformer-based
prediction network achieved accurate prediction of preoperative RAS in colorectal cancer patients,
achieving an area under the receiver operating characteristic curve (AUC) of 0.9591 and 0.9554 in the
test cohort and the validation cohort, respectively. This study also explored the clinical applications
of deep learning models. Based on the proposed detection network and prediction network, we built
a deep learning system for clinicians who do not understand deep learning.

Abstract: Purpose: This study aimed to build a deep learning system using enhanced computed
tomography (CT) portal-phase images for predicting colorectal cancer patients’ preoperative staging
and RAS gene mutation status. Methods: The contrast-enhanced CT image dataset comprises the
CT portal-phase images from a retrospective cohort of 231 colorectal cancer patients. The deep
learning system was developed via migration learning for colorectal cancer detection, staging, and
RAS gene mutation status prediction. This study used pre-trained Yolov7, vision transformer (VIT),
swin transformer (SWT), EfficientNetV2, and ConvNeXt. 4620, and contrast-enhanced CT images
and annotated tumor bounding boxes were included in the tumor identification and staging dataset.
A total of 19,700 contrast-enhanced CT images comprise the RAS gene mutation status prediction
dataset. Results: In the validation cohort, the Yolov7-based detection model detected and staged
tumors with a mean accuracy precision (IoU = 0.5) (mAP_0.5) of 0.98. The area under the receiver
operating characteristic curve (AUC) in the test set and validation set for the VIT-based prediction
model in predicting the mutation status of the RAS genes was 0.9591 and 0.9554, respectively.
The detection network and prediction network of the deep learning system demonstrated great
performance in explaining contrast-enhanced CT images. Conclusion: In this study, a deep learning
system was created based on the foundation of contrast-enhanced CT portal-phase imaging to
preoperatively predict the stage and RAS mutation status of colorectal cancer patients. This system
will help clinicians choose the best treatment option to increase colorectal cancer patients’ chances of
survival and quality of life.

Keywords: colorectal cancer; stage; RAS status; deep learning; convolutional neural networks;
transformer
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1. Introduction

The most prevalent gastrointestinal tract cancer worldwide and the second-leading
cause of tumor-related mortality is colorectal cancer [1]. In the past few decades, significant
improvements have been made in the care of people with colorectal cancer [2]. In recent
years, advances in treatment strategies have played a significant role in raising survival
rates [3,4]. However, the overall survival of patients with advanced colorectal cancer
remains poor. The choice of therapy options for people with colorectal cancer depends on
TNM staging. Medical imaging is frequently used to preoperatively assess patient staging;
nevertheless, its accuracy in determining TNM staging remains poor [5].

Several studies have reported the use of contrast-enhanced CT to predict patient
outcomes through precise identification and stratification of patients carrying specific
mutated genes [6,7]. Tumor genetic profiling is a powerful tool to personalize therapy
with the creation of customized treatments. All patients with suspected or confirmed
metastatic colorectal cancer should be genotyped for tumor tissue RAS mutations, as
these mutations predict resistance to the anti-epidermal growth factor receptor (EGFR)
monoclonal antibodies, cetuximab and panitumumab. This recommendation is made in
clinical guidelines on a regular basis [8,9]. Therefore, identification of RAS mutation status
before or during treatment is essential for predicting treatment outcomes and determining
individualized treatment strategies for colorectal cancer patients. In clinical practice,
biopsies or postoperative collections are the most often utilized genetic testing techniques.
Due to the intra-tumoral heterogeneity of colorectal cancer, these procedures are invasive,
and local tumor sampling and biopsy techniques might not be representative [10].

In oncology, the accurate identification of imaging biomarkers is critical to enable
clinicians to individualize their treatment choices [11]. According to previous studies,
medical imaging can capture tumor biology at the genetic and cellular levels [12]. A
common imaging test for patients with colorectal cancer who are being evaluated before
surgery is contrast-enhanced CT, which is widely utilized in clinical settings [13]. Deep
learning has recently achieved close attention in oncology research due to its ability to
extract more information from input data [14–17]. The predictive performance of deep
learning models under specific conditions has been demonstrated to be no worse than that
of experienced clinicians [18,19]. This provided the basis for our study.

Thus, the objective of this investigation was to create a deep learning system for
preoperative staging and RAS mutation status prediction in patients with colorectal cancer,
which, to the best of our knowledge, has not been reported in any published studies.

2. Materials and Methods

Approval for this study was received from the Ethics Committee of the Second Af-
filiated Hospital of Nanjing Medical University (NO. 2023-KY-141-01). The patients’ or
their family members’ informed consent was acquired. We removed all private patient
information.

2.1. Patients

A total of 231 colorectal cancer patients took part in this study, which enrolled patients
from January 2017 to June 2022. Patient staging and RAS mutation status were derived from
postoperative pathological results. The inclusion criteria of this study were that contrast-
enhanced CT examination was performed within one week before colorectal resection,
postoperative pathology confirmed colorectal cancer, detection of RAS gene mutation status
after colorectal resection and definite RAS gene mutation status, and no chemotherapy
or radiotherapy before operation. The exclusion criteria of this study were poor gastric
distension or artefacts in CT images, preoperative radiotherapy or chemotherapy, small
colorectal cancer lesions that were difficult to identify, and being unable to determine
RAS gene mutation status in the patient. The Supplementary Materials provide detailed
information on the testing methods for detecting RAS gene mutations in patients.
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2.2. CT Image Acquisition

CT examinations were performed using a Siemens Definition Flash Dual Source
CT (Somatom Definition, Siemens Healthcare, Forchheim, Germany). All patients were
instructed to fast for more than 8 h and to inject anisodamine 20 mg intravenously to
avoid gastric motility. Additionally, all patients were asked to take 1000 mL of warm water
orally to dilate the stomach before the examination and to hold their breath during the
examination. After the non-enhanced abdominal CT scan, the patients were intravenously
injected with 1.5 mL/kg of iodinated contrast medium (ioversol injection 320 mg I/mL,
Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, China) at a flow rate of 3.0 mL/s
via an automatic pump syringe. After the contrast agent injection started, and when the
contrast agent concentration reached 100 Hu, the imaging taken after 20 s was the arterial
phase, the imaging taken at 35 s after the arterial-phase imaging was the venous phase,
and the imaging taken at 90 s after the venous-phase imaging was the delayed phase.
The parameters of the CT scan were as follows: tube voltage of 120 kV, tube current of
150–300 mA, field of view of 30–50 cm, matrix 512 × 512, rotation time of 0·5 s, and pitch
of 1.0; the images were reconstructed with section thicknesses of 2 mm.

2.3. CT Images Collection

Studies demonstrated that characteristics taken from contrast-enhanced CT portal
images had superior colorectal cancer prediction accuracy [20,21]. Thus, we collected
the contrast-enhanced CT portal-phase images of all patients and resampled them. The
supplemental information includes a comprehensive description of how the CT scans were
acquired. All of the patients’ contrast-enhanced CT portal-phase images were examined by
two radiologists with a combined expertise of more than eight years in medical imaging.
They checked the quality of the patients’ enhanced CT images and screened the five images
from each patient with the largest tumor area. The two physicians had no information
about the patients’ pathology and their review process was independent of each other. If
their opinions diverged, the final decision was made by a chief physician with 15 years of
expertise in medical imaging.

2.4. Dataset Construction

From the CT images of each patient, to create the dataset, we chose five axial slices
that had the greatest tumor area screened by the radiologists. Specifically, the section with
the largest tumor cross-section was centered, with two sections above the center and two
sections below, for a total of five sections (Figure 1).
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Figure 1. Examples of images selected for this study.

We collected the patients’ pathologic staging from their postoperative pathology
report. For automated tumor site recognition and prediction staging, we gathered 685 stage
III images and 470 stage II images retrospectively. We expanded the original dataset
via data augmentation. It decreased the likelihood that the model would be overfitting
when processing the dataset [22]. After data enhancement, the dataset includes a total of
4620 images.

We retrospectively collected 525 CT images with gene mutations and 460 CT images
without gene mutations for gene mutation status prediction in colorectal cancer patients.
We expanded the dataset by applying 19 transformations to the original images using
image enhancement techniques.

All of the images were first normalized. After that, these images were arbitrarily split
into three groups: a training cohort, a testing cohort, and a validation cohort, in the order
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of (7:2:1). The training cohort was used to train the model, the test cohort was used for
fine-tuning, and the validation cohort was used for evaluating the model’s effectiveness.

2.5. Model Construction

The construction of the model consists of two parts. Using the contrast-enhanced CT
venous-phase images, the first step is to identify the tumor and determine the colorectal
cancer stage (detection model). Predicting the tumor’s genetic status (prediction model) is
the second step.

Using Yolov7, which was pre-trained on the Coco dataset, we created a detection
model [23]. Data enhancement methods like HSV, translate, flip, scale, mix-up, and mosaic
were used in the construction of detection model. We set the learning rate to 0.01 and the
number of epochs to 200.

We preprocessed the images of the training cohort and the test cohort differently
while creating the prediction model [24]. The data enhancement techniques of random
clipping and random transformation were selected for the training cohort, and the data
enhancement techniques of center cropping and resizing were selected for the test and
validation cohorts. EfficientNetV2 and ConvNeXt achieve high accuracy in comparison
to other models while utilizing fewer processing resources [25,26]. The transformer’s
structure has high non-local feature extraction capabilities, and VIT and SWT perform
well in the classification space [27–29]. All of them had prior training using the ImageNet
dataset [30,31]. We set the learning rate of the convolutional neural network to 0.01, the
learning rate of the transformer to 0.001, and the number of epochs to 200.

2.6. Model Evaluation

Three categories make up the YOLOv7 loss function: class loss, location loss, and
objection loss. On each layer of the feature maps, the loss computation was performed. The
precision–recall (P-R) curves, mAP, confusion matrix, and F1 score curve were utilized to
further assess the detection model’s performance.

For the prediction model, the accuracy and loss values were used to evaluate the
classification performance of the neural network, from which the best neural network
was selected. To assess the network’s performance further, receiver operator characteristic
(ROC) curves and P-R curves were employed. The output provided to the neural layers
was shown using gradient-weighted class activation mapping (Grad-CAM) [32].

3. Results
3.1. Patients

A total of 231 patients were included in the study. Table 1 provides a summary of the
clinical characteristics of the patients included in the detection model dataset. Additionally,
Table 2 presents the clinical characteristics of the patients included in the prediction model
dataset.

Table 1. Characteristics of patients included in the detection model.

Clinical Characteristics

Age (mean ± SD) 63.97 ± 11.086
Gender, NO (%)

Male 170
Female 61

Laboratory tests, median (IQR)
Albumin 40.60 (37.30, 42.90)

Neutrophil 4.49 (3.23, 6.52)
Lymphocyte 1.29 (0.94, 1.71)

CEA level, NO (%)
Normal 179

Abnormal 52



Cancers 2023, 15, 4497 5 of 14

Table 1. Cont.

Clinical Characteristics

CA125 level, NO (%)
Normal 203

Abnormal 28
CA199 level, NO (%)

Normal 186

Table 2. Characteristics of patients included in the prediction model.

Clinical Characteristics

Age (mean ± SD) 63.79 ± 11.143
Gender, NO (%)

Male 148
Female 49

Laboratory tests, median (IQR)
Albumin 40.50 (37.85, 43.65)

Neutrophil 4.11 (3.15, 5.86)
Lymphocyte 1.34 (1.05, 1.74)

CEA level, NO (%)
Normal 145

Abnormal 52
CA125 level, NO (%)

Normal 165
Abnormal 32

CA199 level, NO (%)
Normal 158

3.2. Detection Model Performance

The Yolov7 found the best optimization settings after 180 learning epochs. In the
test cohort, the detection model had a precision of 0.96, a recall of 0.95, and a mAP_0.5 of
0.97 (Figure 2). Figure 3A,B depict the confusion matrix for both the test and validation
cohorts. The results showed that in both cohorts, the detection model performed excellent
classification of both stages. Furthermore, we used the mAP and F1 scores to evaluate the
accuracy of the model’s detection performance. The test cohorts’ and validation cohorts’
mAP_0.5 values were 0.981 and 0.970, respectively (Figure 3C,D). The model’s F1 scores
in the test and validation cohorts were 0.95 and 0.96, respectively (Figure 3E,F). This
demonstrated that the model performed well in terms of detection.
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Figure 3. Performance of the detection model in the test and validation cohorts. (A,B) The confusion
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cohort’s (C) and external validation cohort’s (D) mAP_0.5 values are 0.981 and 0.970, respectively.
(E,F) The F1 curve. The model’s F1 scores in the test (E) and validation (F) cohorts are 0.95 and 0.96,
respectively.

3.3. Prediction Model Performance

Based on the accuracy and loss of the neural network training process, all neural
networks reached the optimal optimization parameters after 170 learning cycles (Figure 4).
The results show that VIT has the best classification performance for our dataset (Figure 3).
Therefore, we chose VIT to construct the prediction model. The confusion matrix findings
revealed that the prediction model performed well in both the test and validation cohorts
(Figure 5A,B). Additionally, the ROC curve and P-R curve show that the prediction model
has excellent classification performance in the validation cohort (Figure 5C,D). The AUC for
the test and validation cohorts are 0.9591 and 0.9554, respectively (Delong Test, p = 0.449).
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The representative images of VIT’s Grad-CAM are shown in Figure 6. Based on Grad-CAM,
we selected the first Layer Norm layer in the last Encoder Block module in VIT to generate
a representative image of VIT. The heatmap generated based on VIT shows important
regions in the CT image. The surrounding area and central position of the tumor in the CT
image are of great value for the evaluation of tumor gene status. This suggests that VIT has
the ability to detect tumor heterogeneity.
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Figure 4. Variation in each metric over 200 epochs using different neural networks. After 170 learning
epochs, all neural networks attained the best-optimized parameters based on the training loss and
accuracy value. In the test cohort, the VIT model outperformed the CNNs in classification.

3.4. Deep Learning System

The deep learning system is made up of two parts: the detection model detects tumors
and predicts staging, and the prediction model predicts RAS gene mutation status.
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4. Discussion

We developed and validated an upgraded computed tomography-based deep learning
system for preoperative prediction of staging and RAS gene mutation status in colorectal
cancer patients in this work. The deep learning system successfully differentiated col-
orectal cancer patients based on staging and RAS gene mutation status, allowing tailored
preoperative staging and RAS gene mutation status evaluation.

Accurate staging evaluation and RAS gene mutation status identification are critical
in colorectal cancer patients’ therapy options and prognosis assessment [33]. Medical
imaging is a typical tool for determining preoperative staging, although its accuracy is not
optimal [34]. Endoscopic biopsy is a typical preoperative approach for determining gene
mutation status. It can, however, result in major problems such as infection, bleeding, and
perforation [35]. Several studies have sought to evaluate RAS gene mutation status using
positron emission tomography (PET/CT) [36]. Although some results have been achieved,
this is not a standard preoperative test for colorectal cancer patients. Contrast-enhanced
CT is more commonly used for tumor detection and treatment [37]. CT imaging involves
the scanning of a certain thickness of a layer of the body’s examination area using an
X-ray beam. X-rays transmitted through the layer are received by a detector, converted
into visible light, and then transformed into electrical signals by an optical-to-electrical
converter, and then into digital signals by an analog/digital converter, which are inputted
into a computer for processing. This contains a great deal of information. It has been shown
that deep learning features extracted from a tumor region can offer a relevant quantitative
representation of the extent of lymph node metastasis in patients [38]. Deep learning can
extract more information from the input data for mapping the input data or for observing
the relationship between features and the output and is not dependent on understanding
the features of the data [14]. Thus, deep learning will mine information from medical CT
images that is difficult for humans to notice, increasing the hope of achieving diagnostic
value. To the best of our knowledge, this is the first study to employ contrast-enhanced
CT imaging with deep learning to predict staging and RAS gene mutation status before
surgery in colorectal cancer.

The bulk of deep learning research in colorectal cancer has focused on categorization
of endoscopic or pathological images, diagnosis, and prognosis analysis [39,40]. There
are many studies that attempted to use deep learning to analyze pathological images of
colorectal cancer patients to predict lymph node status of patients [41]. Some researchers
have also investigated the direct use of endoscopic images to diagnose the depth of submu-
cosal infiltration in colorectal cancer using deep learning [42]. After a systematic literature
search, we found two deep learning studies using magnetic resonance imaging (MRI) for
the predictive identification of the T-stage in rectal cancer patients [43,44]. Although MRI
has advantages such as high sensitivity and specificity, it is not a routine preoperative
test for colorectal cancer patients due to its high price. Moreover, we did not find studies
that used CT images to predict the stage of patients with colorectal cancer preoperatively.
Clinical standards demand that practitioners identify TNM staging before beginning any
therapy [45]. TNM staging is routinely used for risk stratification and therapeutic deci-
sion making, and CT is a routine imaging test used for preoperative staging of gastric
cancer [46]. The use of abdominal contrast-enhanced CT has greatly improved the accuracy
of gastric cancer staging, with preoperative T-stage and N-stage accuracies of 70% and
75%, respectively [47,48]. However, the final interpretation of CT images still depends
on clinical experience and the personal opinion of radiologists. The staging assessment
by clinicians is to some extent a subjective evaluation that lacks objectivity [49]. The F1
value of the deep learning system constructed in this study reached 0.95 and 0.96 in the
test cohort and validation cohort, respectively, offering a novel approach for assisting
radiologists in screening and reducing their workload. Huang et al. demonstrated that
combining numerous indicators into a single model aids in individualizing patient care and
outperforms utilizing a single marker [21]. We are strongly inclined toward the view that
focusing on the T-stage or N-stage may not allow a thorough assessment of patients’ state,
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which may alter clinician’s diagnosis, treatment, and prognosis appraisal of the patients.
Using contrast-enhanced CT portal-phase images, the detection model we constructed was
able to predict the staging of colorectal cancer patients, which would be helpful to clinicians
in making their diagnosis and treatment decisions.

With the introduction of cetuximab and panitumumab, two anti-epidermal growth
factor receptor (EGFR)-targeted antibodies, the treatment of progressive colorectal cancer
has entered the era of customized therapy [50]. However, tissues obtained via endoscopic
biopsy are inaccurate, and approximately one-quarter of patients diagnosed with endo-
scopic biopsy prove to have more advanced disease after surgical resection [51]. Endoscopic
biopsy specimens’ gene expression profiles may be influenced by sampling mistakes [52].
Liquid biopsy has evolved in recent years as an alternate approach for identifying genetic
status [53]. However, the pricey apparatus needed for the investigation, the long analysis
time, and the low detectability and specificity have all hampered the translation of this
innovative technology from the laboratory to clinical use [54]. Contrast-enhanced CT is a
relatively low-risk, non-invasive preoperative routine scan compared to endoscopy and
tissue biopsy [55]. In this study, a prediction model was built and tested on a test set and
a validation set, and the model achieved good performance. Our findings revealed that
contrast-enhanced CT, as a typical preoperative scan used in colorectal cancer patients, has
intrinsic receptor expression features and can thus represent RAS gene mutation status.
Several studies have shown links between CT features and genes in lung tumors [56]. Pre-
dictive models are not yet sufficient to replace pathology biopsies for a variety of reasons,
including clinician bias and poor deep learning interpretability. However, deep learning
and contrast-enhanced CT examinations have many advantages over pathology biopsies.
First, CT examinations are readily available, relatively inexpensive, and noninvasive. In
addition, almost all patients with colorectal cancer undergo contrast-enhanced CT before
treatment and are commonly imaged multiple times during treatment, but not all patients
undergo genomic sequencing. Second, colorectal cancer is highly heterogeneous and
progressive at the physiological and genomic levels. Genomic heterogeneity in different
locations of primary tumors and metastatic tumors is a significant contributor to treatment
failure and the establishment of therapeutic resistance. Third, when genomic analysis
is performed, tumor biopsy samples are obtained from a single location in a single pass,
which is prone to sampling errors. However, predictive models target images of the entire
tumor, and not a localized site [57,58]. Therefore, precise treatment of colorectal cancer
requires spatiotemporal analysis of tumor RAS gene mutation status. The findings of this
study highlight the fact that contrast-enhanced CT in colorectal cancer has an intrinsic
advantage for detecting RAS gene mutation status. This is useful since contrast-enhanced
CT makes it easier for doctors to establish the mutational status of genes. Grad-CAM can
depict the deep learning model’s output, and further research should be undertaken based
on this finding. Contrast-enhanced CT and deep learning have the ability to quantify intra-
and inter-tumor heterogeneity and enable more accurate colorectal cancer therapy.

Radiomics is a new topic that has attracted a lot of interest in cancer clinical re-
search [59]. With the greatest AUC value of 0.76 obtained, Li et al. created clinical line
graphs based on radiomic characteristics for predicting lymph node metastases in colorectal
cancer patients [60]. The combination of functional parameters of CT and radiomic features
is helpful for the diagnosis and T-staging of colorectal cancer [61]. Xue et al. used radiomic
features to construct a model to predict KRAS mutation status in colorectal cancer patients,
with an AUC value of 0.75 [62].

This study’s prediction model had a much higher AUC than its radiomic equivalent.
This study’s remarkable result can be credited to the usage of deep learning techniques.
Yun et al. discovered that combining deep learning features with radiomic features affects
their deep learning model’s classification performance [63]. According to Chalkidou et al.,
radiomic properties are characterized by human bias [64]. Simultaneously, radiomics
has always had repeatability issues [65]. The usefulness of classical radiomics has been
called into doubt since the introduction of deep learning [66,67]. Deep learning enables
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important properties to be learnt automatically, without researchers’ prior definition, and
these abstract representations also improve learning by boosting generality and accuracy
while minimizing possible bias [68]. We tend to favor this view. The distinctions between
different tissue types might not be adequately accounted for when examining radiomic
characteristics due to the constraints of human-defined radiomics.

More importantly, this study looks at the therapeutic use of deep learning models.
Previous deep learning research results, while good, have only been evaluated using
internal or external test groups and have not been applied to clinical practice, which is
contrary to the trend of personalized medicine [69–71]. Schmidt et al. contend that medical
research should be directed toward therapeutic applications [72]. Thus, a deep learning
system for clinicians based on the best model is useful, and our model demonstrates
excellent predictive performance. Without specialist annotation, as clinicians upload
contrast-enhanced CT images obtained from colorectal cancer patients, the proposed deep
learning system displays summary results for patient staging and RAS gene mutation
status prediction. Despite the obstacles in transferring medical research findings into the
development of therapeutic technologies, as Cabitza et al. pointed out, we feel it is a
worthy undertaking [73,74]. With its rapid learning and data processing capabilities, deep
learning will revolutionize how we respond to colorectal cancer and become a vital tool for
physicians.

This study has a number of drawbacks. To begin with, the colorectal cancer patients in
this study were recruited from a single location, and the deep learning system may perform
poorly on contrast-enhanced CT scans from other institutions. We will make a deliberate
effort in future research to eliminate variance between hospitals using multi-center studies
and significantly improve the deep learning system. Furthermore, only contrast-enhanced
CT portal-phase images were employed in this investigation for prediction. The use of
arterial-phase and delayed-phase contrast-enhanced CT imaging in colorectal cancer has
to be researched further. Finally, a two-dimensional model was used to build the deep
learning system for this investigation. We will investigate the clinical use of 3D models in
contrast-enhanced CT.

5. Conclusions

In conclusion, the proposed deep learning system can predict the preoperative staging
and RAS gene mutation status of colorectal cancer patients using just contrast-enhanced
CT images. The deep learning system will assist physicians in evaluating the staging and
RAS mutation status of colorectal cancer patients prior to surgery and selecting the best
treatment strategy, thus decreasing the physical and financial stresses on patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers15184497/s1. RAS mutation analysis.

Author Contributions: N.L. designed the study. J.Z. (Jianguo Zhu) and Y.L. collected and organized
the clinical data. N.L. and X.G. completed the modeling and data analysis and wrote the manuscript.
J.Z. (Jianping Zhang) was responsible for the submission of the final version of the paper. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
Grant No. 81874058, owned by Jianping Zhang.

Institutional Review Board Statement: Approval was received from the Ethics Committee of the
Second Affiliated Hospital of Nanjing Medical University (NO. 2023-KY-141-01). The patients’ or
their family members’ informed consent was acquired. We removed all private patient information.

Informed Consent Statement: Approval from the Ethics Committee was received. The patients’ or
their family members’ informed consent was acquired.

Data Availability Statement: The data supporting this study are available from the corresponding
author upon request.

Acknowledgments: The authors thanked all colleagues who contributed to this work.

https://www.mdpi.com/article/10.3390/cancers15184497/s1
https://www.mdpi.com/article/10.3390/cancers15184497/s1


Cancers 2023, 15, 4497 12 of 14

Conflicts of Interest: The authors declare that this study was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. Cremolini, C.; Loupakis, F.; Antoniotti, C.; Lupi, C.; Sensi, E.; Lonardi, S.; Mezi, S.; Tomasello, G.; Ronzoni, M.; Zaniboni, A.; et al.
FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal
cancer: Updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol. 2015, 16,
1306–1315. [CrossRef] [PubMed]

3. Strickler, J.H.; Wu, C.; Bekaii-Saab, T. Targeting BRAF in metastatic colorectal cancer: Maximizing molecular approaches. Cancer
Treat. Rev. 2017, 60, 109–119. [CrossRef] [PubMed]

4. Sundar, R.; Hong, D.S.; Kopetz, S.; Yap, T.A. Targeting BRAF-Mutant Colorectal Cancer: Progress in Combination Strategies.
Cancer Discov. 2017, 7, 558–560. [CrossRef] [PubMed]

5. Bibault, J.E.; Giraud, P.; Housset, M.; Durdux, C.; Taieb, J.; Berger, A.; Coriat, R.; Chaussade, S.; Dousset, B.; Nordlinger, B.; et al.
Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer.
Sci. Rep. 2018, 8, 12611. [CrossRef]

6. Camidge, D.R.; Doebele, R.C.; Kerr, K.M. Comparing and contrasting predictive biomarkers for immunotherapy and targeted
therapy of NSCLC. Nature reviews. Clin. Oncol. 2019, 16, 341–355. [CrossRef]

7. Li, Q.; Guan, X.; Chen, S.; Yi, Z.; Lan, B.; Xing, P.; Fan, Y.; Wang, J.; Luo, Y.; Yuan, P.; et al. Safety, Efficacy, and Biomarker Analysis
of Pyrotinib in Combination with Capecitabine in HER2-Positive Metastatic Breast Cancer Patients: A Phase I Clinical Trial. Clin.
Cancer Res. 2019, 25, 5212–5220. [CrossRef]

8. Barras, D.; Missiaglia, E.; Wirapati, P.; Sieber, O.M.; Jorissen, R.N.; Love, C.; Molloy, P.L.; Jones, I.T.; McLaughlin, S.; Gibbs, P.; et al.
BRAF V600E Mutant Colorectal Cancer Subtypes Based on Gene Expression. Clin. Cancer Res. 2017, 23, 104–115. [CrossRef]

9. Peeters, M.; Oliner, K.S.; Price, T.J.; Cervantes, A.; Sobrero, A.F.; Ducreux, M.; Hotko, Y.; André, T.; Chan, E.; Lordick, F.; et al.
Analysis of KRAS/NRAS Mutations in a Phase III Study of Panitumumab with FOLFIRI Compared with FOLFIRI Alone as
Second-line Treatment for Metastatic Colorectal Cancer. Clin. Cancer Res. 2015, 21, 5469–5479. [CrossRef]

10. Jia, L.L.; Zhao, J.X.; Zhao, L.P.; Tian, J.H.; Huang, G. Current status and quality of radiomic studies for predicting KRAS mutations
in colorectal cancer patients: A systematic review and meta-analysis. Eur. J. Radiol. 2023, 158, 110640. [CrossRef]

11. European Society of Radiology (ESR). White paper on imaging biomarkers. Insights Imaging 2010, 1, 42–45. [CrossRef]
12. Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.;

Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun.
2014, 5, 4006. [CrossRef]

13. Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.;
Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a
more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [CrossRef]

14. Huang, S.; Yang, J.; Fong, S.; Zhao, Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges.
Cancer Lett. 2020, 471, 61–71. [CrossRef] [PubMed]

15. Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [CrossRef] [PubMed]
16. Wong, D.; Yip, S. Machine learning classifies cancer. Nature 2018, 555, 446–447. [CrossRef]
17. Cellina, M.; Cè, M.; Irmici, G.; Ascenti, V.; Khenkina, N.; Toto-Brocchi, M.; Martinenghi, C.; Papa, S.; Carrafiello, G. Artificial

Intelligence in Lung Cancer Imaging: Unfolding the Future. Diagnostics 2022, 12, 2644. [CrossRef]
18. Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al.

Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell 2018, 172, 1122–1131.e9. [CrossRef]
[PubMed]

19. Jiang, K.; Jiang, X.; Pan, J.; Wen, Y.; Huang, Y.; Weng, S.; Lan, S.; Nie, K.; Zheng, Z.; Ji, S.; et al. Current Evidence and Future
Perspective of Accuracy of Artificial Intelligence Application for Early Gastric Cancer Diagnosis with Endoscopy: A Systematic
and Meta-Analysis. Front. Med. 2021, 8, 629080. [CrossRef]

20. Kim, K.; Kim, S.; Han, K.; Bae, H.; Shin, J.; Lim, J.S. Diagnostic Performance of Deep Learning-Based Lesion Detection Algorithm
in CT for Detecting Hepatic Metastasis from Colorectal Cancer. Korean J. Radiol. 2021, 22, 912–921. [CrossRef]

21. Huang, Y.Q.; Liang, C.H.; He, L.; Tian, J.; Liang, C.S.; Chen, X.; Ma, Z.L.; Liu, Z.Y. Development and Validation of a Radiomics
Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer. J. Clin. Oncol. 2016, 34, 2157–2164.
[CrossRef] [PubMed]

22. Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random Erasing Data Augmentation. In Proceedings of the AAAI Conference on
Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 13001–13008. [CrossRef]

23. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors. arXiv 2022, arXiv:2207.02696.

https://doi.org/10.3322/caac.21660
https://www.ncbi.nlm.nih.gov/pubmed/33538338
https://doi.org/10.1016/S1470-2045(15)00122-9
https://www.ncbi.nlm.nih.gov/pubmed/26338525
https://doi.org/10.1016/j.ctrv.2017.08.006
https://www.ncbi.nlm.nih.gov/pubmed/28946014
https://doi.org/10.1158/2159-8290.CD-17-0087
https://www.ncbi.nlm.nih.gov/pubmed/28576843
https://doi.org/10.1038/s41598-018-30657-6
https://doi.org/10.1038/s41571-019-0173-9
https://doi.org/10.1158/1078-0432.CCR-18-4173
https://doi.org/10.1158/1078-0432.CCR-16-0140
https://doi.org/10.1158/1078-0432.CCR-15-0526
https://doi.org/10.1016/j.ejrad.2022.110640
https://doi.org/10.1007/s13244-010-0025-8
https://doi.org/10.1038/ncomms5006
https://doi.org/10.3322/caac.21388
https://doi.org/10.1016/j.canlet.2019.12.007
https://www.ncbi.nlm.nih.gov/pubmed/31830558
https://doi.org/10.1161/CIRCULATIONAHA.115.001593
https://www.ncbi.nlm.nih.gov/pubmed/26572668
https://doi.org/10.1038/d41586-018-02881-7
https://doi.org/10.3390/diagnostics12112644
https://doi.org/10.1016/j.cell.2018.02.010
https://www.ncbi.nlm.nih.gov/pubmed/29474911
https://doi.org/10.3389/fmed.2021.629080
https://doi.org/10.3348/kjr.2020.0447
https://doi.org/10.1200/JCO.2015.65.9128
https://www.ncbi.nlm.nih.gov/pubmed/27138577
https://doi.org/10.1609/aaai.v34i07.7000


Cancers 2023, 15, 4497 13 of 14

24. Drozdzal, M.; Chartrand, G.; Vorontsov, E.; Shakeri, M.; Di Jorio, L.; Tang, A.; Romero, A.; Bengio, Y.; Pal, C.; Kadoury, S. Learning
normalized inputs for iterative estimation in medical image segmentation. Med. Image Anal. 2018, 44, 1–13. [CrossRef]

25. Tan, M.; Le, Q.V. Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2019, arXiv:1905.11946.
26. Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11976–11986.
27. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. In Proceedings of the International
Conference on Learning Representations, Virtual, 3–7 May 2021.

28. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. arXiv 2021, arXiv:2103.14030.

29. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, Long Beach, CA, USA, 4–9
December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 6000–6010.

30. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
31. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
32. Selvaraju, R.R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks

via gradient-based localization. Int. J. Comput. Vis. 2016, 128, 336–359. [CrossRef]
33. National Comprehensive Cancer Network (NCCN) Guidelines. Available online: http://www.nccn.org/ (accessed on 11

January 2022).
34. Nasseri, Y.; Langenfeld, S.J. Imaging for Colorectal Cancer. Surg. Clin. N. Am. 2017, 97, 503–513. [CrossRef]
35. Levy, I.; Gralnek, I.M. Complications of diagnostic colonoscopy, upper endoscopy, and enteroscopy. Best Pract. Res. Clin.

Gastroenterol. 2016, 30, 705–718. [CrossRef]
36. He, P.; Zou, Y.; Qiu, J.; Yang, T.; Peng, L.; Zhang, X. Pretreatment (18)F-FDG PET/CT Imaging Predicts the KRAS/NRAS/BRAF

Gene Mutational Status in Colorectal Cancer. J. Oncol. 2021, 2021, 6687291. [CrossRef]
37. Obaro, A.E.; Plumb, A.A.; Fanshawe, T.R.; Torres, U.S.; Baldwin-Cleland, R.; Taylor, S.A.; Halligan, S.; Burling, D.N. Post-imaging

colorectal cancer or interval cancer rates after CT colonography: A systematic review and meta-analysis. Lancet Gastroenterol.
Hepatol. 2018, 3, 326–336. [CrossRef] [PubMed]

38. Dong, D.; Fang, M.-J.; Tang, L.; Shan, X.-H.; Gao, J.-B.; Giganti, F.; Wang, R.-P.; Chen, X.; Wang, X.-X.; Palumbo, D.; et al. Deep
Learning Radiomic Nomogram Can Predict the Number of Lymph Node Metastasis in Locally Advanced Gastric Cancer: An
International Multicenter Study. Ann. Oncol. 2020, 31, 912–920. [CrossRef] [PubMed]

39. Pacal, I.; Karaboga, D.; Basturk, A.; Akay, B.; Nalbantoglu, U. A comprehensive review of deep learning in colon cancer. Comput.
Biol. Med. 2020, 126, 104003. [CrossRef] [PubMed]

40. Liang, F.; Wang, S.; Zhang, K.; Liu, T.J.; Li, J.N. Development of artificial intelligence technology in diagnosis, treatment, and
prognosis of colorectal cancer. World J. Gastrointest. Oncol. 2022, 14, 124–152. [CrossRef] [PubMed]

41. Bedrikovetski, S.; Dudi-Venkata, N.N.; Kroon, H.M.; Seow, W.; Vather, R.; Carneiro, G.; Moore, J.W.; Sammour, T. Artificial
intelligence for pre-operative lymph node staging in colorectal cancer: A systematic review and meta-analysis. BMC Cancer 2021,
21, 1058. [CrossRef]

42. Minami, S.; Saso, K.; Miyoshi, N.; Fujino, S.; Kato, S.; Sekido, Y.; Hata, T.; Ogino, T.; Takahashi, H.; Uemura, M.; et al. Diagnosis of
Depth of Submucosal Invasion in Colorectal Cancer with AI Using Deep Learning. Cancers 2022, 14, 5361. [CrossRef]

43. Wu, Q.Y.; Liu, S.L.; Sun, P.; Li, Y.; Liu, G.W.; Liu, S.S.; Hu, J.L.; Niu, T.Y.; Lu, Y. Establishment and clinical application value of
an automatic diagnosis platform for rectal cancer T-staging based on a deep neural network. Chin. Med. J. 2021, 134, 821–828.
[CrossRef]

44. Hou, M.; Zhou, L.; Sun, J. Deep-learning-based 3D super-resolution MRI radiomics model: Superior predictive performance in
preoperative T-staging of rectal cancer. Eur. Radiol. 2023, 33, 1–10. [CrossRef]

45. AK, A.A.; Garvin, J.H.; Redd, A.; Carter, M.E.; Sweeny, C.; Meystre, S.M. Automated Extraction and Classification of Cancer
Stage Mentions from Unstructured Text Fields in a Central Cancer Registry. AMIA Jt. Summits Transl. Sci. Proc. 2018, 2017, 16–25.

46. Lu, Y.; Yu, Q.; Gao, Y.; Zhou, Y.; Liu, G.; Dong, Q.; Ma, J.; Ding, L.; Yao, H.; Zhang, Z.; et al. Identification of Metastatic Lymph
Nodes in MR Imaging with Faster Region-Based Convolutional Neural Networks. Cancer Res. 2018, 78, 5135–5143. [CrossRef]

47. Kubota, K.; Suzuki, A.; Shiozaki, H.; Wada, T.; Kyosaka, T.; Kishida, A. Accuracy of Multidetector-Row Computed Tomography
in the Preoperative Diagnosis of Lymph Node Metastasis in Patients with Gastric Cancer. Gastrointest. Tumors 2017, 3, 163–170.
[CrossRef]

48. Joo, I.; Lee, J.M.; Kim, J.H.; Shin, C.-I.; Han, J.K.; Choi, B.I. Prospective Comparison of 3T MRI with Diffusion-Weighted Imaging
and MDCT for the Preoperative TNM Staging of Gastric Cancer. J. Magn. Reson. Imaging 2015, 41, 814–821. [CrossRef]

49. Zheng, L.; Zhang, X.; Hu, J.; Gao, Y.; Zhang, X.; Zhang, M.; Li, S.; Zhou, X.; Niu, T.; Lu, Y.; et al. Establishment and Applicability
of a Diagnostic System for Advanced Gastric Cancer T Staging Based on a Faster Region-Based Convolutional Neural Network.
Front. Oncol. 2020, 10, 1238. [CrossRef]

50. Tang, Y.L.; Li, D.D.; Duan, J.Y.; Sheng, L.M.; Wang, X. Resistance to targeted therapy in metastatic colorectal cancer: Current
status and new developments. World J. Gastroenterol. 2023, 29, 926–948. [CrossRef] [PubMed]

https://doi.org/10.1016/j.media.2017.11.005
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-019-01228-7
http://www.nccn.org/
https://doi.org/10.1016/j.suc.2017.01.002
https://doi.org/10.1016/j.bpg.2016.09.005
https://doi.org/10.1155/2021/6687291
https://doi.org/10.1016/S2468-1253(18)30032-3
https://www.ncbi.nlm.nih.gov/pubmed/29472116
https://doi.org/10.1016/j.annonc.2020.04.003
https://www.ncbi.nlm.nih.gov/pubmed/32304748
https://doi.org/10.1016/j.compbiomed.2020.104003
https://www.ncbi.nlm.nih.gov/pubmed/32987202
https://doi.org/10.4251/wjgo.v14.i1.124
https://www.ncbi.nlm.nih.gov/pubmed/35116107
https://doi.org/10.1186/s12885-021-08773-w
https://doi.org/10.3390/cancers14215361
https://doi.org/10.1097/CM9.0000000000001401
https://doi.org/10.1007/s00330-022-08952-8
https://doi.org/10.1158/0008-5472.CAN-18-0494
https://doi.org/10.1159/000454923
https://doi.org/10.1002/jmri.24586
https://doi.org/10.3389/fonc.2020.01238
https://doi.org/10.3748/wjg.v29.i6.926
https://www.ncbi.nlm.nih.gov/pubmed/36844139


Cancers 2023, 15, 4497 14 of 14

51. Zou, L.; Jiang, Q.; Guo, T.; Wu, X.; Wang, Q.; Feng, Y.; Zhang, S.; Fang, W.; Zhou, W.; Yang, A. Endoscopic characteristics in
predicting prognosis of biopsy-diagnosed gastric low-grade intraepithelial neoplasia. Chin. Med. J. 2022, 135, 26–35. [CrossRef]
[PubMed]

52. Wang, N.; Wang, X.; Li, W.; Ye, H.; Bai, H.; Wu, J.; Chen, M. Contrast-Enhanced CT Parameters of Gastric Adenocarcinoma: Can
Radiomic Features Be Surrogate Biomarkers for HER2 over-Expression Status? Cancer Manag. Res. 2020, 12, 1211–1219. [CrossRef]
[PubMed]

53. Kalligosfyri, P.M.; Nikou, S.; Karteri, S.; Kalofonos, H.P.; Bravou, V.; Kalogianni, D.P. Rapid Multiplex Strip Test for the Detection
of Circulating Tumor DNA Mutations for Liquid Biopsy Applications. Biosensors 2022, 12, 97. [CrossRef] [PubMed]

54. Wang, J.; Wuethrich, A.; Sina, A.A.; Lane, R.E.; Lin, L.L.; Wang, Y.; Cebon, J.; Behren, A.; Trau, M. Tracking extracellular vesicle
phenotypic changes enables treatment monitoring in melanoma. Sci. Adv. 2020, 6, eaax3223. [CrossRef]

55. Chang, X.; Guo, X.; Li, X.; Han, X.; Li, X.; Liu, X.; Ren, J. Potential Value of Radiomics in the Identification of Stage T3 and T4a
Esophagogastric Junction Adenocarcinoma Based on Contrast-Enhanced CT Images. Front. Oncol. 2021, 11, 627947. [CrossRef]
[PubMed]

56. Liu, Y.; Kim, J.; Balagurunathan, Y.; Li, Q.; Garcia, A.L.; Stringfield, O.; Ye, Z.; Gillies, R.J. Radiomic Features Are Associated with
EGFR Mutation Status in Lung Adenocarcinomas. Clin. Lung Cancer 2016, 17, 441–448.e6. [CrossRef]

57. Russo, M.; Crisafulli, G.; Sogari, A.; Reilly, N.M.; Arena, S.; Lamba, S.; Bartolini, A.; Amodio, V.; Magrì, A.; Novara, L.; et al.
Adaptive mutability of colorectal cancers in response to targeted therapies. Science 2019, 366, 1473–1480. [CrossRef]

58. Russo, M.; Siravegna, G.; Blaszkowsky, L.S.; Corti, G.; Crisafulli, G.; Ahronian, L.G.; Mussolin, B.; Kwak, E.L.; Buscarino, M.;
Lazzari, L.; et al. Tumor Heterogeneity and Lesion-Specific Response to Targeted Therapy in Colorectal Cancer. Cancer Discov.
2016, 6, 147–153. [CrossRef] [PubMed]

59. Liu, S.; Liu, S.; Ji, C.; Zheng, H.; Pan, X.; Zhang, Y.; Guan, W.; Chen, L.; Guan, Y.; Li, W.; et al. Application of CT texture analysis in
predicting histopathological characteristics of gastric cancers. Eur. Radiol. 2017, 27, 4951–4959. [CrossRef]

60. Li, M.; Zhang, J.; Dan, Y.; Yao, Y.; Dai, W.; Cai, G.; Yang, G.; Tong, T. A clinical-radiomics nomogram for the preoperative
prediction of lymph node metastasis in colorectal cancer. J. Transl. Med. 2020, 18, 46. [CrossRef] [PubMed]

61. Dou, Y.; Liu, Y.; Kong, X.; Yang, S. T staging with functional and radiomics parameters of computed tomography in colorectal
cancer patients. Medicine 2022, 101, e29244. [CrossRef] [PubMed]

62. Xue, T.; Peng, H.; Chen, Q.; Li, M.; Duan, S.; Feng, F. Preoperative prediction of KRAS mutation status in colorectal cancer using a
CT-based radiomics nomogram. Br. J. Radiol. 2022, 95, 20211014. [CrossRef]

63. Yun, J.; Park, J.E.; Lee, H.; Ham, S.; Kim, N.; Kim, H.S. Radiomic features and multilayer perceptron network classifier: A robust
MRI classification strategy for distinguishing glioblastoma from primary central nervous system lymphoma. Sci. Rep. 2019, 9,
5746. [CrossRef]

64. Chalkidou, A.; O’Doherty, M.J.; Marsden, P.K. False Discovery Rates in PET and CT Studies with Texture Features: A Systematic
Review. PLoS ONE 2015, 10, e0124165. [CrossRef]

65. Traverso, A.; Wee, L.; Dekker, A.; Gillies, R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int. J.
Radiat. Oncol. Biol. Phys. 2018, 102, 1143–1158. [CrossRef]

66. Xu, Y.; Hosny, A.; Zeleznik, R.; Parmar, C.; Coroller, T.; Franco, I.; Mak, R.H.; Aerts, H. Deep Learning Predicts Lung Cancer
Treatment Response from Serial Medical Imaging. Clin. Cancer Res. 2019, 25, 3266–3275. [CrossRef]

67. Hosny, A.; Parmar, C.; Coroller, T.P.; Grossmann, P.; Zeleznik, R.; Kumar, A.; Bussink, J.; Gillies, R.J.; Mak, R.H.; Aerts, H. Deep
learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. PLoS Med. 2018, 15, e1002711. [CrossRef]

68. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
69. Li, L.; Chen, Y.; Shen, Z.; Zhang, X.; Sang, J.; Ding, Y.; Yang, X.; Li, J.; Chen, M.; Jin, C.; et al. Convolutional neural network for

the diagnosis of early gastric cancer based on magnifying narrow band imaging. Gastric Cancer 2020, 23, 126–132. [CrossRef]
[PubMed]

70. Ueyama, H.; Kato, Y.; Akazawa, Y.; Yatagai, N.; Komori, H.; Takeda, T.; Matsumoto, K.; Ueda, K.; Matsumoto, K.; Hojo, M.;
et al. Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on
magnifying endoscopy with narrow-band imaging. J. Gastroenterol. Hepatol. 2021, 36, 482–489. [CrossRef]

71. Balachandran, V.P.; Gonen, M.; Smith, J.J.; DeMatteo, R.P. Nomograms in oncology: More than meets the eye. Lancet Oncol. 2015,
16, e173–e180. [CrossRef] [PubMed]

72. Schmidt, D.R.; Patel, R.; Kirsch, D.G.; Lewis, C.A.; Vander Heiden, M.G.; Locasale, J.W. Metabolomics in cancer research and
emerging applications in clinical oncology. CA Cancer J. Clin. 2021, 71, 333–358. [CrossRef] [PubMed]

73. de Boer, L.L.; Spliethoff, J.W.; Sterenborg, H.; Ruers, T.J.M. Review: In vivo optical spectral tissue sensing-how to go from research
to routine clinical application? Lasers Med. Sci. 2017, 32, 711–719. [CrossRef]

74. Cabitza, F.; Rasoini, R.; Gensini, G.F. Unintended Consequences of Machine Learning in Medicine. JAMA 2017, 318, 517–518.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1097/CM9.0000000000001637
https://www.ncbi.nlm.nih.gov/pubmed/34873080
https://doi.org/10.2147/CMAR.S230138
https://www.ncbi.nlm.nih.gov/pubmed/32110095
https://doi.org/10.3390/bios12020097
https://www.ncbi.nlm.nih.gov/pubmed/35200357
https://doi.org/10.1126/sciadv.aax3223
https://doi.org/10.3389/fonc.2021.627947
https://www.ncbi.nlm.nih.gov/pubmed/33747947
https://doi.org/10.1016/j.cllc.2016.02.001
https://doi.org/10.1126/science.aav4474
https://doi.org/10.1158/2159-8290.CD-15-1283
https://www.ncbi.nlm.nih.gov/pubmed/26644315
https://doi.org/10.1007/s00330-017-4881-1
https://doi.org/10.1186/s12967-020-02215-0
https://www.ncbi.nlm.nih.gov/pubmed/32000813
https://doi.org/10.1097/MD.0000000000029244
https://www.ncbi.nlm.nih.gov/pubmed/35623068
https://doi.org/10.1259/bjr.20211014
https://doi.org/10.1038/s41598-019-42276-w
https://doi.org/10.1371/journal.pone.0124165
https://doi.org/10.1016/j.ijrobp.2018.05.053
https://doi.org/10.1158/1078-0432.CCR-18-2495
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1007/s10120-019-00992-2
https://www.ncbi.nlm.nih.gov/pubmed/31332619
https://doi.org/10.1111/jgh.15190
https://doi.org/10.1016/S1470-2045(14)71116-7
https://www.ncbi.nlm.nih.gov/pubmed/25846097
https://doi.org/10.3322/caac.21670
https://www.ncbi.nlm.nih.gov/pubmed/33982817
https://doi.org/10.1007/s10103-016-2119-0
https://doi.org/10.1001/jama.2017.7797

	Introduction 
	Materials and Methods 
	Patients 
	CT Image Acquisition 
	CT Images Collection 
	Dataset Construction 
	Model Construction 
	Model Evaluation 

	Results 
	Patients 
	Detection Model Performance 
	Prediction Model Performance 
	Deep Learning System 

	Discussion 
	Conclusions 
	References

