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Simple Summary: Stereotactic radiosurgery (SRS) and fractionated SRS (fSRS) for brain metastases
(BM) have become the standard of care for patients with up to 10 BM, yielding similar survival
but a lower risk of long-term neurocognitive decline than whole-brain radiotherapy (WBRT). New
technologies have allowed the accurate delivery of these high doses to the target using linac-based
frameless techniques, and single-isocenter multiple-target (SIMT) approaches have recently been
adopted for the simultaneous treatment of all BM. However, residual setup errors combined with
intrafraction head motion may result in non-negligible compromised target coverage. While many
groups have evaluated the efficacy of linac-based treatments using multiple and non-coplanar arcs, to
our knowledge, only a few studies have presented clinical experience with coplanar arcs. Therefore,
the present study aims to report our institutional investigation about the accuracy and outcomes of
single-isocenter VMAT SRS treatments for both single and multiple BM delivered using only coplanar
arcs and kV-CBCT as an IGRT system.

Abstract: The efficacy of linac-based SRS/fSRS treatments using the single-isocenter coplanar FFF-
VMAT technique for both single and multiple BM was investigated. Seventy patients (129 BM)
treated with 15–21 Gy in 1 (n = 59) or 27 Gy in 3 (n = 11) fractions were analyzed. For each fraction,
plans involving the intra-fractional errors measured by post-treatment CBCT were recalculated. The
relationships of BM size, distance-to-isocenter, and barycenter shift with the difference in target
coverage were evaluated. Clinical outcomes were assessed using logistic regression and Kaplan-
Meier analysis. The median delivery time was 3.78 min (range, 1.83–9.25). The median post-treatment
3D error was 0.5 mm (range, 0.1–2.7) and the maximum rotational error was 0.3◦ (range, 0.0–1.3). In
single BM patients, the GTV D95% was never reduced by >5%, whereas PTV D95% reductions >1%
occurred in only 11 cases (29%). In multiple BM patients, dose deficits >5% and >1% occurred in
2 GTV (2%) and 34 PTV (37%), respectively. The differences in target coverage showed a moderate-
to-strong correlation only with barycenter shift. Local failure of at least one treated BM occurred
in 13 (21%) patients and the 1-year and 2-year local control rates for all lesions were 94% and 90%,
respectively. The implemented workflow ensured that the degradation of target and brain dose
metrics in delivered treatments was negligible. Along with encouraging clinical outcomes, these
findings warrant a reduction in the PTV margins at our institution.
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1. Introduction

Over the past several years, there has been a gradual transition from whole-brain
radiation therapy (WBRT) to stereotactic radiosurgery (SRS) for the treatment of patients
with brain metastases (BM) [1,2]. Many randomized trials reported an improved local
control (LC) and overall survival (OS) when SRS was delivered with WBRT [3–5] and,
subsequently, SRS alone yielded similar OS but higher rates of LC and a lower risk of
long-term neurocognitive decline compared to WBRT + SRS [6–10]. Thus, international
guidelines [11] now recommend SRS as the standard treatment option for patients with a
limited number (1–4) of BM [12,13] and patients with a higher number of BM (5–10) with a
limited cumulative volume (<15 mL) [14,15].

Because these treatments promote ablation and necrosis of the irradiated tissue, small
margins, sharp dose gradients and special equipment have long been required to achieve
high conformity and minimize functional brain tissue damage. New available technologies
have allowed the accurate delivery of these high doses to the target also using linac-based
frameless approaches [16–20]. Image-guided localization systems, along with noninvasive
immobilization masks and full six-degree-of-freedom (6-DOF) robotic couch, were crucial
in achieving this aim and led to comparable spatial accuracy of traditional invasive fixed
frames [21–24], while also improving patient comfort and the planning process.

Although literature reports geometric accuracy within 1–2 mm [16,17,22,25–27], resid-
ual setup errors combined with intrafraction head motion may result in non-negligible com-
promised target coverage, undertreating the disease and risking tumor recurrence. More-
over, single-isocenter multiple-target (SIMT) volumetric modulated arc therapy (VMAT)-
SRS approaches for the simultaneous treatment of all BM in a single session have been
recently adopted to further shorten the treatment time. Different studies have demon-
strated their consistent dosimetry and conformity compared to multiple-isocenter modali-
ties [28–31], but their inferior robustness to rotational uncertainties has been noted, espe-
cially for small lesions at greater distances from the plan isocenter [32–37]. Consequently, as-
sessing the dosimetric accuracy of such treatment techniques gained even more importance.

While many groups have evaluated the efficacy and safety of single-isocenter VMAT
treatments using multiple and non-coplanar arcs [38–46], to our knowledge, only a few
studies have reported clinical experience with coplanar arcs. Two comparison works [28,47]
presented slightly superior plan quality for multiple non-coplanar arcs geometries, but
the small differences were not deemed clinically significant in unchallenging brain BM
cases. Moreover, non-coplanar planning modalities in most cases require the entrance of
a staff member into the treatment room for each couch rotation and the use of dedicated
and planar image-guided (IGRT) systems for patient positioning errors to be monitored
and corrected at non-zero couch angles, increasing the overall treatment time and thus the
probability of intra-fraction motion [39,48,49].

Therefore, the present study aims to report the geometric and dosimetric accuracy
and clinical outcomes of single-isocenter linac-based SRS treatments for both single and
multiple BM delivered using only coplanar arcs and kilovoltage cone beam computed
tomography (kV-CBCT) as an IGRT system at a single institution.

2. Materials and Methods
2.1. Patient Cohort and Treatment Characteristic

Seventy patients with single (n = 38) and multiple (n = 32) BM treated between March
2020 and June 2022 at our department using frameless linac-based SRS were retrospectively
analyzed. Patients were immobilized with conventional thermoplastic masks integrated
with a homemade mouth bite for slippage reduction (n = 63) or a dedicated Solstat (CIVCO
Medical Solutions, Iowa, US) mask (n = 7). The planning target volume (PTV) was obtained
by a 2 mm isotropic expansion of the gross tumor volume (GTV), defined as the contrast-
enhanced region in the post-contrast T1-weighted volumetric magnetic resonance imaging
(MRI) sequence fused to the treatment planning CT. Both image sets were acquired with a
maximum slice thickness of 1 mm.
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Treatments were planned on a VersaHD linear accelerator (Elekta AB, Stockholm,
Sweden) using a single-isocenter VMAT technique with multiple 6 MV flattening-filter-
free (FFF) coplanar arcs. The extension and number of arcs for each plan were tailored
according to the unique characteristics of the lesions. The Monte Carlo algorithm (1 mm
grid spacing and 0.5% statistical uncertainty for calculation) of the treatment planning
system (TPS) Monaco (Elekta AB, Stockholm, Sweden) was used for all plans. Prescribed
doses were 15–21 Gy in 1 fraction (n = 59) and 27 Gy in 3 fractions (n = 11), as per current
guidelines [11,50] depending on the size, the location, and the total volume of BM. All
lesions were optimized to have 99% of the PTV surrounded by at least 80% of the prescribed
dose and a dose gradient up to 110–115% inside the GTV. In case of target-organs at risk
(OARs) overlap, the sparing of the OAR was always prioritized over full target coverage.
An illustrative example of a treatment plan is reported in Figure 1.
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Figure 1. Illustrative example of a treatment plan using one almost-full single arc with a 90◦ collimator.

Patients were given anti-edematous corticosteroids starting one day before SRS. Before
treatment delivery, patients were positioned using three conventional fiducial marks on
the mask aligned with room lasers and a CBCT scan was acquired with a fast head and
neck preset of 100 kV, 20 mAs, 200◦ scan, 40 s acquisition time and small FOV. Following
a skull-based automatic registration with the planning CT, setup errors were corrected
using a robotic 6-DOF HexaPOD treatment couchtop (Elekta AB, Stockholm, Sweden).
Immediately after the irradiation, a second CBCT was acquired with the same protocol and
registered to the planning CT to evaluate the patient’s head motion during treatment. After
SRS, all patients were followed up with a brain MRI scan every 3 months, and as needed
for disease progression.

2.2. Dose Recalculation and Data Analysis

The translational and rotational errors recorded from the post-treatment CBCT were
used to evaluate intrafractional errors. The 3D displacement and the maximal rotational
deviation were calculated for each fraction. The relationships of the post-treatment errors
with the delivery time and the time between pre- and post-treatment CBCT were evaluated.
Pearson’s correlation coefficient and coefficient of determination (R2) were used to test
the correlations.
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The intrafractional rotations and translations were applied to the planning CT (Fx-CT)
using the MIM software, version 7.1.4 (MIM Software Inc., Cleveland, OH, USA). Fx-CT
was rigidly co-registered with the planning CT to transfer the original patient RT structures.
The accuracy of the registration was qualitatively analyzed by using anatomical landmarks
as reference points. Redundantly, an expert radiation oncologist validated the transferred
structures by comparing them with the planning MRI. The resulting 3D GTV barycenter
shift was calculated by taking the difference between the barycenter of each lesion in the
original and Fx-CT images. The original patient-specific treatment plan was recalculated
on the corresponding Fx-CT with Monaco Monte Carlo TPS, using the same algorithm and
calculation properties. For fSRS treatments, the three different recalculated plans from each
fraction were summed on the simulation CT to estimate the total cumulative plan. Thus,
plans involving translations and rotations (Fx-plans) allowed the simulation of doses that
were actually delivered to the patients. Figure 2 illustrates the dose recalculation workflow
in a schematic representation.
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The dosimetric accuracy of SRS treatments was evaluated by comparing the original
and Fx-plans in terms of target and brain dosimetric parameters: the minimum dose to the
95% (D95%) of the volume and the mean dose were evaluated for each single GTV and
PTV, and the volume (cc) that received at least 12 Gy (V12 Gy) for SRS or 20 Gy (V20 Gy)
for fSRS [51], respectively, was recorded for the whole brain. The Wilcoxon-Mann-Whitney
test with ties was used to assess the statistical significance (alpha = 0.05). Moreover, the
correlations between the difference in target coverage between the two plans and the BM
volume, maximum dimension, distance-to-isocenter (for multiple BM only), and barycenter
shift were investigated, by using Pearson’s coefficient and R2.

Post-treatment MRI were used to assess LC according to the Response Evaluation
Criteria in Solid Tumors. Time-to-event analyses for OS, brain progression-free survival
(bPFS), and in-field progression-free survival (ifPFS) were estimated using the Kaplan-
Meier method calculated from the end of the treatment. A logistic regression model was
performed per-lesion to evaluate various treatment and tumor characteristics possibly
related to better ifPFS at univariate and multivariate analyses. The variables considered
were dose prescription, time between MR exam and planning, number of arcs, BM volume
and maximum dimension, BM location and laterality, and original and delivered target
coverage. Intergroup differences were evaluated using Fischer’s exact test (one-sided) for
categorical variables and the Wilcoxon-Mann-Whitney test for continuous variables. A
p-value < 0.05 was used for statistically significant differences. All statistical analyses were
performed with the software Stata, version 9.0 (StataCorp LLC, College Station, TX, USA).
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3. Results
3.1. Patient Characteristics and Plan Statistics

The main characteristics of the patient cohort with a total of 129 BM (median age, sex,
histology, number of lesions per patient, and concomitant systemic therapy), as well as
those of the treatment (dose prescription, multiple (1–4) coplanar arc geometries, median
delivery time, and plan dose metrics) are reported in Table 1. The median single GTV
volume was 0.27 cc (range, 0.01–10.48), while the single PTV had a median volume of
1.05 cc (range, 0.12–17.05). The median values of total GTV and PTV volume for each
patient were 0.86 cc (range, 0.08–10.48) and 2.62 cc (range, 0.40–17.05), respectively. The
median BM maximum dimension was 10.7 mm (range, 2.9–34.1). For multiple BM cases,
the median distance-to-isocenter was 4.95 cm (range, 0.89–7.52).

Table 1. Patient and treatment characteristics of the entire patient cohort.

Parameter No.

Number of patients 70
Median age 66

Sex F/M 33/37
Histology Lung 31 (44.4%)

Melanoma 15 (21.4%)
Breast 12 (17.1%)
Other 12 (17.1%)

No. of lesions per patient 1 38 (54.3%)
2 19 (27.1%)

3–4 10 (14.3%)
5–7 3 (4.3%)

Concomitant systemic therapy Chemotherapy 10 (14.3%)
Immunotherapy 6 (8.6%)

Molecular targeted agents 10 (14.3%)
Hormonal therapy 2 (2.9%)

Dose prescription 21 Gy/1 fraction 46 (65.7%)
15–18 Gy/1 fraction 13 (18.6%)

27 Gy/3 fractions 11 (15.7%)
No. of arcs per patient (collimator angle) 1 (90◦) 20 (28.6%)

2 (0◦, 90◦ or 45◦, 315◦) 38 (54.3%)
3 (45◦, 315◦, 90◦) 11 (15.7%)

4 (0◦, 45◦, 315◦, 90◦) 1 (1.4%)
Median MU [range] 2644.4 [1047.0–5734.3]

Median delivery time [range] 3.78 min [1.83–9.25]
Median dose metrics [range] GTV D95% 98.6% [73.2–105.7]

GTV Dmean 102.8% [75.0–110.6]
PTV D95% 87.1% [59.7–97.5]

PTV Dmean 95.9% [70.8–102.7]
Brain V12 Gy (1 fraction) 7.95 cc [2.23–28.46]
Brain V20 Gy (3 fractions) 15.43 cc [8.32–23.47]

3.2. Geometric Accuracy

Over all 92 fractions, the median post-treatment 3D error was 0.5 mm (range, 0.1–2.7)
and the maximum rotational error was 0.3◦ (range, 0.0–1.3). Translations were <1 mm and
<2 mm in 87% and 97% of all fractions, respectively, while >1◦ and >0.5◦ rotations were
found in only 3% and 22% of the cases, respectively. The mean intrafractional errors for
all the translational and rotational directions were inferior to 0.1 mm (SD < 0.5 mm) and
0.1◦ (SD < 0.4◦), respectively. The maximum translational and rotational deviations were
seen in the vertical direction (2.2 mm) and around the z-axis (1.3◦), but no systematic errors
above 0.5 mm and 0.4◦ were observed in and around any axis. Hence, the shifts had no
preferential directions. For the fSRS cases, there were no relevant differences in the position
accuracy during the second and third fractions; thus, all fractions were considered as



Cancers 2023, 15, 4496 6 of 13

individual fractions in this analysis. Weak correlations (R2 < 0.02) between post-treatment
displacements and delivery time (beam on + gantry or collimator rotation time between
different arcs) were found, with no significant differences in the mean 3D (p = 0.378)
and maximum rotational (p = 0.705) errors for treatment delivery > 5 min compared to
delivery < 5 min. Even considering the time between pre- and post-treatment CBCT
(median = 7 min, range = 4–18 min), similar mean values of translational (p = 0.493) and ro-
tational (p = 0.475) errors were found for duration > 10 min compared to duration < 10 min.
The resulting median BM barycenter shift between the original and Fx-plans was 0.5 mm
(range, 0.1–2.7). Table 2 presents the number (percentage) of fractions for single, multiple,
and all BM, classified according to the magnitude of barycenter shift per-lesion: less than
1 mm, between 1 mm and 2 mm, and above 2 mm.

Table 2. Number (percentage) of fractions in which at least one BM barycenter shifted less than 1 mm,
between 1 mm and 2 mm, and above 2 mm from the planned position for single, multiple, and all
BM cohort.

BM Barycenter Shift Single BM Multiple BM All BM

X < 1 mm 35 (73%) 111 (89%) 146 (84%)
1 mm < X < 2 mm 11 (23%) 13 (10%) 24 (14%)

X > 2 mm 2 (4%) 1 (1%) 3 (2%)

3.3. Dosimetric Accuracy

Table 3 reports the mean relative dose differences in target coverage and brain statistics
between the original and Fx-plans for single, multiple, and all BM patients. None of the
dosimetric comparisons yielded statistically significant differences in any of the analyzed
dosimetric parameters (p > 0.05). In single BM patients, the GTV D95% was never reduced
by >5%, and in 79% of the lesions, a loss of coverage < 1% was observed. The PTV D95%
decreased by >5% in only 3 cases (8%) and a dose reduction < 1% occurred in 27 PTV (71%).
In multiple BM patients, the target statistics were slightly inferior, with 2 GTV (2%) and
9 PTV (10%), for which a dose deficit > 5%, respectively, occurred. Even in these cases,
variations < 1% were observed in the majority of BM for both GTV D95% (77%) and PTV
D95% (63%). The GTV and PTV mean doses were minimally affected in both populations.
Larger than 5% increases in brain V12–20 Gy were observed for only one single BM patient.

Table 3. Mean and range over all 129 BM and 70 patients of the percentage differences in target
and brain dosimetric parameters between the recalculated and the original dose distribution. The
corresponding p-values are also reported.

Single BM Multiple BM All BM

Metrics Mean [Range] p-Value Mean [Range] p-Value Mean [Range] p-Value

GTV D95% −0.6% [−4.1–0.6] 0.666 −0.8% [−14.8–2.3] 0.639 −0.7% [−14.8–2.3] 0.556
Dmean 0.0% [−1.1–0.6] 0.967 −0.2% [−7.3–0.8] 0.943 −0.1% [−7.3–0.8] 0.952

PTV D95% −1.0% [−8.7–4.0] 0.529 −1.3% [−18.8–7.6] 0.546 −1.2% [−18.8–7.6] 0.462
Dmean 0.0% [−1.4–1.8] 0.950 −0.1% [−5.5–0.5] 0.944 −0.1% [−5.5–1.8] 0.989

Brain V12–20 Gy +0.4% [−2.0–7.7] 0.958 +0.4% [−0.6–3.6] 0.898 0.4% [−2.0–7.7] 0.935

No statistically significant correlations (R2 < 0.02) were found between the differences
in target coverage and the distance from the isocenter and size of the lesion (either volume
or maximum dimension). Considering only multiple BM, a loss of coverage > 1% in GTV
D95% was seen, respectively, in 12 and 9 lesions located at a distance of <4.95 cm and
>4.95 cm from the plan isocenter and with a maximum dimension < 9.4 mm and >9.4 mm,
and in 9 and 12 lesions with a volume < 0.16 cc and >0.16 cc. For single BM, the same GTV
dose reduction was seen in three and five lesions with a maximum dimension < 16.1 mm
and >16.1 mm, and in four lesions for both volume < 0.95 cc and >0.95 cc. The only
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moderate-to-strong correlation was observed with the BM barycenter shift: R2 = 0.70 for
GTV D95% and R2 = 0.73 for PTV D95% for single BM and R2 = 0.44 for GTV D95% and
R2 = 0.50 for PTV D95% for multiple BM.

3.4. Clinical Outcomes

Seven patients died within one month from the treatment due to primary disease
progression. The statistical analysis was conducted on the remaining 63 patients who had
at least one month of clinical and MRI follow-up (FUP). The median FUP was 8 months
(range, 1–37). Twenty-one (33%) patients were still alive at the time of analysis, with a
median FUP of 17 months (range, 4–37). Local failure of at least one treated BM occurred
in 13 (21%) patients, while 57% of the patients experienced brain progression (in- or extra-
field). Among these, 10 received salvage WBRT and nine received further SRS. After a
median time of 6.4 months from SRS re-irradiation, three patients had further extra-field
disease progression and received WBRT. Salvage surgery was performed in two patients
due to symptomatic recurrences.

One-year and 2-year LC rates for all lesions were 94% and 90%, respectively. Per-
patient rates were 89% and 84%, respectively. The median OS was 13 months, with 1-year
and 2-year rates equal to 52% and 29%. The median bPFS time, 1-year and 2-year rates
were 3.9 months, 40%, and 20%, respectively. The median ifPFS time was 7.8 months, while
the corresponding 1-year and 2-year rates were 80% and 72%, respectively. Considering
the 116 remaining lesions, 14 (12%) local failure events were observed. Univariate analysis
revealed that only BM volume (GTV ≤ 0.27 vs. > 0.27 cc; OR 4.29; CI 95% 1.13–16.30;
p = 0.032) was a significant prognostic factor for local progression. Median volumes of
controlled and recurred BM were 0.22 cc and 0.76 cc, respectively. Figure 3 illustrates
pre-treatment and post-treatment MRI scans of two BM.
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Figure 3. Axial and coronal contrast-enhanced T1-weighted pre-treatment (top) and post-treatment
(bottom) MRI sequences of two BM. At the first MRI FUP (3 months after radiotherapy), one BM
(right) was in progression, while the other one (left) completely regressed.

4. Discussion

The actual dose delivered to 70 patients who underwent linac-based frameless brain
metastases SRS or fSRS was estimated by recalculating the original plans on roto-translated
CT according to intrafractional errors recorded with post-treatment CBCT.



Cancers 2023, 15, 4496 8 of 13

These translational and rotational displacements included both the residual setup
error and patient head motion. Weekly quality assurance test on the 6-DOF robotic couch
guaranteed a re-positioning accuracy below 0.1 mm and 0.1◦, confirming that a second
pre-treatment CBCT was unnecessary and the contribution of residual setup errors was
minimal. In this study, post-treatment shifts (referred to as intrafractional errors) were used
as a surrogate for intrafraction patient motion. A single time point did not ensure a deep
knowledge of how patients remained immobilized during the treatment, but relying on the
stability of the thermoplastic masks to prevent unexpected or erratic head displacements,
we used it as a fair indication. Other studies [48,49,52–54] have provided more complete
intrafraction motion data by collecting X-ray images at different frequencies during the
treatment, but they have reported several opposite findings. For example, Barnes et al. [53]
found that 42.4% of fractions required a positioning correction greater than 0.7 mm, 0.7◦

during treatment and, thus, frequent intrafraction image guidance was essential to keep
CTV-PTV margins small. Conversely, Lewis et al. [52] observed minimal patient motion
during treatment and concluded that intrafraction imaging could be reduced without sig-
nificant changes in the patient position. Likewise, Tarnavski et al. [48] showed that only a
small fraction of patients would have had considerable positioning errors without intrafrac-
tional monitoring and correction, highlighting that treatment time should be minimized as
much as possible to reduce the risk of positioning deviations. Because intrafractional imag-
ing is not technically feasible in our department, we focused on decreasing the treatment
duration using the single-isocenter VMAT technique, FFF beams, and coplanar geometries.
In this way, most of our treatments lasted less than 5 min, which is a shorter treatment time
than the majority of intrafraction patient motion studies.

The displacements recorded in the post-treatment CBCT were small, with mean
intrafraction motion values < 0.1 mm and <0.1◦ for all translational and rotational directions.
These findings are comparable to those reported in other studies investigating intrafraction
patient motion through the analysis of post-treatment imaging [18,22–24,27,39,54], even if
the use of different immobilization systems and different measuring and statistical methods
might justify some heterogeneity. Babic et al. [23] evaluated intrafraction head motion for
different invasive and non-invasive immobilization systems and among the non-invasive
ones, they found mean 3D error values ranging from 0.45 ± 0.33 mm to 0.76 ± 0.51 mm.
In the current study, only 10% of the patients were immobilized using dedicated Solstat
masks, since the operators reported more difficulties in managing and handling them,
and no improvements were seen after their implementation compared to the standard
thermoplastic masks previously in use. Due to the unequal patient population with the
two systems, no comparison between them was performed. Interestingly, our translational
and rotational deviations did not correlate with the treatment time, considering both the
delivery time and the time between pre- and post-CBCT scans. This may be explained
by the aforementioned short duration of our treatments, although Mangesius et al. [49]
observed a steep increase in 3D translational errors from 0.21 mm (SD = 0.26 mm) to 0.51
(SD = 0.35 mm) in the first 6 min of treatment.

As a consequence of these intrafractional displacements, a loss of target coverage > 1%
occurred in 22% of lesions, but only in 1% of them, a dose reduction > 5% was observed.
This 1% refers to 2 BM (out of 7) of a patient who had difficulties in maintaining a stable
position on the couch due to a rapid worsening of its clinical status. The analysis of PTV
dose variation, indicating what would have happened to the GTV with 0 mm margins,
showed that 9% of them had a variation of D95% > 5%. However, neither the GTV nor PTV
had a relevant dose reduction when the mean dose was considered. Overall, the dosimetric
effects of the residual setup and patient head motion were negligible in our SRS treatments,
proving that the safety PTV margins were effective in ensuring an adequate dose coverage
of most lesions. In a simulation study, Guckenberger et al. [39] observed a target coverage
decrease by >5% in 14% of cases without safety margins, but they found that a 1 mm margin
was sufficient to keep the dose to the GTV within 5% in all patients. Minniti et al. [44]
similarly found that a GTV-to-PTV margin of 1 mm ensured an adequate coverage of all
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treated lesions, while 9% of the lesions had a significantly compromised dose coverage
when no additional margins were simulated. Based on the analysis herein presented
and the well-known increased risk of brain necrosis using large PTV margins [55–58], we
decided to reduce the PTV margins from 2 to 1 mm.

It should be noted that the results from the multiple BM population were not sub-
stantially inferior to those from the single BM population, as it was expected from the
current literature on SIMT proving the great sensitivity to rotational uncertainties of this
technique [32,37,40–44,59]. Sagawa et al. [59], assessing the dosimetric effects on HyperArc
plans for both single and multiple metastases, showed that the minimum target coverage,
the conformality, and the brain V10 Gy to V16 Gy significantly decreased with increasing
rotational setup errors in multiple BM cases, while they remained comparable with the
original plans for single BM cases. We hypothesized that our findings are related to the
little rotations recorded, since most of them were smaller than 0.5◦. Two retrospective
studies [32,37] determined the dosimetric effects of rotational errors in SIMT treatments
simulating different rotational angles about all axes and found that relevant target under-
dosage occurred when the rotational error increased to 2–3◦, while at 0.5–1◦, the D95%
and V95% coverage rates values were ≥95% in the large majority of targets. Moreover,
Selvan et al. [37] highlighted that the targets in which V95% was reduced by more than 5%
were in the volume range of 0.05–0.07 cc and were at a radial distance of 6.2–7.2 cm. Indeed,
target volume and distance to isocenter are reported also by many other groups [40,44,54]
to be statistically significant predictors of target coverage. Agazaryan et al. [54] presenting
the UCLA experience with SIMT suggested the use of variable margins, with larger margins
for targets located > 6 cm away from the isocenter to minimize the risk of compromising the
coverage. However, two clinical studies [43,60] assessing the correlation between distance
from isocenter and local failure rejected the former hypothesis, confirming that the SIMT
technique could be safely and effectively delivered to multiple locally dispersed BM. In our
population of multiple BM patients, we did not find any correlation between the loss of
target coverage and distance from isocenter or volume of the lesion. A possible explanation
for this result is that the 2 mm margins are larger than those used in the clinical practice
of many other centres, and the dose gradients in our coplanar VMAT SRS plans may be
shallower than those achievable with other dedicated machines or non-coplanar arcs. With
a larger dose distribution, as well as with predominant translational errors, all lesions had
similar probability to be missed due to intrafractional errors irrespective of the volume and
the distance from the isocenter. Thus, there was no reason to use different strategies for the
two patient populations or for the most distant lesions.

Several studies [28,29,38,41,47,61,62] assessed that non-coplanar multiple-arc geome-
tries (up to six arcs with three to four couch angles) are superior in terms of dose fall-off,
conformality, and healthy brain volume receiving dose. However, the use of fewer couch
angles or arcs is encouraged for uncomplicated BM cases to reduce treatment time, enhance
patient tolerance, and limit intrafraction motion. As in the current study, Lau et al. [29]
used mostly single or double coplanar arcs and found encouraging initial clinical outcomes
(LC rates at 6 and 12 months equal to 91.7% and 81.5%, respectively). Our clinical results
revealed that at 12 and 24 months, 94% and 90% of the lesions, respectively, were success-
fully controlled and that, overall, only 12% of them recurred. These findings are similar
to those reported by Palmer et al. [43] and Minniti et al. [44] using 5 to 10 non-coplanar
arcs. Moreover, Aiyama et al. [63] investigated the clinical significance of conformity index
(CI) and gradient index (GI) in 925 patients and showed that lower CI was associated with
lower local progression rates and GI did not impact complications rates, thus rejecting the
hypothesis that higher CI and lower GI result in better post-SRS outcomes.

Based on these findings, our single-isocenter coplanar FFF-VMAT treatment technique
was clinically acceptable and the entire implemented workflow was effective in ensuring no
significant degradations of dose metrics due to residual setup and head motion errors for
both single and multiple BM patients. So far, we decided to reduce the PTV margins from 2
to 1 mm and to further fasten the treatment delivery by optimizing all plans with only one
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single arc with a 90◦ collimator. Further research and prospective studies are warranted to
validate these results and explore additional factors influencing treatment efficacy.

5. Conclusions

The dosimetric effects of residual setup and patient head motion errors have been
investigated in single-isocenter VMAT SRS treatments for both single and multiple (up
to 7) BM patients using only FFF-coplanar arcs and kV-CBCT as an IGRT system. The
implemented workflow ensured that the degradation of target and brain dose metrics in
delivered treatments was negligible, warranting a reduction in the PTV margins and in the
number of arcs. Linac-based SRS treatments with this modality were feasible and resulted
in encouraging clinical outcomes, comparable to other treatment approaches involving
multiple non-coplanar arcs.
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