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Simple Summary: Progression/recurrence, pseudoprogression, and radionecrosis are all scenarios
that can be expected during the treatment course of glioma and GBM. Although MRI, PET, CT, and
MRS have shown some capabilities in differentiating these conditions, there is still a considerable
need for the emergence of state-of-the-art techniques to assist field professionals. Here, we introduce
radiomics, a process that extracts many features from medical images using data characterization
algorithms and a promising tool to differentiate these scenarios. The results could significantly impact
patients’ care by enhancing the understanding and accuracy of post-treatment follow-ups in brain
cancer patients.

Abstract: Glioma and glioblastoma multiform (GBM) remain among the most debilitating and
life-threatening brain tumors. Despite advances in diagnosing approaches, patient follow-up after
treatment (surgery and chemoradiation) is still challenging for differentiation between tumor pro-
gression/recurrence, pseudoprogression, and radionecrosis. Radiomics emerges as a promising tool
in initial diagnosis, grading, and survival prediction in patients with glioma and can help differenti-
ate these post-treatment scenarios. Preliminary published studies are promising about the role of
radiomics in post-treatment glioma/GBM. However, this field faces significant challenges, including
a lack of evidence-based solid data, scattering publication, heterogeneity of studies, and small sample
sizes. The present review explores radiomics’s capabilities in following patients with glioma/GBM
status post-treatment and to differentiate tumor progression, recurrence, pseudoprogression, and
radionecrosis.

Keywords: glioma; glioblastoma multiform (GBM); radiomics; MRI; PET; tumor progression; tumor
recurrence; pseudoprogression; radionecrosis

1. Introduction

Glioma is the name for all cancers that are thought to come from glial cells. They are
also the most common type of brain and spinal cord cancer. About 57% of all gliomas are
glioblastoma (GBM), the most common and life-threatening brain tumor. Additionally,
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48% of all primary aggressive central nervous system (CNS) tumors are also GBM [1–3].
In 2021, the World Health Organization (WHO) classified glioma and glioblastoma based
on key molecular biomarkers; this describes neoplastic entities and makes it much less
critical for tumor classification to depend on morphologic features. Under the 2021 update,
adult diffuse gliomas are divided into three main disease groups based on molecular
markers: IDH-mutant, 1p/19q codeleted oligodendroglioma; IDH-mutant, non-codeleted
astrocytoma; and IDH-wildtype glioblastoma [4,5].

Surgery with maximum safe reaction is the standard treatment utilized to treat GBM.
The aim of resection is a gross total resection without risking the patient’s functional status.
However, complete resection is often not practical, given the infiltrative behavior of gliomas.
So, surgery is usually followed by chemotherapy and/or radiation treatment. Today, most
people with glioblastoma receive a mix of treatments before and after surgery [6,7]. These
include radiotherapy (RT) alone or with chemotherapy. After surgery, standard treatment
gives 60 Gy in 2 Gy doses over six weeks, along with temozolomide (TMZ). Currently, there
are three Food and Drug Administration (FDA)-approved medications to treat GBM: TMZ,
bevacizumab, and BCNU (carmustine). TMZ is currently the most common FDA-approved
chemotherapy drug for treating glioblastoma [8]. An increase in median survival rate has
been observed with these combination therapeutics. Other treatment protocols are now
mainly in the research phase, including tumor-treating fields (TTFields), vaccine-based
immunotherapies, and oncolytic viral T-cell immunotherapy [8].

IDH-mutant astrocytoma and 1p/19q codeleted oligodendroglioma are usually treated
by maximum surgical resection. The subsequent treatment depends on the grade of the
neoplasm on histopathology. IDH-mutant astrocytoma grade 2 and 1p/19q codeleted
oligodendroglioma grade 2 without residual tumor on fluid-attenuated inversion recov-
ery (FLAIR) magnetic resonance imaging (MRI) will be followed by surveillance MRI.
IDH-mutant astrocytoma grade 2 with a residual tumor on FLAIR MRI, 1p/19q codeleted
oligodendroglioma grade 2 with residue on FLAIR MRI, grades 3 and 4 IDH-mutant
astrocytoma, and grade 3 1p/19q codeleted oligodendroglioma will be treated by chemora-
diation [9].

Radionecrosis causes additional lesions resembling tumor progression or recurrence
during imaging follow-up. Correctly differentiating these lesions is crucial since their
therapeutic paradigms differ [10,11].

MRI and positron emission tomography (PET) approaches have shown the capability of
differentiating these scenarios [12–14]. There is still no consensus on their effectiveness due to
the lack of investigations and heterogeneity in scanning protocols. In addition, these approaches
have faced severe restrictions in correctly differentiating these approaches [15,16].

All types of glioma status post-treatment need to be followed by MRI for diagnosis
of recurrence and or progression. The interpretation of MRI findings in glioma after
treatment is challenging, given the fact that there is an overlap between post-treatment
signal alteration and recurrence/progression.

The post-treatment glioma MRI can show the following conditions:

A. Pseudoprogression: A transient enlargement of tumoral abnormal signal intensity
and enhancement after chemoradiation (usually within six months after treatment)
caused by inflammation, edema, damage to the endothelium, blood–brain barrier
(BBB) disruption, and oligodendroglial injury after treatment. It is more common
within 3 months after completion of therapy, but it can occur years after treatment.
Moreover, it is more common in O6-methylguanine-DNA methyltransferase (MGMT)-
methylated tumors, particularly when treated with TMZ [15]. Patients are usually
stable clinically. Pseudoprogression is generally associated with a longer survival
rate [17–19]. Pseudoprogression (psp) arises from a pronounced local tissue reaction
involving inflammation, edema, and abnormal vessel permeability, leading to new or
increased contrast-enhancing lesions. While less severe cases may subside without
additional treatment, more severe cases can progress to true treatment-related necrosis
over time [20]. The differentiation between tumor progression and pseudoprogression
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presents a significant challenge, and advanced imaging techniques such as advanced
MRI and PET imaging show promise in improving the accuracy of this differenti-
ation [21]. Follow-up MRI scans, conducted 4 to 8 weeks after the initial scan, are
commonly utilized to aid in distinguishing between the two conditions [20].

B. Radiation necrosis: Radiation can cause radiation-induced neurotoxicity in the brain
parenchyma, secretion of tumor necrosis factor-alpha (TNF-α), endothelial damage,
damage to the BBB, glial and subsequence worsening of edema, and the enhance-
ment/evolution of new areas of abnormal enhancement mimicking recurrence/true
progression. Radiation necrosis (RN) usually happens 3–12 months after RT in ap-
proximately 3–24% of adult brain tumors but can be seen up to several years and
even decades after RT [15]. Histological examination reveals necrosis, edema, gliosis,
endothelial thickening, hyalinization, fibrinoid deposition, thrombosis, and vessel
occlusion. These pathological criteria distinguish RN from other glioma-related con-
ditions [22]. TNF-α is the primary cytokine released following radiation. Other
cytokines that cause endothelial cell death, astrocyte activation, and BBB permeability
are upregulated by TNF-alpha [23,24]. The imaging features of radiation-induced
necrosis present challenges in differentiation, as the contrast-enhancing mass on
T1-weighted imaging with gadolinium appears similar to tumor progression using
conventional MRI techniques [25,26].

C. Recurrence: Recurrence is one of the leading causes of death in glioma and GBM [27].
Recurrence timelines can demonstrate substantial variability. A study centered on
patients diagnosed with low-grade glioma highlighted that a proportion of 28% had
recurrence events within two years subsequent to their main surgery. Conversely, a
more substantial proportion, 72%, witnessed recurrence events after this two-year
threshold [28]. The timing of recurrence is influenced by the grade of the glioma. High-
grade gliomas like glioblastoma have a high recurrence rate, with most recurrences
found near the original tumor site [29,30].

The gold standard for diagnosing recurrent glioma is histologic confirmation. Still,
the decision to perform a biopsy must weigh the diagnostic value against procedural risks,
especially considering potential complications from previous treatments like radiation or
chemotherapy. During the first six months post-treatment, radiographic changes might
indicate pseudoprogression, leading many doctors to opt for regular MR imaging instead of
immediate biopsy. However, suppose a new lesion emerges on MR images, particularly out-
side the initial high-dose radiotherapy zone or 6–12 months postradiotherapy. In that case,
it might favor tumor recurrence and prompt further actions even without histologic proof
of recurrence [30]. Noteworthily, compared to primary tumors, recurrent gliomas more
frequently exhibit features such as copy number variations (CNV), combined IDH1 and
TERT mutations, compromised cell cycle signaling pathways, and low tumor mutational
burden (TMB) [31]. Remarkably, upon recurrence, gliomas might display variations in their
histological characteristics. A previously identified low-grade glioma might escalate to a
high-grade form. This evolution could be linked to prior therapeutic interventions, such as
the intensity of radiation or chemotherapy sessions [32].

D. True progression: Malignant progression alongside the recurrence of low-grade glioma
primarily contributes to its treatment complications and poor prognosis [33]. Patholog-
ically, true progression (TP) is characterized by neovascularization, the proliferation of
tumoral cells, and the disruption of the BBB [20]. Numerous determinants, including
genetic evolution, microenvironmental interplay, and histological features alterations,
mark the progression of gliomas. Additionally, the presence or absence of IDH muta-
tions plays a role in shaping the course of glioma progression, having implications
for patient prognosis and the degree of cell malignancy [34]. The glioma’s molecular
details and brain location play a critical role in determining its progression rate, which
can span from a mere two years to well over ten years [35]. Of note, glioblastoma
can exhibit different progression patterns, such as local, diffuse, distant, and multi-
focal [36]. Although several molecular markers have been identified to predict the
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progression of the glioma, a lack of standardized methods and insufficient clinical
trials have hindered the practicality of this approach in clinical settings [37].

2. Current Differentiating Approaches in Glioma after Treatment

Imaging modalities greatly influence the primary diagnosis and post-therapeutic
follow-up of brain gliomas and glioblastomas. Different modalities, such as MRI, computed
tomography (CT), and PET, have been utilized in these scenarios [12–14] (Table 1). MRI
is a commonly used modality in diagnosing and managing patients with glioblastoma or
glioma and is the standard of care for the radiographic characterization of glioblastoma after
treatment. New foci of enhancement within and around the resection cavity/radiation field
can be seen in both recurrence and radiation necrosis. Usually, nodular boundaries with
noticeable edges are more common in tumor recurrence, and blurred plumed borders favor
RN. The corpus callosum’s involvement with midline crossing, subependymal dissemina-
tion, and numerous enhancing lesions promoted tumor recurrence over RN [26,38,39]. It is
also stated that the subependymal enhancement could be the only predictive sign in cases
of early progression [40]. If a new focus of enhancement appears after treatment but does
not change or gets smaller over time, MRI helps show pseudoprogression [41]. Further,
pseudoprogression appears as a self-resorbing focal contrast enhancement in this modal-
ity [42]. However, contrast enhancement can be both indicator of the therapy response or
tumor relapse. It also manifests the increased permeability of the BBB, which is not specific
to these scenarios [43]. The other issue is that GBM and anaplastic glioma may show no or
minimal enhancement on MRI, limiting decisions determining invasion and the boundaries
of the tumor [44].

In daily practice, the most common modality for differentiation between recurrence/
progression and RN is dynamic susceptibility contrast (DSC) MR perfusion. It is well known
that the relative cerebral blood volume (rCBV) is higher in tumor progression/recurrence
than RN. However, radiation necrosis usually shows heterogeneity on diffusion-weighted
imaging (DWI) images [45]. With apparent diffusion coefficient (ADC) values that are
larger in necrotic tissue than in recurrent tumor tissue, DWI can distinguish recurrence
from pseudoprogression. In contrast to pseudoprogression, tumor progression exhibits
higher DSC-derived parameters such as peak height and the percentage of signal recov-
ery [46]. However, neither DWI nor diffusion tensor imaging (DTI) offer enough details to
distinguish pseudoprogression from TP reliably. Both DWI and ADC maps produce diverse
signal intensities, with regions of reduced diffusion that might signify either highly cellular
tumor areas or inflammatory processes [43,47–49]. Moreover, diffusion imaging can have
limitations in resolving lesions with a mixture of recurrence and treatment necrosis since
ADC values can be similar in both cases [50]. On top of that, there is a lack of validated
diagnostic criteria on an individual level. This means there is no standard way to interpret
DWI images, leading to differences in diagnosis between radiologists [51]. Variability
in sequences from one center to another, between scanners in the same center, or even
in a single scanner can lead to differences in image quality, affecting the accuracy of the
diagnosis [52]. Equally important, Rcbv is only semiquantitative (hence the term relative
CBV), and that model’s assumptions are violated when there is leakage of contrast agent
from the intra- to the extravascular compartment, which is invariably the case in enhancing
tumors [20].

MRS is another noninvasive diagnostic tool that measures biochemical changes in the
brain, especially the presence of tumors. The choline/creatine ratio used in this method
is a good predictor of differentiation between true progression and treatment-induced
changes [53]. Recurrent brain neoplasms exhibit an elevation in choline (Cho) as a reflection
of increased cell membrane turnover [54]. Moreover, features of radiation necrosis include
a variable decrease in n-acetyl-aspartate (NAA), a lack of pronounced Cho elevation,
and the presence of lipid-lactate peaks [55]. However, relatively large voxel sizes may
lead to partial volume effects between recurrent tumors and treatment-induced changes,
limiting its differential power [56]. Beyond that, due to low metabolite concentrations,
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many acquisitions are required, resulting in long scan times [22]. In the same vein, the
need to exclude signal contamination from tissues adjacent to the tumor, such as lipids
(from the scalp) and water (from ventricles), makes magnetic resonance spectroscopy
(MRS) a challenging technique. Surgical clips also disrupt the local field homogeneity,
affecting data quality [53]. Furthermore, there is a considerable overlap of metabolite peaks.
This overlap can make distinguishing between different metabolites difficult and lead to
misinterpretation of the results [57].

Different modalities of PET scans can also assist in differentiating these stages. Tumor
recurrence will usually appear as metabolically active lesions on FDG-PET [48]. Also,
radiation necrosis manifests as a metabolically inactive lesion on FDG-PET [48]. How-
ever, a lack of specificity and high background uptake in healthy brain tissue curb its
ability in differentiating glioma progression from pseudoprogression [58]. On the other
hand, amino acid PET is well suited for monitoring treatment response and diagnosing
pseudoprogression because amino acid tracers can cross the blood–brain barrier [50]. It
can specifically differentiate the cellular component of a tumor mass from inflammatory
and necrotic lesions, providing an early response to therapy [59]. This modality can also
differentiate between true progression and pseudoprogression, with higher Tbrmax and
mean tumor-to-brain ratio (tbrmean) favoring true progression [60], while pseudoprogres-
sion manifests with a relatively lower uptake of the radioactive tracer [61]. Nevertheless,
amino acid PET requires longer acquisition times than other PET imaging modalities [62].
Additionally, both progression and pseudoprogression can increase metabolic activity on
PET scans, making it difficult to differentiate between them [63]. Another issue is that
high uptake soon after radiotherapy may be treatment-related, which can be mistaken for
recurrence [64]. Moreover, PET is a costly approach and lacks approval and reimbursement
by national insurance, which limits its practicality in all settings [65]. Lastly, amino acid PET
requires an on-site cyclotron due to its short half-life of 11C, further limiting its widespread
usage. [15].

Combining these modalities provides a more accurate diagnosis in these scenarios [66].
In contrast to PET/CT, PET/MRI does not burden ionizing radiation. This can be specifi-
cally important when planning for multiple scanning sessions [66]. However, PET/MRI
scanners are expensive and not widely accessible. Moreover, the PET/MR imaging param-
eter cutoff values are not standardized [16]. What is more, the combined approach needs a
high scanning time, which may be divided into several daunting sessions [67].

Additionally, a review study established that conventional MRI and 18F-FDG PET
possessed higher sensitivity, while thallium single-photon emission CT (SPECT) maintained
superior specificity in distinguishing between progressive disease, pseudoprogression, and
RN [68]. However, low photon flux, low anatomic resolution, and tracer uptake in the
choroid plexus or pituitary limits the SPECTs data for diagnosing [10].

The current performance metrics of different imaging modalities in post-treatment
glioma are summarized in Table 1.
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Table 1. Current application and performance of different imaging modalities in post-treatment glioma.

Imaging Modality Dx of Recurrence, Treatment Response
(Radionecrosis), True Progression DDX of Recurrence vs. Treatment Changes DDX of True Progression vs. Radionecrosis DDX of True Progression vs.

Pseudoprogression

FDG PET Recurrence: sensitivity = 78%,
specificity = 88% [69].

Sensitivity = 0.86, specificity = 0.80,
accuracy = 0.83, cut-off: maximum
standardized uptake value (SUV

max) = 1.9 [70].
** Sensitivity = 79%, specificity = 70% [71].

Amino acid PET

Sensitivity = 93%, specificity = 100%,
accuracy = 93%, TBR = 1.6 [72]/

sensitivity = 0.88, specificity = 0.78, diagnostic
odds ratio = 26, the area under the curve
(AUC) of hierarchical summary receiver

operating characteristic (HSROC) = 0.86 [73].

Sensitivity = 100%, specificity = 91%,
accuracy = 96%, maximum tumor-to-brain

ratio (tbrmax) cutoff = 2.3 [74].
Sensitivity = 100%, specificity = 79%,

accuracy = 83% [75]/sensitivity = 84%,
specificity, = 86%, accuracy = 85% [60].

Conventional MRI (T1, T2, FLAIR, T1 + C)

Recurrence: sensitivity = 0.36,
specificity = 0.93, AUC = 0.75

[76]/sensitivity = 31.7%, specificity = 80%,
PPV = 96.3%, NPV = 6.7% [77].

Early progression: sensitivity = 0.81,
specificity = 0.69, AUROC= 0.79 [78].

Sensitivity = 8%, specificity = 91%,
PPV = 25%, NPV = 73% [79].

Sensitivity = 88.9%, specificity = 33.4% [80].
Sensitivity = 38.1%, specificity = 93.3%,

NPV = 41.8% [40].

DWI/ADC Treatment response: sensitivity = 0.71,
specificity = 0.87 [53].

Sensitivity = 52.6–94.7%, specificity = 50–90%
[81].

TR vs. pseudoprogression: sensitivity = 0.88,
specificity= 0.85 [82]/

TR vs. pseudoprogression: sensitivity = 0.90,
specificity = 0.82, accuracy = 0.93 [83].

MR perfusion Treatment response: sensitivity = 0.87,
specificity = 0.86 [53].

Sensitivity = 0.9, specificity = 0.88
[84]/sensitivity = 0.83, specificity = 0.85,
AUROC = 0.91 [85]/sensitivity = 0.88,

specificity = 0.88 [84].

Sensitivity = 0.88, specificity = 0.77,
AUROC = 0.88 [86]/sensitivity = 0.85,
specificity = 0.79, accuracy = 0.9 [82].

MR spectroscopy
(Cho/NAA or

Cho/Cr)

True progression: sensitivity = 71.2%,
specificity = 90.2%, AUC = 0.792 [87].

Treatment response: sensitivity = 91%,
specificity= 95% [53].

Sensitivity = 75.0%, specificity = 81.0%,
accuracy = 79% [88].

Sensitivity = 60%, specificity = 45%,
PPV = 16% NPV = 87% [89].

Multimodal MRI (conventional sequences +
DWI/ADC + MRP + MRS) Sensitivity = 80.6%, specificity = 66.6% [90].

PET/MRI Recurrence: sensitivity = 97.14%,
specificity = 93.33%, accuracy: 96% [91].

Sensitivity = 0.88, specificity = 0.79,
AUC = 0.91 [73].

** In order to maintain a more comprehensive and updated approach, some sections contain findings from more than one study. Abbreviations. Dx: diagnosis, DDx: differential
diagnosis, SUV: standardized uptake value, RT: recurrence of tumor, FDG: fluorodeoxyglucose, PET: positron emission tomography, TBR: tumor-to-background ratio, AUC: area under
the curve, HSROC: hierarchical summary receiver operating characteristic, FLAIR: fluid-attenuated inversion recovery, PPV: positive predictive value, NPV: negative predictive value,
ADC: apparent diffusion coefficient, DWI: diffusion-weighted imaging, MRS: magnetic resonance spectroscopy.
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Radiomics is a quantitative approach aiming to extract mineable data from medical
images using advanced feature analysis [92,93]. Radiomics allows medical personnel to
extract and analyze quantitative features from medical images to predict tumor behavior,
treatment response, and patient outcomes [94]. This leading-edge paradigm has exhibited
competencies in determining and grading glioma tumors. It has also been utilized in
survival prediction [95] and has paved the way for precision medicine in these tumors [96].
Traditionally, radiomics features include shape, histogram (intensity/density), and texture
features, often called handcraft features. More recently, the features extracted by deep
learning models have a robust research momentum, often called deep features. Considering
radiomics as an invaluable tool in the diagnosis, treatment, and prognosis of brain tumors,
radiomics has proven to differentiate high-grade gliomas versus tumefactive demyelinating
diseases significantly [97,98]. Notably, radiomics has shown practical applications in
pretreatment evaluation, prognosis, survival, and post-treatment evaluation of glioma
and GBM. Regarding the pretreatment assessment, radiomics may detect infiltration and
the extent of brain tumors [99,100]. However, its use in differentiating radionecrosis
and pseudoprogression from the true progression and recurrence of these tumors is a
controversial debate. The present review aims to explore the current radiomics approaches
for determining these conditions. Moreover, it delineates a body of knowledge supporting
radiomics’s effectiveness in differentiating these scenarios.

3. Radiomics Differentiates

The detailed information on our reviewed studies is mentioned in Table 2.

3.1. Pseudoprogression vs. True Progression

When considering the use of radiomics in the post-treatment assessment of glioma,
pseudoprogression (PSP) and distinguishing residual/recurrent tumors from post-treatment
changes are among the primary concerns of researchers. In one study, 61 patients with
glioblastoma were studied using conventional MRI, DWI, and PWI to distinguish between
PSP and TP within three months of radiochemotherapy and surgical resection. Radiomics
features were extracted from postcontrast T1, FLAIR, and ADC, and the LASSO model
selected CBV maps as the most predictive feature. Subsequently, 12 features were used
for the machine learning model, including two postcontrast T1, one FLAIR, two ADC,
and seven CBV features. The final model had the area under the curve (AUC) of 0.9 to
differentiate the PSP from TP. The AUC in the external validation dataset is 0.85. This
multiparametric MRI radiomics was superior to ADC and CBV parameters alone [101].

However, in another study about GBM in 51 cases of TP and 26 cases of PSP, radiomics
texture analysis of enhancing lesions (only T1 + C was used) scored much lower values,
with accuracy (ACC), sensitivity, and specificity of 72.78%, 78.36%, and 61.33% in the
differentiation of pseudoprogression from actual progression GBM [102]. Interestingly,
this random forest (RF)–radiomics model still excelled in the performance of three radiolo-
gists. No clinical information, including sex, age, KPS score, resection extent, neurological
deficit, and mean radiation dose, showed statistically significant differences between true
progression and pseudoprogression.
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Table 2. Tumoral and imaging characteristics of included studies.

Author
(Year)

(Country)
Sample Size (Mean Age) Tumor Characteristics Grade Intervention Follow-Up Imaging

Modalities
Tracer or Contrast

(Dosage)

Zhang et al., (2019)
(China) [103] 51 (47.6)

Glioblastoma 12,
astrocytoma 14,

ependymoma 3, mixed
glioma 22

High (III–IV) 32 (62.7%),
low (I–II) 19 (37.3%) Radiation and surgery >6 months 3.0 T MRI

T1/T1C/T2/FLAIR Gadolinium (0.1 mmol/kg)

Tiwari et al., (2016)
(USA) [104] 43 (N/M) Glioma 33, metastasis 25 - At least one patient had

surgical resection >9 months T1 + C WI/T2WI/FLAIR Gadolinium
(-)

Gao et al., (2020)
(China) [105] 39 (51.45) Glioblastomas and

anaplastic astrocytoma

Glioma
recurrence: (III = 4, IV = 21)

TRE: (III = 3, IV = 11)

Radiotherapy and
chemotherapy >6 months

3.0 T MRI T1WI/T2
FLAIR, postcontrast

T2FLAIR

Gadopentetate
dimeglumine

(0.1 mmol/Kg)

Chen et al., (2015)
(China) [106] 22 (43.54) Glioblastoma -

Surgical resection
+

CCRT with TMZ
6 months 1.5 T MRI T1WI, T2WI,

FLAIR, and T1Ce
Gadobutrol

(0.1 mmol/kg)

Sadique et al., (2022)
(USA) [107] 30 (N/M) Glioblastoma (from

different public datasets) - - 2–3 months T1, T2, FLAIR, T1 + C -

Wang et al., (2019)
(China) [108] 160 (44.59) Glioma -

Radiation
therapy + TMZ + six cycles

of adjuvant TMZ
40 months

18F-FDG, 11C-MET, and
3.0 T MRI (T1 + C and

FALIR)

18F-FDG (3.7 MBq/kg)
11C-MET PET (555–740

MBq)

Sun et al., (2021)
(China) [102] 77 (49.1) Glioblastoma -

Total resection or subtotal
resection

+ CCRT and TMZ
6 months 3.0 T MRI

(T1 + C)
Gadodiamide
(0.1 mmol/kg)

Hotta et al., (2019)
(Japan) [109] 41 (55.5) Glioma Grade 2 (n = 4), grade 3

(n = 8), and grade 4 (n = 8)

Radiation therapy (either
conventional radiotherapy

or stereotactic
radiosurgery)

6 months PET/CT MET
(384.0 ± 22.7 MBq)

Park et al., (2021)
(S. Korea) [110] 127 (57.46)

Grade 4 GBM
+

R132H mutation in IDH1,
MGMT

- Surgery with
chemoradiation 2–3 months 3.0 T MRI

T1, T2, ADC
Gadolinium
(0.1 mL/kg)

Jiang et al., (2022)
(USA) [111] 86 (52.15)

Primary malignant glioma
(glioblastoma-anaplastic,

oligodendroglioma-
anaplastic,

astrocytoma-gliosarcoma)

Recurrence: (III = 22,
IV = 38), treatment: (III = 4,

IV = 22)

Gross total resection, other
surgical procedures
+ chemoradiation or

radiotherapy

Range, 18 days to 3655
days

3.0 T MRI
(APTw)—T2w, FLAIR,

T1w, and
(Gd-T1w)

Gadolinium
(0.2 mL/kg)

Zhang et al., (2022)
(China) [112] 126 (46.25) Grades 2–4 GBM -

Surgery
+

chemoradiation or
radiotherapy

2–3 months
3.0 T MRI

T1WI, T2WI, T2FLAIR,
DWI, ASL, and CE-T1WI

-

Abbreviations: T1C: postcontrast T1-weighted sequence; FLAIR: fluid-attenuated inversion recovery; CCRT with TMZ: concurrent chemoradiotherapy with temozolomide; FDG:
fluorodeoxyglucose; MET: methionine; MRI: magnetic resonance imaging; PET: positron emission tomography; GBM: glioblastoma multiform; IDH1: isocitrate dehydrogenase 1; ADC:
apparent diffusion coefficient; APTw: amide proton transfer-weighted.



Cancers 2023, 15, 4429 9 of 19

3.2. Recurrent Brain Tumor vs. Radiation Necrosis

In one feasibility study on 33 glioma patients, radiomics features from T1 + C, T2, and
FLAIR were compared by neuroradiologists for differentiation between RN and tumor
recurrence (TR). These features had a superior performance with an AUC of 0.79, while
FLAIR was the most crucial sequence [104].

In one study on 16 patients with RN and 35 with TR, the researchers extracted hand-
craft and deep features and used them to differentiate RN versus TR. They used T1, T1 + C,
T2, and FLAIR sequences. They showed that handcraft multiparametric MRI features were
superior to single-sequence radiomics with an AUC of 0.96. Also, they showed that adding
deep features to handcraft features can improve the model’s performance up to an AUC of
0.99. Of note, three patients in this study had ependymoma, and the rest had glioma [103].

In another study (training data set: 63 recurrent GBM and 23 RN; external validation:
23 recurrent GBM and 18 RN), T1 + C and T2 were compared to the ADC. The study
concluded that ADC radiomics is superior to T1 + C and T2 and announced ADC to be
more capable of differentiating recurrent GBM from TN with an AUC, accuracy, sensitivity,
and specificity of 0.80, 78%, 66.7%, and 87%, respectively [110]. Diffusion radiomics
models seem promising in these scenarios since they reflect tumor microenvironments [110].
Moreover, second-order features were the most prominent features extracted from the
diffusion model [110]. However, quantitative features such as flatness, sphericity, mesh
volume, and significant axis length aided this study [110].

In one study about 11C-methionine (MET)-PET on brain metastasis (15 TR, 6 RN) and
23 gliomas (18 TR, 5 RN), radiomics analysis had an AUC of 0.98, which was significantly
higher than the traditional evaluation of lesions on brain PET (ratio of tracer uptake in
tumor-to-normal-cortex; T/N ratio) [109].

In one radiomics study on 118 recurrent gliomas and 42 RT, T1 + C, and FLAIR
MRI, 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET), and 11C-
methionine (11C-MET) PET were compared. For a single modality, the AUC values of
0.81, 0.75, and 0.62 were reported for 18F-FDG, 11C-MET, and MRI, respectively, while
the combination of 18F-FDG + 11C-MET, 18F-FDG + MRI, and 11C-MET + MRI had AUC
values of 0.89, 0.86, and 0.8, respectively [108].

In a study about 11C-methionine (MET)-PET, the tumor-to-normal-cortex (T/N) ra-
tio >1.3 was used as the traditional method for differentiation between TR and RN. This
threshold was then compared with radiomics analysis (42 features from the lesion with
elevated uptake). For this task, radiomics significantly outperformed the T/N ratio (sen-
sitivities of 90.1% and 60.6%, specificities of 93.9% and 72.7%, and AUC of 0.98 and 0.73,
respectively). GLCM has also been considered the most discriminative feature when using
PET-MET in cases of recurrent brain tumor vs. radiation necrosis (RN). This may be due
to higher intratumoral heterogeneity of the brain tumor and indicates the importance of
heterogeneity over intensity uptake [109]. Histopathologically, pseudoprogression exhibits
necrotizing effects with a complete absence of tumor cells, vascular dilation, fibrinoid
necrosis, and normal cerebral vasculature endothelial damage. At the same time, true
progression presents with tumor cells, increased cellularity, and vascular proliferation,
except for necrotizing treatment effects. This indicates a more heterogenous pathologic
nature of tumor progression and pinpoints the importance of methods identifying the
differences in underlying tissue heterogeneity [106].

An amide proton transfer-weighted (APTw-MRI) radiomics model exhibited 86.0% ac-
curacy in diagnosing tumor recurrence from radiotherapy effects, outperforming radiomics
analysis on single sequences of T1, T1 + C, T2, and FALIR. The accuracy of this model rose
to 89.5% when combined with structural MR images (T1 w, T 2 w, FLAIR, Gd-T 1 w) [111].
The APTw signal intensity originates from amide protons in endogenous proteins and
peptides in the parenchyma. In tumor tissue, the content of mobile proteins and peptides is
higher than in normal tissue, resulting in increased APTw signal intensity [111,113].

One recent study (66 TR and 30 RN for the training dataset and 18 TR and 12 RN for
the validation dataset) evaluated the performance of traditional MR sequences (T1, T2,
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FLAIR, T1 + C), DWI, and ASL (CBF) for differentiation between TR and RN in glioma.
An SVM model which demonstrated a multiparameter MRI radiomics model (AUC 0.96)
was superior to conventional MRI (AUC 0.88), ADC (AUC 0.91), and ASL-CBF (AUC 0.95)
radiomics models. Also, the multiparameter MRI radiomics model had an AUC of 0.98 in
WHO grade 2~3 and 0.96 in WHO grade 4 [112]. In this study, incorporating ASL modality
contributed to differentiating recurrence from radiation-induced lesions more than other
modalities [112]. In addition, this study used WHO 2021 guidelines as the inclusion criteria
and is probably the most reliable publication available now.

The reviewed studies aimed to develop and determine machine learning models’
capacity in differentiating tumor necrosis and progression from treatment (radiotherapy)-
related complications. The details of the studies’ characteristics, imaging modalities, and
radiomics procedures are mentioned in Tables 1–3 at the end of the manuscript.

4. Limitations and Challenges

In 2021, the World Health Organization (WHO) introduced a new classification system
for glioma and glioblastoma. The new system categorizes diffuse gliomas into four general
groups: adult-type diffuse gliomas, pediatric-type diffuse low-grade gliomas, pediatric
diffuse high-grade gliomas, and circumscribed astrocytic gliomas. The updated classifica-
tion system more strictly defines GBM as a highly malignant tumor. Additionally, the new
design includes updated grading within tumor types [114]. Most published studies about
radiomics in post-treatment glioma used older 2016 classification, and their results are not
necessarily generalized to current glioma classification.

Although some studies used data from pathologically confirmed patients [108,112],
most of them used clinical and radiologic findings as the mainstay of diagnosis instead [105].
In this context, the enhancing lesions within the resection cavity and at the radiation field
are considered TR if they show enlargement on subsequent imaging and post-treatment if
they get smaller on follow-up.

A small data set was a common downfall among studies [103,104,106], which can
result in positive bias, lower statistical power, and unreliable results and can damage
the generalizability of the findings [115,116]. To overcome this obstacle, some studies
used five-fold and 10-fold cross-validation techniques to evaluate their machine learning
models [107]. Some others used an independent validation cohort, which provides an
unbiased estimate of the model’s performance on unseen data [104]. However, most
published studies used just internal datasets, and their results are subject to overestimation
of the performance of radiomics.

Many of these studies were conducted retrospectively [105], which may have been
damaged by selection bias, recall bias, less validity, and more common errors [117].

The enhancing region within the resection cavity and in the radiation field is the most
common region analyzed by radiomics, limiting the assessment of nonenhanced tumor
infiltration areas. Thus, multimodal parameters reflecting nonenhanced lesions should be
considered in future studies [105].

In some studies, radiologists manually contoured lesions [106]. This may lead to
observer bias, high inter-reader variability, the derivation of unstable radiomics features,
and increased variability in image acquisition and reconstruction, which can affect the
reproducibility of radiomics features [93,118,119]. ITK-SNAP (http://www.itksnap.org/)
was the main segmentation software used in studies, although other software was em-
ployed, too. Notably, using different segmentation software can introduce variability and
affect the reproducibility and accuracy of radiomics features [93] (Table 2).

Lesions with a small volume of interest or trace uptake were excluded from the
analysis of some studies. Although it may be inaccessible to fully consider all the regions,
with improvement in processing and analysis methods, these regions can be explored and
increase the accuracy of studies [109].

A large and varied dataset for training is one of the most critical challenges in model
creation for AI. To address this, developing public datasets as benchmarks for AI algorithms

http://www.itksnap.org/


Cancers 2023, 15, 4429 11 of 19

is important. It is essential to consider that radiomics can be affected by differences in
MRI machines, magnet strength, and acquisition parameters. While models are trained
using data from multiple scanners for greater accuracy, there is uncertainty about how well
they will work on new datasets acquired from different scanners with diverse scanning
protocols. Preprocessing methods such as brain extraction, denoising, segmentation, and
feature extraction are essential in medical imaging, but standardization proves challenging
due to different criteria and parametrization. To ensure consistency, it is essential to
document acquisition protocols and preprocessing pipelines in detail [120].

Despite the benefits of sharing patient data, there are still several challenges. First, it
can be difficult to distribute these data, particularly multicenter datasets, when the patient
data take up a lot of storage space, for example, with high-resolution images. Second, there
are legal and ethical barriers that prevent the public distribution of some or all of the data
due to privacy concerns [121]. Third, institutions may choose not to share patient data,
considering the data an invaluable asset [122]. Currently, most of the radiomics-trained
models about post-treatment glioma have yet to be publicly available. That means that
other researchers cannot adopt them for further improvement.

5. Conclusions

The preliminary data are auspicious in applying the radiomics model in post-treatment
glioma follow-up imaging and to differentiate between pseudoprogression from true
progression and radiation necrosis from tumor recurrence, often with reported AUC above
0.9. Radiomics can be used on traditional MR sequences (T1, T2, FALIR, T1 + C, DWI/ADC),
advanced MR sequences (MR perfusion, APTw-MRI), as well as PET (18F-FDG and 11C-
MET). The performance of radiomics is likely superior to traditional radiologist diagnosis.
Also, the performance of radiomics is enhanced by using multiparametric images (adding
different MR sequences, ADC, MR perfusion, and PET) compared to a single modality.
However, limited data sets, different preprocessing and analysis software, and methods still
need to be improved in reaching a consensus on the exact paradigms of this novel method
(Table 3). Further prospective investigations with larger data sets and varied imaging
modalities are in huge demand.
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Table 3. Radiomics features of included studies.

Machine Learning Features Radiomics Features Performance Metrics

Author
(Year) Model

Method of
Measuring

Performance

Segmentation Software #
Feature Extraction and
Selection Software #

Feature Analysis Software

Type of Features # Number of Selected and Extracted Features Modality Sensitivity Specificity PPV NPV AUC Accuracy

Zhang et al.,
(2019)

(China)
[103]

Random forest,
naive Bayes
classifiers,
AlexNet,

Inception v3
CNN

Cross-
validation

ITKSNAP software, FSL5.0.9 #
AlexNet, and Inception v3 #

MATLAB 2017b

Handcrafted, deep texture features # 4 nontexture features, 41,284 texture features, 16,384
AlexNet features, and 8192 Inception v3 features extracted

Multimodality
MRI 99.4% 97.5% NA NA 0.998 97.8%

Tiwari et al.,
(2016)
(USA)
[104]

SVM classifier
Independent

validation
cohort

3D Slicer and BraTumIA #
Matlab R 2014b # Matlab

R2014b

Spatial distribution of pixel intensities within the MRI images and included features # E: 119
2D texture features on a per-voxel basis # S: 78

FLAIR NA NA NA NA 0.79 75%

T2 NA NA NA NA 0.77 72%

Gao et al., (2020)
(China) [105] SVM classifier

Five-fold
cross-

validation

ITK-SNAP # E:
PyRadiomics

S: recursive feature elimination
(RFE) # N/A

Three first-order features, eight gray-level co-occurrence matrix (GLCM) features, and two
gray-level run-length (GLRLM) features # E: 186

S: 13

T1 + C 100% 70% 62.5% 100% 0.8 80%

T2 FLAIR + C 100% 80% 71.43% 100% 0.84 86.67%

T1C
subtraction +

T2 FLAIR
subtraction

100% 90% 83.33% 100% 0.94 93.33%

Chen et al., (2015)
(China) [106] N/A N/A Manually # N/A # MedCalc

IBM SPSS Statistics
GLCM texture # N/A

T1 + C 91.7% 70% 78.6% 87.5% 0.84 81.8%

T2 75% 100% 66.7% 100% 0.88 86.4%

FLAIR 66.7% 80% 80% 66.7% 0.75 72.7%

Sadique et al., (2022)
(USA) [107]

Random forest
(RF) classifier

Stratified
five-fold cross-

validation,
leave-one-out

cross-
validation

A 3D deep learning model was
used to segment subregions of
the tumor, which were verified
by a radiologist # N/A # N/A

Multiresolution texture features, texture features #

Texture,
volumetric,

and histogram
features

NA 94% NA NA NA 93%

Wang et al., (2019)
(China) [108]

Computer-
supported

predictive models

Cross-
validation

ITK-SNAP
#

AnalysisKit (GE
Healthcare, China) # R studio

First-order features, shape features, and texture features # E: 912 (FDG 303; MET 297; MRI
312) # S: 8–13

FDG 69% 76% NA NA 0.8 71%

MET 75% 69% NA NA 0.75 73%

MRI 62% 65% NA NA 0.62 69%

FDG + MET 75% 91% NA NA 0.89 79%

FDG + MRI 83% 75% NA NA 0.86 81%

MET + MRI 72% 58% NA NA 0.8 68%

Sun et al.,
(2021)

(China) [102]

Random forest
classifier

RF classifier
trained with

50 trees,
10-fold cross-

validation

ITK-SNAP
version 3.6 # E:

Analysis-Kinetics (A.K., GE
Healthcare)

S: R
version 3. 4. 2 # SPSS 20

42 histogram features, 11 Gy-level size zone matrix (GLSZM) texture features, 10 Haralick
features,

144 Gy-level co-occurrence matrix (GLCM) texture features, and 180 run-length matrix (RLM)
texture features # E: 9675 S: 50

T1 + C 78% 61% NA NA NA 72%

Hotta et al.,
(2019)

(Japan) [109]

Random forest
classifier

10-fold cross-
validation

LIFEX # E: LIFEx
S: R package “Boruta” # LIFEx

Texture features extracted from MET-PET images using gray-level co-occurrence matrix
(GLCM), gray-level run-length matrix (GLRLM), gray-level zone-length matrix (GLZLM),

and neighborhood gray-level difference matrix (NGLDM) # E: 42
S: 30

Radiomics 90.1% 93.9% 95.2% 88.6% 0.98 92.2%

T/N Ratio 60.6% 72.7% 86.9% 38.1% 0.73 63.6%

Park et al.,
(2021)

(S. Korea)
[110]

SVM, KNN,
AdaBoost

10-fold cross-
validation

3D slicer (semiautomatic) #
PyRadiomics # R-WhiteStripe

GLCM, GLRLM, GLSZM, NGTDM # E: 263
S: 18

LASSO feature
selection and

SVM
66.7% 87% NA NA 0.8 78%
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Table 3. Cont.

Machine Learning Features Radiomics Features Performance Metrics

Author
(Year) Model

Method of
Measuring

Performance

Segmentation Software #
Feature Extraction and
Selection Software #

Feature Analysis Software

Type of Features # Number of Selected and Extracted Features Modality Sensitivity Specificity PPV NPV AUC Accuracy

Jiang et al.,
(2022)

(USA) [111]
N/A N/A

ITK-SNAP # PyRadiomics #
SPSS 26.0

MATLAB R2021a

APTw features # E: 525 for each sequence; a total of 2589
S: for T1w, T2w, FLAIR, Gd-T1w, or APTw MR images, 34, 61, 47, 18, or 176 radiomics

features were selected

All sequences 85% 100% NA NA 92.5% 89.5%

APTw 70.6% 96.2% NA NA 87.8% 86%

T1 96.7% 23.1% NA NA 59.9% 74.4%

T2 58.3% 90% NA NA 77.9% 76.7%

FLAIR 88.3% 73.1% NA NA 80.7% 83.7%

T1 + C1 0 75% NA NA 61.5% 76.7%

T1, T2, FLAIR,
T1 + C8 5% 76.9% NA NA 81% 82.6%

T1, T2, FLAIR,
APTw 88.3% 96.2% NA NA 92.2% 90.7%

Zhang et al.,
(2022)

(China) [112]

SVM, KNN, LR,
NB

10-fold cross-
validation

ITK-SNAP (Manually) #
MATLAB # MATLAB, Python

3.8

GLCM, GLRLM, GLSZM, first order # E: 4199
S: eight (two T1, one T1 + C, one ADC, four CBF)

SVM and mul-
tiparameter

MRI

91.7% NA NA NA 0.94 NA

100% NA NA NA 0.82 NA

Abbreviations: PPV: positive predictive value; NPV: negative predictive value; AUC: area under the curve; CNN: convolutional neural network; SVM: support vector machine; GLCM: gray-level
co-occurrence matrix; GLRLM: gray-level run-length matrix; RF: random forest; GLSZM: gray-level size zone matrix; RLM: run-length matrix; NGLDM: neighborhood gray-level difference
matrix; KNN: k-nearest neighbors algorithm; APTw: amide proton transfer-weighted; LR: logistic regression; NB: naive Bayes; CBF: cerebral blood flow.
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