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Simple Summary: Prostate cancer remains the most frequent cause of cancer morbidity, the second
most frequent cause of cancer mortality in men in the developed world and is an exemplar of a
heterogeneous disease. Stemness phenotypes and lineage plasticity have been highlighted as key
drivers of heterogeneity observed both across patients and within the same patient. However,
markers that indicate the presence or absence of these events remain to be identified. Next-generation
sequencing has proven to be a beneficial approach to distinguish predictive and prognostic biomarkers
in various diseases, including prostate cancer. This review explores measurable metrics that can
reliably reflect lineage plasticity at the genomic, transcriptomic, and epigenomic levels, as well as
bioinformatic tools that can be used to identify measures of lineage-plasticity in prostate cancer, in
order to inform preclinical and clinical research.

Abstract: Prostate cancer (PCa), the most frequent and second most lethal cancer type in men in
developed countries, is a highly heterogeneous disease. PCa heterogeneity, therapy resistance,
stemness, and lethal progression have been attributed to lineage plasticity, which refers to the ability
of neoplastic cells to undergo phenotypic changes under microenvironmental pressures by switching
between developmental cell states. What remains to be elucidated is how to identify measurements of
lineage plasticity, how to implement them to inform preclinical and clinical research, and, further, how
to classify patients and inform therapeutic strategies in the clinic. Recent research has highlighted the
crucial role of next-generation sequencing technologies in identifying potential biomarkers associated
with lineage plasticity. Here, we review the genomic, transcriptomic, and epigenetic events that
have been described in PCa and highlight those with significance for lineage plasticity. We further
focus on their relevance in PCa research and their benefits in PCa patient classification. Finally, we
explore ways in which bioinformatic analyses can be used to determine lineage plasticity based on
large omics analyses and algorithms that can shed light on upstream and downstream events. Most
importantly, an integrated multiomics approach may soon allow for the identification of a lineage
plasticity signature, which would revolutionize the molecular classification of PCa patients.

Keywords: prostate cancer; tumor stemness; measuring lineage plasticity; NGS; genomic;
transcriptomic; epigenetic alterations; bioinformatics
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1. Introduction

Prostate cancer (PCa) remains the most frequent and second most lethal cancer in men
in the developed world [1], and is an exemplar of heterogeneous disease. According to the
American Cancer Society, over 280,000 new cases of PCa and over 34,000 deaths due to this
disease are anticipated in 2023 in the United States. The clinical course of PCa varies from
indolent behavior (which requires minimal, if any, therapeutic intervention) to aggressive
disease that progresses rapidly and is resistant to therapy. Morphologically, inter- and
intratumor heterogeneity has been observed in PCa. The latter is best described with the
Gleason score, which represents the sum of the two most prevalent histologic patterns,
with tertiary patterns frequently present and separately accounted for in the pathology
report [2,3].

Therapeutic options vary depending on the disease stage, Gleason score, and serum
PSA levels, as well as patient age, comorbidities, and preferences [4]. In most cases, PCa
is an AR-dependent tumor; thus, androgen deprivation therapy (ADT) and AR signaling
inhibition (ARSI) therapy persist as the mainstay systemic therapies for patients with
recurrent or metastatic PCa [5–7]. While most patients have a long-term response to
ADT, many cancers do recur, leading to castrate-resistant prostate cancer (CRPC). While
the majority of CRPC tumors remain AR-driven through various mechanisms, including
the acquisition of activating AR mutations, AR gene amplifications, ligand-independent
AR splice variants, or ligand promiscuity, up to 20% of CRPC tumors adapt to or lose AR
dependence as a means to evade AR-targeted therapy. In these patients, aggressive, atypical
clinical features ensue, including lytic bone metastases, visceral dissemination, and low
PSA levels for disease burden. Histologically, a transformation from adenocarcinoma to
small-cell (neuroendocrine) PCa has been seen in this setting in some, but not all, cases [8,9].
The term aggressive variant prostate cancer (AVPC) is used to describe this disease state,
which has limited therapeutic options and accounts for 30% of PCa deaths [10,11]. Many
clinical and preclinical efforts have been undertaken to elucidate the underlying biology
of disease evolution toward the AR-indifferent cell state in order to identify biomarkers
that could facilitate the early recognition of these patients, as well as potential therapeutic
targets.

Lineage plasticity, defined as the ability of cells to change their differentiation state,
has emerged as a significant hallmark of cancer progression and treatment resistance, and
has been proposed as a source of intratumoral heterogeneity [12–14]. Based on this ability,
neoplastic cells can adapt by switching from one committed developmental pathway to
another, and this transformation has been proposed as a driver of intratumoral heterogene-
ity and cancer progression [12]. The best-studied phenotype of cancer lineage plasticity is
the epithelial-to-mesenchymal transition (EMT), which allows neoplastic cells to transform
to a less differentiated state with enhanced tumorigenic and metastatic properties [15–17].
In EMT, the epithelial phenotype of the cell changes dynamically toward a mesenchymal
phenotype, while the tumor progresses in order to bypass either immunologic or thera-
peutic barriers [18]. Similarly, lineage plasticity has been implicated in the development
of aggressive and treatment-resistant phenotypes, such as neuroendocrine and small-cell
PCa [19]. It has also been hypothesized to account for the phenotypic heterogeneity of
AVPCs and the bidirectional transition of cancer cells between two morphologic and molec-
ular states: AR-driven adenocarcinoma cells and AR-indifferent cells of small-cell and
various other morphologies [20]. Hence, lineage plasticity may be used as an additional
classifier for patients with PCa, with patients belonging to one of two groups: a group with
lineage-constrained disease, which includes patients who respond well to current treatment
strategies and whose cancer may expand with consistent histology or slow phenotypic
changes and better prognosis [21–24], and a group with lineage-plastic disease, which
includes patients with short or no response to current therapies, whose cancer progresses
rapidly with diverse histology and poor outcomes [10,19,25–29]. Such classification would
represent a fundamental milestone, enabling clinicians to predict the response to AR inhibi-
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tion, identify aggressive variants, and facilitate the emergence of new therapeutic targets.
However, lineage plasticity measures remain to be defined.

In routine clinicopathological evaluation, histology (morphology and Gleason score/
grade group), imaging, and clinical TNM staging are applied to characterize PCa hetero-
geneity and identify potential lineage plasticity from a histological/clinical
perspective [30–33]. These methods provide valuable information about the tumor hetero-
geneity, differentiation status, and aggressiveness, which can help researchers and clinicians
better understand the clinical implications of lineage plasticity in cancer. However, finer
molecular characterizations of tumor heterogeneity and lineage plasticity are needed. In
recent years, research has increasingly shifted toward molecular insights driven by next-
generation sequencing (NGS) technologies [34]. These advanced methods offer significant
opportunities for the in-depth analysis of lineage plasticity in cancer. In particular, single-
cell technologies, such as single-cell RNA sequencing (scRNA-seq), enable researchers to
perform detailed analyses of tumors at the individual cell level, offering a more profound
understanding of cellular heterogeneity and lineage plasticity.

Lineage plasticity is reported to be enabled through genomic and epigenetic events [35],
encompassing two differentiation scenarios: (a) dedifferentiation, which refers to a transi-
tion from a fully differentiated cell state to a less differentiated cell state, and (b) transdiffer-
entiation, which refers to a transition from a fully differentiated cell state to an alternative
fully differentiated cell state [36]. In PCa, lineage plasticity tracing studies have demon-
strated that neuroendocrine prostate cancer (NEPC) cells originate from luminal cells in
response to ADT, supporting the transdifferentiation scenario [37]. While genetic alter-
ations, such as ETS (E26 transformation-specific) gene fusions, have been identified as
drivers of PCa initiation and progression, recent evidence has highlighted the importance
of epigenetic and transcriptomic alterations in promoting lineage plasticity [27,38]. As
bidirectional inherited changes in chromatin structures that modify gene expression and
cell phenotype without any genomic changes, epigenetic alterations represent an ideal
mechanism for the development of lineage plasticity [39,40]. Indeed, DNA methylation and
histone modifications have been shown to alter gene expression programs and promote
lineage plasticity [41]. Similarly, changes in transcription factor expression and activity
can promote lineage plasticity by driving cells toward alternative differentiation states [42].
Therefore, epigenetic changes can enhance the switch between different developmental
states in accordance with the microenvironmental pressures that occur under various
therapeutic strategies.

Cancer stem cells (CSCs) have been proposed as key factors accounting for intratu-
moral heterogeneity, tumor progression, and evolution [43]. However, the more specific
transformation of a neoplastic cell to a stem-like state is a plasticity event that may reveal
the true driver in specific contexts [35,44]. Lineage plasticity is associated with the stem-like
behavior of neoplastic cells. While stem cells can give rise to different developmental cell
states, lineage-plastic cells adapt to environmental changes for the sake of their survival
by switching between different cellular conditions. A recent study identified a mesenchy-
mal and stem-like PCa cell state as a result of an ARSI-therapy-induced lineage plasticity
response [45]. A detailed investigation into relevant molecular and epigenetic factors, as
well as the identification of a cell population that shows stem-like or lineage plasticity-like
characteristics, would help elucidate the underlying biology of tumor progression, tumor
heterogeneity, therapy resistance, and metastasis.

In PCa, the Yamanaka pluripotent factor SOX2 has been associated with aggres-
sive disease [27,46,47]. The FOXC2 protein has also been identified as a candidate stem
cell marker in aggressive NEPC. The gain of function of this marker has been linked
to therapy resistance (enzalutamide and docetaxel) and the epithelial-to-neuroendocrine
transdifferentiation, while the loss of function has been shown to restore ADT sensitivity
and the neuroendocrine-to-epithelial transformation both in vitro and in vivo [48]. Vari-
ous stem cell-associated signaling cascades, including EMT and EMT-related pathways
(TGF-β pathway, Wnt signaling, and Hedgehog pathway), PI3K-AKT-mTOR signaling,
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JAK/STAT, and others, have been reported to play key roles in the development of ag-
gressive PCa phenotypes and are potentially linked to lineage plasticity [49,50]. EMT and
mesenchymal-to-epithelial transition (MET) pathways enable neoplastic cells to transform
from an epithelial to a mesenchymal morphology, and metastasize from the site of origin
to distant sites returning to an epithelial morphology [51–53]. These pathways are best
described as “flavors” of lineage plasticity that have been able to elucidate how neoplastic
cells metastasize and grow in distant sites. In addition, the N-Myc and Aurora kinase-A
pathways have been shown to be upregulated in aggressive PCa phenotypes and have been
suggested as candidate pathways that fuel lineage plasticity events, potentially serving as
targets for therapeutic strategies [54–60].

In recent years, “omics” has revolutionized cancer research and treatment by enabling
a more comprehensive understanding of the molecular complexity underlying cancer de-
velopment and progression. Approaches such as genomic, transcriptomic, and epigenomic
analyses have showcased the potential to decipher the intricate genetic and epigenetic
alterations and molecular pathways that drive tumorigenesis [61], including the identi-
fication of key oncogenic drivers and candidate therapeutic targets towards facilitating
the development of personalized medicine approaches [62]. As the field continues to
evolve, the integration of omics data into clinical practice holds tremendous promise in
transforming cancer care and, ultimately, increasing the chances of achieving successful
cancer management.

In this review, we discuss the current research advances in the evaluation of lineage
plasticity in PCa, including genomic and epigenetic data in support of PCa evolution
and progression through various plastic cell states. We discuss the need to identify a
lineage plasticity signature using transcriptomic and epigenomic techniques, and address
candidate measures that have been studied for other types of cancer that could potentially
be leveraged in PCa. We further discuss bioinformatic tools that could be employed in the
development of lineage plasticity signatures.

2. Genomic Drivers of PCa Progression and Evolution

Significant advancements in genomic technologies have enabled researchers uncover
the genetic landscape of PCa. Genome-wide association studies have identified numerous
single-nucleotide polymorphisms (SNPs) associated with an increased risk of developing
PCa, while NGS has revealed a diverse array of somatic genomic alterations present in
PCa, including point mutations, gene fusions, copy number alterations, and structural
variations [63]. Table 1 summarizes the most frequent genomic events observed in prostate
cancer. Here, we describe these genetic events and their role in prostate cancer development,
progression, and evolution, and we highlight the events that correlate with lineage plasticity
in PCa.

Table 1. Frequent gene alterations in prostate cancer.

Gene Type of Alteration Frequency in PCa Relevance to PCa References

ETS
TMPRSS2-ERG

TMPRSS2-ETV1/4
SLC45A3-ELK4

Fusion 24–79% Enhances tumorigenesis and
disease progression [64–70]

SPOP
BRCA1
BRCA2
ATM

CHEK2
MMR genes

Mutation

12%
0.4–0.9%
3–5.3%
1.6%
1.9%
<1%

More often in
aggressive disease [71–87]

PTEN
RB1 Loss 15–20%

~1–10%
Associated with

aggressive disease [11,26–28,86,88–102]
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Table 1. Cont.

Gene Type of Alteration Frequency in PCa Relevance to PCa References

TP53 Mutation 6–8% in primary disease
>28% in metastatic disease

More frequent in
aggressive disease [26–28,95,103–109]

AR
Splice variant
Amplification

Mutation

varies
30–40%
10–15%

Associated with response
and resistance to
ARSI therapies

[69,110–112]

GSTP1
RASSF1A

APC
RARβ
CDH1
CD44
PITX2

Hypermethylation

30–90%
53–83.6%
27–84%
53–96%

27%
32%

1–80%

Downregulation of target
genes with a potential higher

risk of recurrence
and metastasis

[113–128]

LINE-1
SAT2 Hypomethylation Not determined Linked with poor prognosis [129,130]

EZH2
KDM1A
KDM7B

Overexpression Not determined

Affects histone
post-translational

modifications and associated
with poor

recurrence-free survival

[64,91,131–137]

Gene fusions of androgen-regulated genes and members of the ETS family of transcrip-
tion factors are the most common genetic events in primary PCa, with radical prostatectomy
and biopsy specimens showing ETS fusions in 27% to 79% of cases [65,66]. In addition,
mutations in the SPOP gene, which encodes an E3 ubiquitin ligase, are the second most
common genetic event and the most common mutation in PCa. SPOP mutations have been
associated with alterations in AR signaling and DNA damage repair pathways, as well as
resistance to BET inhibitors through the stabilization of BRD4 [82–85]. SPOP mutations
and ETS fusions are mutually exclusive, and studies have identified molecular subtypes of
PCa based on the genetic driver present; however, these genetic events have not conferred
any prognostic or predictive information to date, nor could they be used to guide therapy
selection.

Secondary genetic events include the loss of the PTEN tumor suppressor gene, which
is located on chromosome 10. PTEN loss is present in approximately 15% to 20% of primary
PCa cases and in 40% to 60% of cases upon disease progression, with greater frequency in
ETS-rearranged cases, and has been associated with a higher tumor stage, metastasis, and
recurrence [86,98–101]. PTEN loss leads to the increased activity of the PI3K/AKT/mTOR
pathway, which promotes cell survival and proliferation [88,102]. TP53 loss has also been
seen upon disease progression, with mutations observed in approximately 6% to 8% of
patients with primary PCa and >28% of patients with metastatic PCa [104,105]. TP53 is a
tumor suppressor gene that plays a critical role in maintaining genomic stability, and its loss
or inactivation can lead to the accumulation of additional genetic alterations and increased
tumor aggressiveness [103,106–109]. Another defect associated with PCa aggressiveness
and poor prognosis is the loss of the tumor suppressor retinoblastoma (RB1) gene, which
regulates the cell cycle by inhibiting E2F transcription factor activity [89–92]. Despite the
challenges in targeting RB1 loss in PCa, there is growing interest in developing therapeutic
strategies that specifically target this pathway.

Although PCa has been considered an AR-driven disease, AR gene alterations are
very rare in primary PCa, and emerge only after androgen deprivation as a mechanism of
castration resistance. In that setting, AR amplification has been reported in up to 30% to
40% of cases, and AR gene mutations have been identified in approximately 10% to 15%
of cases [69]. AR splice variants are also frequently observed in CRPC, especially after
treatment with second-generation antiandrogens. The most common AR variant associated
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with enzalutamide (ENZA) and abiraterone resistance is AR-V7, an AR isoform that lacks
the ligand-binding domain [110].

Recent studies have shown that combined defects in the tumor suppressors TP53, RB1,
and PTEN have been linked to aggressive PCa phenotypes and are potential drivers of
lineage plasticity in PCa [26–28]. An integrative analysis showed that the null expression of
TP53 through a genomic copy loss or biallelic mutation is seen in ~40% to 50% of metastatic
PCa specimens, while biallelic RB1 inactivation, primarily due to a genomic copy loss,
occurs in ~12% of them. Only ~4% of metastatic PCa have been reported to have combined
defects at both TP53 and RB1 [93,94]. However, combined defects in these genes are more
frequent in AVPC patients. Indeed, defects in at least two out of these three genes are
included in the NCCN criteria for identifying AVPC patients [95], and can be used to
predict benefits from adding carboplatin to cabazitaxel [11], marking them as key lineage-
associated markers that are used in clinical practice for decision making. In addition, TP53
mutations, as defined by a diffuse and intense TP53 expression, and RB1 loss, as defined by
a lack of expression due to immunohistochemistry, have been associated with small-cell
carcinoma morphology [96], which is the prototype of AVPC. RB1 loss is frequently seen
in both the adenocarcinoma and small-cell carcinoma components of mixed tumors [138].
Using PCa mouse models with PTEN mutations followed by RB1 loss, Ku et al. [26] showed
that PTEN and RB1 serve as lineage plasticity markers that enhance tumor metastasis,
while the additional loss of tumor suppressor TP53 allows tumors to resist antiandrogen
therapy. Using in vitro and in vivo models of human PCa, Mu et al. [27] showed that the
loss of function of tumor suppressors TP53 and RB1 is mediated by increased SOX2 levels.
SOX2 is a reprogramming transcription factor, one of the four Yamanaka factors that play
crucial roles in differentiation processes [47,97]. The inhibition of SOX2 expression led to
the restoration of TP53 and RB1 function, resulting in the increased expression of basal
(CK5, CK14, and TP63) and neuroendocrine (SYP, CHGA, and NSE) lineage markers.

A recent examination of a vast repository of PCa patient-derived xenografts (PDXs) [139]
that reflects the spectrum of lethal PCa used various high-throughput techniques, including
whole-genome sequencing, targeted sequencing, and RNA sequencing (RNA-seq), to
gain a better understanding of potential genomic alterations that may contribute to the
development of PCa. The heterozygous deletion or amplification of specific genes did
not seem to impact gene expression, while most homozygous deletions resulted in null
expression. Several known fusions (TMPRSS2-ERG, TMPRSS2-ETV4, and SLC45A3-ELK4)
were observed. The combined defects in tumor suppressors RB1, TP53, and PTEN seemed
to be the only key players for PCa aggressiveness that could be linked to lineage plasticity
events.

Biomarkers that can be used to guide therapy selection are sparse in PCa. AR-V7 has
been proposed as such due to its association with abiraterone and ENZA resistance [112].
However, its use is limited by the rarity of its expression in the pre-abiraterone/ENZA
era and its induced expression after exposure to one of these agents. Mutations in DNA
homologous recombination repair genes BRCA2 (the most common), BRCA1, ATM, and
CHEK2 are early genetic events associated with an increased risk of developing aggressive
PCa [73–75,87], and are predictive of the response to PARP inhibitors [86]. Mutations
in DNA mismatch repair (MMR) genes are less frequent, usually seen in the sporadic
setting [76–78], and are predictive of the response to the immune checkpoint inhibitor
pembrolizumab [79].

The genomic alterations observed in PCa are diverse and complex, with many alter-
ations linked to androgen signaling and DNA damage repair pathways. Understanding
these genomic alterations is critical for the development of novel diagnostic and therapeutic
strategies for PCa. Indeed, the predictive molecular biomarkers currently in use for therapy
selection in PCa represent genomic alterations, i.e., homologous recombination gene vari-
ants, microsatellite instability, and tumor suppressor gene defects, the latter two frequently
identified through immunohistochemistry, an easy and low-cost, widely-available tech-
nique. However, genetic alterations alone have failed to fully describe the heterogeneity
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and complexity of PCa progression, and additional predictive markers for therapy selection
are needed to improve patient outcomes. Thus, we and others have hypothesized that a
complementary epigenetic network drives lethal PCa progression [140–142].

3. Epigenetic Changes in PCa Evolution

Whereas genomic alterations can modify gene expression and functioning through
changes in DNA sequencing, epigenetic alterations modulate gene expression without
any changes in DNA sequencing. Similar to genomic alterations, epigenetic changes can
be inherited by daughter cells following cell division. However, in contrast to genomic
alterations, epigenetic alterations can be reversed (i.e., due to pharmacologic inhibition or
as a response to environmental stimuli) and are, thus, bidirectional, inheritable regulators
of gene expression [39]. Epigenetic changes include: (1) DNA methylation, (2) chromatin
remodeling through histone post-translational modifications (PTMs) (methylation, acety-
lation, phosphorylation, etc.), and (3) the effects of noncoding RNAs (ncRNAs, primarily
microRNAs (miRNAs), and long noncoding RNAs (lncRNAs)) [143,144]. Epigenetic re-
programming has emerged as an important contributor to cellular processes that drive
cancer initiation, progression, and therapy response [145]; thus, epigenetic discoveries can
contribute to a better understanding of the underlying events that lead to lineage plasticity
and PCa lethality. Table 1 summarizes the most frequently observed epigenetic events in
prostate cancer.

3.1. DNA Methylation

DNA methylation, the best-studied epigenetic mechanism, refers to the addition of
methyl groups to the cytosine residues of CpG dinucleotides [146]. DNA methylation is
a dynamic procedure that takes place through enzymes called DNA methyltransferases
(DNMTs). In general, CpG dinucleotides are methylated in CpG islands (CpG-dense
regions above a threshold of an observed versus expected frequency) in noncoding ar-
eas and in the promoters of silenced genes, whereas promoters of expressed genes are
unmethylated [147,148]. Here, we describe the most studied DNA methylation changes
observed in PCa and highlight those that could potentially be linked to lineage-plastic
disease.

Based on the vast majority of altered DNA methylation patterns in PCa, the growth
suppressor genes APC and RARβ and cell adhesion genes CDH1 and CD44 are among the
most frequently hypermethylated genes in PCa [116–121,123–125]. The detection of the hy-
permethylation of the promoter region of the DNA repair gene GSTP1 (36–100% sensitivity)
and cell-cycle-associated gene RASSF1a (53–96% sensitivity) [115,128] in biopsies and body
fluids (serum, plasma, urine, and ejaculates) has been suggested as a sensitive and spe-
cific marker for detecting PCa. Moreover, the hypermethylation of a three-gene classifier
(GAS6/GSTP1/HAPLN3) has also been proposed as a biomarker for the obtainment of a
more accurate PCa diagnosis [149]. Another gene frequently hypermethylated in PCa is
PITX2, which is a transcription factor involved in several cellular processes, including cell
proliferation and differentiation. The aberrant DNA methylation of this gene has been asso-
ciated with a higher risk of recurrence and metastasis in PCa [150,151]. The writers of DNA
methylation (DNA methyltransferases—DNMTs) also represent a relevant object of inves-
tigation in PCa. A gradient of DNMT expression levels from low- to high-grade PCa has
been reported by our group [152]. In addition, global hypermethylation has been linked to
metastatic PCa, and hypomethylation at pericentromeric regions and repetitive sequences
has been observed in the same patients [153]. The latter refers to the hypomethylation of
certain repetitive sequences, such as long interspersed nuclear element-1 (LINE-1) and
satellite 2 (Sat2), both of which have been linked to genomic instability and poor prognosis
in PCa [129,130]. However, none of these have been translated into clinical practice, nor
have any of them shown predictive significance.

Recently, Loyfer et al. [154] released a DNA methylation atlas of 39 normal cell types.
For each cell type, 25 markers were highlighted as being uniquely unmethylated compared



Cancers 2023, 15, 4357 8 of 38

to the other cell types. These markers could potentially be used as biomarkers for cell
type identification in liquid biopsies and, combined with PCa-specific hypermethylated
markers, as presented earlier, could result in better noninvasive tests for tumor detection
and classification. In addition, the investigation of the methylation status of these mark-
ers in the whole spectrum of PCa (primary, metastatic, and AVPC) could shed light on
those that could be used as lineage-plasticity-specific markers that drive the progression
of the disease. In 2016, Beltran et al. [9] performed a differential methylation analysis
between neuroendocrine (CRPC-NE) and adenocarcinoma (CRPC-Adeno) CRPC subtypes
to elucidate the potential epigenetic drivers of PCa evolution. They highlighted four genes
(CCND1, GATA2, MAPKAPK3, and SPDEF) that were observed to be both hypermethy-
lated and downregulated in the CRPC-NE cohort compared to CRPC-Adeno. Interestingly,
Loyfer et al. listed SPDEF in the top 1000 markers that seemed to be significantly unmethy-
lated in normal prostate tissue. It is also known that SPDEF regulates cell differentiation
and has been associated with tumor metastasis in PCa [155]. In addition, Beltran et al.
observed eight genes (ASXL3, CAND2, ETV5, GPX2, JAKMIP2, KIAA0408, SOGA3, and
TRIM9) that were hypomethylated and overexpressed in the CRPC-NE cohort compared to
CRPC-Adeno [9]. These findings could potentially be linked to lineage plasticity in PCa
and potential epigenetic markers.

The DNA methyltransferase inhibitor agent 5-azacytidine has been shown to reverse
the global hypermethylation patterns that are observed during cancer development and
evolution. This drug has been FDA approved (May 2022) for therapy in newly diagnosed
juvenile myelomonocytic leukemia (NCT02447666) [156,157], and >200 clinical trials are
currently recruiting patients to test 5-azacytidine alone or in combination for various cancer
types, including PCa (https://clinicaltrials.gov/, accessed on 31 May 2023).

3.2. Histone PTMs

Chromatin remodeling through histone PTMs represents another epigenetic mech-
anism frequently altered in PCa. Chromatin can be packed as an accessible euchro-
matin, which enables gene expression, or as a heterochromatin, which induces gene
suppression [158]. This chromatic structure is mainly mediated by histone PTMs, which
include methylation, acetylation, ubiquitylation, SUMOylation, and phosphorylation on
specific residues of the N-terminal tails of histones [159,160]. In contrast to DNA methy-
lation, which is associated with gene silencing, histone modifications are linked to either
gene activation or repression, depending on which residues are modified and the type
of modifications present [160,161]. For instance, H3K27ac (the acetylation of lysine 27 on
histone H3) and H3K4me3 (the trimethylation of lysine 4 on histone H3) are present at
the promoters of transcriptionally active genes, whereas H3K27me3 (the trimethylation
of lysine 27 on histone H3) is enriched at repressed gene promoters. Histone methyl-
transferases (HMTs) and histone demethylases (HDMs) are responsible for adding and
removing methyl groups, respectively, and histone acetyltransferases (HATs) and histone
deacetylases (HDACs) mediate the addition and removal of acetyl groups to/from histones,
respectively [162–164]. For example, PRC1 and PRC2 polycomb complexes mediate the
trimethylation of histone H3 at lysine 27 residues (marker H3K27me3), resulting in gene
silencing and chromatin condensation [165].

The deregulation of histone PTMs modulates gene expression and plays a crucial role
in chromatin remodeling. Enzymes that add and remove histone PTMs have been reported
to be of clinical relevance in PCa, including the enhancer of zeste homolog 2 (EZH2), which
catalyzes the addition of methyl groups to histone H3 at lysine 27 (H3K27); lysine-specific
demethylase 1A (KDM1A, also known as LSD1), which catalyzes the demethylation of
mono- and dimethylated lysines, specifically histone H3 at lysines 4 and 9 (H3K4 and H3K9);
and lysine-specific demethylase 7B (KDM7B, also known as PHF8), which is selective for
mono- and dimethylated states [137,166,167]. EZH2 has been shown to be overexpressed
upon PCa progression [44] and >50 clinical trials using EZH2 inhibitors are ongoing
(https://clinicaltrials.gov, accessed on 31 May 2023). KDM1A and KDM7B are also highly

https://clinicaltrials.gov/
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expressed in patients with lethal CRPC [136], and numerous clinical trials using KDM1A
inhibitors are in progress, though none have been reported for KDM7B. HDACs are often
overexpressed in PCa as well, but while HDAC inhibitors seem to have promising results
in hematological malignancies, phase II clinical trials of HDAC inhibitors (vorinostat,
pracinostat, panobinostat, and romidepsin) in PCa have failed due to toxicity or disease
progression [168]. For the aforementioned histone modifications, EZH2 overexpression
has been found to lead to AR silencing in AR-indifferent PCa, transdifferentiation from
adenocarcinoma to NEPC, and the activation of lineage-plasticity-related factors [169,170].
The clinical trials of epigenetic modulators that have been or are being tested in PCa can be
found in Supplementary Table S1.

3.3. Chromatin Remodeling through ncRNAs

Noncoding RNAs (ncRNAs) are RNA transcripts not translated into proteins and can
be divided into two groups according to size: miRNAs, which comprise transcripts 18- to
200-nucleotides long, and lncRNAs, which comprise transcripts longer than 200 nucleotides.
Gene regulation through ncRNA relies on the binding of ncRNAs to the 3′ UTRs of their
target mRNAs, resulting in the RNA degradation or inhibition of translation [171,172].
Aberrant ncRNA expression has been documented in various types of cancer, including
PCa [173]. Mapping the ncRNAs of the human genome, as well as their targets, is an
ongoing and rapidly expanding effort.

Gene regulation through ncRNA is a promising discovery that could lead to a new
biomarker/therapeutic approach. Abnormal miRNA and lncRNA expression has been
well documented in most cancer types [174]. Several studies have shown the importance of
lncRNAs as modulators of key cellular processes in cancer, and it is believed that many
of these transcripts could serve as potential cancer biomarkers [175]. Recent studies indi-
cate that the lncRNAs HOX transcript antisense RNA (HOTAIR), growth arrest-specific
5 (GAS5), PCa gene expression marker 1 (PCGEM1), PCa ncRNA-1 (PRNCR1), PCa anti-
gen 3 (PCA3), and PCa gene expression marker 1 (PCGEM1) interact with AR signals
for CRPC progression [173,176–179]. Another extensively studied lncRNA in cancer is
PCAT-1, which has been shown to be upregulated in PCa and to promote cancer cell pro-
liferation, migration, and invasion [180–183]. Moreover, PCAT-1 has been reported to be
associated with poor prognosis in PCa patients and could be potentially linked to lineage
plasticity [184,185]. Additionally, in a recent publication, Singh et al. [186] highlighted the
importance of lncRNA H19 and its association with NEPC, suggesting that upregulated
H19 levels can be used as a candidate diagnostic and predictive marker of NEPC and a
putative marker of biochemical recurrence and metastatic disease in patients receiving
ADT.

In addition to lncRNAs, miRNAs also play a critical role in PCa [187–189]. The miRNA
miR-21 has been shown to be upregulated in PCa and to promote cancer cell proliferation
and invasion by targeting the tumor suppressor PTEN [190–192]. In addition, miR-34a
has been reported to be downregulated in PCa and to inhibit cancer cell proliferation
and migration, cooperating with TP53 [193,194]. Recently, Zhao et al. [195] proposed a
panel of five miRNAs (miR-30c-5p/31-5p/141-3p/148a-3p/miR-221-3p) as an independent
prognostic biomarker to predict biochemical recurrence after radical prostatectomy.

Besides lncRNAs and miRNAs, other classes of ncRNAs that have been implicated
in PCa include circular RNAs (circRNAs), small nucleolar RNAs (snoRNAs), and PIWI-
interacting RNAs (piRNAs). The circRNA circHIPK3 has been reported to be upregulated in
PCa and to promote cancer cell proliferation and invasion [196–199]. Moreover, the circRNA
circSMARCA5 has been shown to be downregulated in PCa, and its function correlates
with the suppression of PCa metastasis [200]. The snoRNA SNORA42 has been reported
to be downregulated in PCa and to inhibit cancer cell proliferation and migration [201].
It was also found that piRNA piR-31470 plays a crucial role in the hypermethylation of
the promoter of GSTP1 in PCa [202], while piR-001773 and piR-017184 promote PCa pro-
gression by downregulating PCDH9 expression [203]. While these findings are promising,
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longitudinal studies across the spectrum of PCa progression are necessary in order to
identify biomarkers with high sensitivity and specificity.

It is clear that DNA methylation, histone PTMs, and ncRNAs are important regulators
of gene expression in PCa, and that their dysregulation aids in tumor development and
progression. Some of the aforementioned markers could potentially be associated with
lineage plasticity and serve as candidate epigenetic markers for lineage-plastic PCa. Even
though various studies have identified one or a combination of epigenetic players or events
as having a prognostic role, none of them are currently used in routine practice. This may
be attributed to the complexity of epigenetic regulation and the notion that a single or even
multiple epigenetic markers would not be able to fully describe this complexity. Targeting
these modifications may represent a promising therapeutic strategy (Figure 1). The lack of
the success of epigenetic modulators in solid tumors in general, and PCa in particular, may
be attributed to two (not mutually exclusive) factors: (a) the lack of predictive biomarkers
for patient selection (which would likely include a network of markers rather than just one
or a few) or (b) the need for combination therapy to effectively alter the epigenome. Hence,
there is an urgent need to identify epigenetic networks that could serve as both candidate
biomarkers and potential therapeutic targets for lineage-plastic PCa.
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4. PCa Heterogeneity as Defined by Transcriptomic Profiles

Transcriptomics has become a cornerstone in unraveling the intricate heterogeneity
of prostate cancer. At a low scale, specific RNA expression profiles can be analyzed with
various commercially available platforms to prognosticate specific sets of patients and
aid clinical decision making [204]. However, through scrutinizing thousands of genes
simultaneously, transcriptomics provides a comprehensive snapshot of gene expression
patterns that underlie the diverse characteristics of cancer cells within the prostate tumor
microenvironment [205–209]. This may hold promise for even better patient risk stratifica-
tion in the future.

For example, using a large-scale transcriptomic dataset of 19,470 patients, Spratt et al.
were able to identify a low AR-active subgroup in treatment-naïve primary PCa that exhib-
ited molecular characteristics similar to mCRPC [208]. Han et al. were able to identify two
luminal (luminal A and luminal S) and two aggressive (AVPC-I and AVPC-M) subtypes, as
well as a subtype with mixed transcriptional profiles, with the aggressive subtypes (AVPC-I
and AVPC-M) more likely to show docetaxel resistance [210]. Sutera and collaborators per-
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formed RNA expression profiling of the primary tumors of patients with mCRPC (stratified
as synchronous versus metachronous metastatic disease) [209] and showed that patients
who progressed slower had a more hormone-dependent transcriptional profile compared
to those with synchronous metastases. These findings strengthen the idea that patients
who are destined to follow a more aggressive disease show unique transcriptional profiles,
and that the identification of these profiles could inform the clinicians for therapy selection
(i.e., earlier use of chemotherapy).

These findings enable a new approach for patient stratification based on transcriptomic
subtypes. This stratification offers a more refined framework for personalized treatment
strategies, allowing clinicians to tailor interventions according to the specific molecular
characteristics of each patient’s tumor. As transcriptomic technologies continue to advance,
the exploration of prostate cancer transcriptomic subtypes promises to provide deeper
insights into the complexity of the disease, ultimately, paving the way for more effective
therapeutic interventions and improved patient outcomes.

However, there are some caveats in the use of transcriptomic analysis in routine
practice. Salami et al. modified commercially available molecular scores (cell cycle pro-
gression score [211], genomic classifier score [212], and genomic prostate score [213]) by
including molecular characteristics of the cellular organization (FLNC, GSN, TPM2, and
GSTM2), stroma component (BGN, COL1A1, and SFRP4) and others, and showed that
scores differed between the different grade groups from different tumor foci from the same
patient, highlighting PCa tumor heterogeneity at a transcriptomic level [205]. Similarly, Wei
et al. performed both genomics and transcriptomics and showed that significant genetic
diversity was observed both within different tumor foci from the same patient as well
as within different cores from the same tumor focus, underscoring both the intertumoral
and intratumoral heterogeneity at the genomic and transcriptomic level for any single
patient [206]. These findings have significant implications for using genomic classifiers
in precision medicine, especially in the biopsy setting, as a single core from the prostate
may not accurately predict the patient prognosis or therapy response. Instead, the range of
genomic alterations from multiple cores from the index focus, which is the focus with the
most aggressive characteristics, as well as from additional potentially aggressive lesions
may be more informative for each patient.

In addition to risk stratification, spatial transcriptomics allows researchers to iden-
tify unique gene signatures associated with distinct cellular subpopulations. It also
enables the transcriptomic subtyping of the tumor subpopulations, shedding light on
the underlying molecular diversity that influences disease progression and therapeutic
responses [207,208,210]. Thus, spatial transcriptomics have provided a new approach for
unraveling the intricate molecular landscape within the context of tissue architecture,
thus, providing a spatially resolved understanding of how genes are expressed across
different regions of the tumor microenvironment [214–216]. In prostate cancer, spatial
transcriptomics offers the opportunity to uncover the heterogeneous distribution of cellular
populations, including cancer cells, stromal cells, immune cells, and more. By preserving
the spatial context, this method enables the identification of distinct molecular signatures
associated with various tumor regions, unveiling potential interplays between different
cell types. A recent study showed that a spatial transcriptomic approach enabled the iden-
tification of the gene expression heterogeneity observed in a PCa specimen with de novo
neuroendocrine PCa and coexisting adenocarcinoma [217]. In addition, using spatially
resolved metabolic network modeling, Wang and collaborators analyzed the complexity of
the metabolic microenvironment of PCa and showed that malignant-cell-specific metabolic
vulnerabilities may serve as candidate targets [218]. In 2018, Berglund et al. [219] used
spatial transcriptomics, aiming to map the prostate cancer microenvironment and adjacent
areas at a transcriptomic level, and revealed that cancer gene expression could be seen
beyond the histologic boundaries of the tumor and that changes in the microenvironment
may precede cancer-related genetic changes. These findings have important implications,
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as abnormal transcriptomics from histopathologically normal areas may alert clinicians to
an adjacent or future tumor formation.

Almost 50 years ago, Cunha and Lung, in their stromal–epithelial recombination
experiments, showed that prostate epithelial development is dependent on stromal AR
signaling [220]. Now, it is well established that stromal–epithelial interactions maintain the
homeostasis of prostate tissue, with stromal AR signaling mediating epithelial growth and
differentiation and epithelial AR signaling mediating luminal cell function [221]. The stro-
mal microenvironment is altered during prostate cancer development. Cancer-associated
fibroblasts (CAFs) have been seen in the tumor stroma, and a microenvironment that en-
ables disease progression, therapy resistance, and metastasis emerged [222–224]. Stromal–
epithelial crosstalk in prostate cancer has been under investigation for the last several years
in order to better understand its role in disease progression and metastasis. Altered stroma
exhibits unique molecular profiles that have also been associated with metastasis [225,226].
A low AR expression in stromal cells has been linked to disease progression and/or worse
outcome (biochemical relapse, ADT resistance, etc.) [227,228], indicating a protective role
of stromal AR. A recent review highlighted the changes observed in AR signaling in tumor
stroma that could influence the tumor’s behavior [229]. A transcriptomic analysis has
identified changes in the gene expression profile of the stroma adjacent to tumors, with
prognostic implications for the patient, indicating that the molecular profile of tumor-
adjacent stroma could reveal valuable information regarding PCa diagnosis, progression,
and evolution [219,230,231].

In the context of prostate cancer, transcriptomics has been instrumental in revealing
the intricate interplay between cancer cells, stromal cells, and immune cells, shedding
light on their contributions to disease progression and treatment resistance. As transcrip-
tomic techniques evolve, including single-cell RNA sequencing and spatial transcriptomics,
the implementation of these advanced methodologies in studying prostate cancer hetero-
geneity promises to uncover deeper insights into the molecular dynamics within tumors,
enabling more targeted therapeutic strategies and, ultimately, advancing precision oncology
approaches.

5. Computational and Molecular Perspectives on Lineage Plasticity

Lineage plasticity has long been recognized as a key feature of organ development
and tissue regeneration. In recent years, advances in single-cell genomics and transcrip-
tomics have been used to expand our understanding of the mechanisms that underlie
lineage plasticity. Most studies have used lineage tracing methods, which label specific
cell populations and track their fate over time using in vitro culture systems, genetic ma-
nipulation, and transplantation assays [232–239]. While lineage tracing measures allow us
to trace longitudinal lineage changes, measures that predict the ability of a cell to switch
its differentiation program, undergo dedifferentiation, revert to a more stem-like state, or
transdifferentiate into a different cell type remain to be developed. Recent studies have
introduced NGS technologies and multiomics as the most promising tools to provide such
measures [240–245]. Here, we discuss next-generation methods that can be used to develop
candidate measures to predict whether a tumor sample shows lineage plasticity features.

Epimutation clocks are hereditary epigenetic alterations that establish fluctuating
changes during the progression and evolution of cancer and have been studied in various
cancer types. Gabbutt et al. introduced markers that can be used as a fluctuating DNA
methylation clock [246] that enables “flip-flopping” between methylated and unmethylated
states in colorectal cancer. They further applied this approach to whole blood samples to
detect fluctuating DNA methylation clocks and distinguish between acute and chronic
leukemias [246], supporting the idea that fluctuating methylation clocks can provide a
powerful tool to quantify somatic cell evolution in human tissues. The investigation of
epimutation clocks in PCa could give rise to potential markers that could be linked to
aggressive disease and lineage plasticity events.
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Recent studies in lung adenocarcinoma (LUAD) have shown that multiomics com-
prising single-cell transcriptomics combined with single-cell epigenomics can reveal dis-
tinct and well-described cell states during cancer development and evolution [247,248].
Marjanovic et al. revealed the emergence of a “high-plasticity cell state” (HPCS) with a
distinct transcriptional and chromatin profile during the development of LUAD. They ana-
lyzed single-cell transcriptomes across the spectrum of LUAD development (seven stages
from preneoplastic hyperplasia to LUAD) using genetically engineered mouse models
(GEMMs) and showed that a cluster of cells with a highly mixed AT1/AT2 lineage signa-
ture was prevalent from early adenomas to fully formed LUAD. These HPCS cells had
the most profuse and strong connections to give rise to other cell states and substantial
trajectories, and they indeed gave rise to numerous cell states and substantial trajectories
when cultured in 3D tumor spheres. In addition, the HPCS expression signature differed
from the molecular signature of cancer and normal stem cells [247]. Additionally, a cluster-
based pan-cancer analysis across a TCGA collection suggested that the HPCS signature may
define more aggressive cancer types associated with drug resistance [247]. Chan et al. [50]
analyzed the emergence of HPCS using PCa GEMMs that recapitulated the transition
from adenocarcinoma to NEPC with prostate-specific deletion of TP53, RB1, and PTEN,
and identified a lineage plasticity signature of mixed luminal–basal gene markers that
were unique in highly plastic cells. They demonstrated that the combined defects in these
tumor suppressors led to lineage-plastic cell states with a unique mixed luminal–basal
molecular signature. In addition, they highlighted the emergence of JAK–STAT and FGFR
pathway activation among the programs associated with lineage plasticity and showed
that the inhibition of JAK and FGFR at highly plastic organoids resulted in normal aci-
nar morphology. The authors also compared their findings to human disease using the
scRNA-seq of patient samples with CRPC and organoids derived from human CRPC cells,
confirming the relevance of their results [50]. Therefore, they showed that the increased
activity of JAK and FGFR was associated with lineage plasticity events. Taken together,
these findings strengthen the idea that HPCS represents a lineage plasticity property that is
present from the early stages of the disease and can give rise to diverse phenotypic lineages
when the tumor’s survival is threatened (i.e., through therapies), leading to poor outcomes.
Therefore, measures that can predict the presence of HPCS could be used as candidate
lineage plasticity biomarkers and potential therapeutic targets.

Blanco et al. [249] showed that chromatin remodeling represents an epigenetic “mem-
ory”, creating inherited chromatin dynamics that give rise to cell states that result in lineage
plasticity, which can be described as an inherent cell property rather than as a specific
event. Memory cell states are defined by genetic and epigenetic alterations that can be
triggered through diverse environmental stimuli, leading to chromatin remodeling and the
emergence of the most appropriate cell state at each particular time [250]. In their recent
publication, Tang et al. [251] combined an assay for transposase-accessible chromatin with
sequencing (ATAC-Seq), chromatin immunoprecipitation sequencing (ChIP-seq), and RNA-
seq analyses in PCa cell lines and patient-derived organoids and xenografts to identify
four CRPC subtypes with unique chromatin and transcriptional profiles. Those included
AR-dependent (CRPC-AR), neuroendocrine (CRPC-NE), Wnt-dependent with low AR
expression (CRPC-WNT), and stem-like with low AR expression (CRPC-SCL) subtypes.
This study also showed, in agreement with others, that combined defects in the tumor
suppressors RB1, TP53, and PTEN were associated with lineage plasticity and aggressive
PCa phenotypes [26–28,251,252]. In addition, they identified master transcription factors
for each CRPC subtype, with AR and FOXA1 being prevalent for CRPC-AR; NEUROD1
and ASCL1 for CRPC-NE; TCF7L12 for CRPC-WNT; and FOSL1 for CRPC-SCL [251]. A
pathologic, genomic, and marker gene expression analysis provided validation of the four
subgroups, with CRPC-AR showing high levels of AR expression and score, CRPC-NE
having high SYP expression and a NE-morphologic score, CRPC-WNT specimens showing
elevated AXIN2 expression, and the CRPC-SCL subtype being defined by high CD44 ex-
pression levels. Formaggio et al. [253] implicated the overexpression of three (SOX2, OCT4,
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and MYC) out of the four Yamanaka factors in the dedifferentiation process of lineage
plasticity observed in PCa, while the loss of the Yamanaka factor KLF4 was associated with
tumor evolution [253].

Thus, early data support the notion that PCa may be classified based on lineage
plasticity through the presence of HPCS, as well as epigenetic markers that may characterize
these states. The presence of HPCS in a tumor sample may potentially be linked to lineage
plasticity and could indicate aggressive disease with poor outcomes. The identification
of epigenetic markers and mechanisms that enable lineage plasticity in some, but not all,
patients could represent a fundamental milestone for diagnosis, prognosis, and targeted
therapy. The development of bioinformatic tools that focus on HPCS identification is likely
be critical in this effort.

6. Bioinformatic Tools for Lineage Plasticity Signatures and Measures

Bioinformatic tools have played a pivotal role in the identification of biomarkers, as
well as the development of molecular signatures in cancer [254–258]. Through the analysis
of large datasets, these tools enable the identification of genes and pathways that are dys-
regulated in cancer cells. The identification of biomarkers through bioinformatic analyses
enhances the development of targeted therapies and personalized medicine [259–261]. In
addition, enrichment analyses provide mechanistic insights into the underground biol-
ogy of the development and evolution of the disease [262,263]. Overall, the integration
of bioinformatics into cancer research has significantly improved our understanding of
the molecular mechanisms underlying cancer and has the potential to improve patient
outcomes. Here, we focused on bioinformatic tools that could be incorporated into a multi-
omics approach to identify lineage plasticity measures and signatures. Table 2 provides a
list of bioinformatic tools that could potentially be used to generate measures of lineage
plasticity.

Table 2. Bioinformatic tools that could be used for genomic, transcriptomic, and epigenetic enrich-
ment and downstream analysis.

Tool Description GitHub Link (If Available) References

Genomics

MuTect
Detection of somatic mutations using

tumor–normal paired samples obtained from
NGS data

https://github.com/broadinstitute/mutect
(accessed on 1 July 2023) [264–266]

Maftools Analysis and visualization of mutations in
cancer genomics data

https://github.com/PoisonAlien/maftools
(accessed on 1 July 2023) [267,268]

CopyKit Preprocessing and analysis of single-cell CNVs https://github.com/navinlabcode/copykit
(accessed on 1 July 2022) [269]

HMMcopy Inference copy number alterations and
single-cell CNV analysis

https://github.com/shahcompbio/
hmmcopy_utils

(accessed on 1 July 2023)
[270]

CHISEL Allele-specific and haplotype-specific copy
number inference of scDNA-seq data

https://github.com/raphael-group/chisel-data
(accessed on 1 July 2023) [271]

Ginkgo
Analysis of scDNA-seq data as well as

post-processing steps, such as downstream
analysis and phylogenetic trees

https://www.ginkgobioworks.com/
(accessed on 1 July 2023) [270,272]

Transcriptomics

Waddington-OT Cellular fate determination and differentiation https://github.com/zsteve/gWOT
(accessed on 1 July 2023) [273]

Lineage-OT Lineage tracing and trajectory inference https://github.com/aforr/LineageOT
(accessed on 1 July 2023) [242]

https://github.com/broadinstitute/mutect
https://github.com/PoisonAlien/maftools
https://github.com/navinlabcode/copykit
https://github.com/shahcompbio/hmmcopy_utils
https://github.com/shahcompbio/hmmcopy_utils
https://github.com/raphael-group/chisel-data
https://www.ginkgobioworks.com/
https://github.com/zsteve/gWOT
https://github.com/aforr/LineageOT
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Table 2. Cont.

Tool Description GitHub Link (If Available) References

Monocle 2 Cell fate identification through
single-cell trajectories

https://github.com/cole-trapnell-lab/
monocle2-rge-paper

(accessed on 1 July 2023)
[274,275]

Seurat R
package

Single-cell RNA-seq data analysis,
including quality control, preprocessing,

exploratory analysis, and
downstream analysis

https://github.com/satijalab/seurat
(accessed on 1 July 2023) [276,277]

AddModuleScore
function

Biological pathway analysis, gene
signatures, or functional modules in
individual cells, and for downstream

analysis, such as identifying cell states or
characterizing cellular heterogeneity based

on pathway or module activity.

https://github.com/satijalab/seurat/blob/
master/man/AddModuleScore.Rd

(accessed on 1 July 2023)
[276,278]

UCell Gene signature scores https://github.com/carmonalab/UCell
(accessed on 1 July 2023) [279,280]

CytoTRACE
Quantification of cellular trajectories and

differentiation of cell states using
(scRNA-seq) data

https://github.com/pinellolab/pyrovelocity/
blob/master/pyrovelocity/cytotrace.py

(accessed on 1 July 2023)
https://cytotrace.stanford.edu

(accessed on 1 July 2023)

[281]

Epigenetics

MACS
(Model-based

Analysis of
ChIP-Seq)

Chromatin immunoprecipitation
sequencing (ChIP-seq) data analysis

https://macs3-project.github.io/MACS/
(accessed on 1 July 2023) [282–284]

SICER (Spatial
Clustering for

Identification of
ChIP-Enriched

Regions)

Peak calling in ChIP-seq data https://github.com/zanglab/SICER2
(accessed on 1 July 2023) [285]

ChIPseeker Annotation and visualization of
ChIP-seq data

https://github.com/YuLab-SMU/ChIPseeker
(accessed on 1 July 2023) [286]

Bismark Alignment and analysis of DNAme data https://github.com/FelixKrueger/Bismark
(accessed on 1 July 2023) [287]

BS Seeker Alignment of bisulfite-treated reads to the
reference genome

https://github.com/BSSeeker/BSseeker2
(accessed on 1 July 2023) [288]

MethylKit Analysis and visualization of DNAme data https://github.com/al2na/methylKit
(accessed on 1 July 2023) [289]

Genomation Visualization, annotation, and analysis of
DNAme data

https://github.com/BIMSBbioinfo/genomation
(accessed on 1 July 2023) [290]

SnapATAC
(Single Nucleus

Analysis
Pipeline for
ATAC-seq)

scATAC-seq analysis (alignment of the read
to a reference genome, quality control, peak

calling, visualization, and clustering)

https://github.com/r3fang/SnapATAC
(accessed on 1 July 2023) [291]

Cellcano Inference of cellular hierarchies of
scATAC-seq data

https://marvinquiet.github.io/Cellcano/
(accessed on 1 July 2023) [292]

Signac

Analysis and visualization of scATAC-seq
data (peak calling, quality control,

visualization, clustering, and integration
with scRNA-seq data)

https://github.com/stuart-lab/signac
(accessed on 1 July 2023) [293]

https://github.com/cole-trapnell-lab/monocle2-rge-paper
https://github.com/cole-trapnell-lab/monocle2-rge-paper
https://github.com/satijalab/seurat
https://github.com/satijalab/seurat/blob/master/man/AddModuleScore.Rd
https://github.com/satijalab/seurat/blob/master/man/AddModuleScore.Rd
https://github.com/carmonalab/UCell
https://github.com/pinellolab/pyrovelocity/blob/master/pyrovelocity/cytotrace.py
https://github.com/pinellolab/pyrovelocity/blob/master/pyrovelocity/cytotrace.py
https://cytotrace.stanford.edu
https://macs3-project.github.io/MACS/
https://github.com/zanglab/SICER2
https://github.com/YuLab-SMU/ChIPseeker
https://github.com/FelixKrueger/Bismark
https://github.com/BSSeeker/BSseeker2
https://github.com/al2na/methylKit
https://github.com/BIMSBbioinfo/genomation
https://github.com/r3fang/SnapATAC
https://marvinquiet.github.io/Cellcano/
https://github.com/stuart-lab/signac
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Table 2. Cont.

Tool Description GitHub Link (If Available) References

EpiAnno Analysis of scATAC-seq data https://github.com/xy-chen16/EpiAnno
(accessed on 1 July 2023) [294]

Enrichment Analysis

GSEA (gene set
enrichment analysis)

Characterization of cellular functions as
well as pathway enrichment analysis

https://www.gsea-msigdb.org/gsea/index.jsp
(accessed on 1 July 2023) [295]

IPA (Ingenuity
Pathway Analysis) Gene set analysis

https://digitalinsights.qiagen.com/products-
overview/discovery-insights-portfolio/
analysis-and-visualization/qiagen-ipa/

(accessed on 1 July 2023)

[296]

Enrichr Integrative web-based tool for
enrichment analysis

https://maayanlab.cloud/Enrichr/
(accessed on 19 August 2023) [297–299]

FLAME Integrative web-based tool for
enrichment analysis

https://github.com/PavlopoulosLab/Flame
(accessed on 19 August 2023) [300]

6.1. Genomics

A variety of genomic bioinformatic tools are available to describe mutations, including
copy number alterations (CNAs), which refer to changes in the copy number of genomic
regions, such as amplifications and deletions, and copy number variations (CNVs), which
are more comprehensive and encompass a broader range of structural alterations in the
genome, including CNAs as well as duplications and complex rearrangements across bulk
and single-cell data. These tools enable the identification of specific genomic drivers of
cancer [267,269,271,272,301]. Importantly, an integrated multiomics approach would be
needed to associate these genomic drivers with lineage plasticity. Here, we described some
of the most well-known tools used for CNV identification in genomic data, highlighting
those that could be used for single-cell sequencing analyses. Single-cell DNA sequencing
(scDNA-seq) allows for single-cell resolution, but has limitations regarding DNA quantity
(approximately 6 pg) that are not applicable for whole-genome sequencing [302]. There are
methods to overcome these limitations (i.e., multiple displacement amplification, multiple
annealing, and looping-based amplification cycles) when amplification bias arises. To iden-
tify reliable CNAs, specifications, including genomic uniformity, depth of coverage, and
throughput, are important parameters. A higher depth of coverage enables the detection
of smaller CNAs with a higher resolution of CNA boundaries [302]. The throughput of
scDNA-seq refers to the number of cells that can be simultaneously sequenced, as well as
the time needed to complete the sequencing procedure. A high throughput enables a large
number of cells to be sequenced, resulting in a more detailed understanding of those cells.

MuTect [264] is a powerful computational tool in cancer genomics. Developed by
the Broad Institute of MIT and Harvard, MuTect is specifically designed for the detection
of somatic mutations using tumor–normal paired samples obtained from NGS data. It
compares the genetic profiles of tumor and normal samples to identify and differentiate true
somatic mutations from sequencing artifacts and germline variants. This process includes
four key steps: the removal of low-quality sequence data, variant detection, filtering and
the removal of false-positive results, and the identification of somatic versus germline
mutations. This tool has been used for the detection of somatic mutations in various cancer
types, including PCa [83,139,265,303]. In PCa, MuTect has been used to identify genomic
variations in African populations, which showed an elevated tumor mutational burden
in African men with treatment-naïve, high-risk PCa [304]. In addition, using the MuTect
package, Hong et al. [305] showed that enrichment of TP53 mutations was linked with
metastatic potential in blood samples from patients with metastatic PCa. Therefore, MuTect
is a solid tool that can be used for mutational screening and revealing potential mutational
drivers of lineage-plastic PCa.

https://github.com/xy-chen16/EpiAnno
https://www.gsea-msigdb.org/gsea/index.jsp
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://maayanlab.cloud/Enrichr/
https://github.com/PavlopoulosLab/Flame
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Maftools is an R (Bioconductor) package that provides a comprehensive suite of tools
for the analysis and visualization of mutations in cancer genomics data [267]. It provides
functions (“plotmafSummary” and “maftoolsSignatur”) to analyze the mutational burden
and mutation signatures. Mutation annotations can also include additional information,
such as gene annotations, functional impact predictions, and known cancer driver genes. In
addition, the package includes advanced visualization functions to generate high-quality
plots, such as oncoplots, waterfall plots, and heatmaps, to aid in the identification and
interpretation of driver mutations and their associated clinical outcomes. Maftools is a
powerful, versatile, and user-friendly tool for the analysis, interpretation, and visualization
of somatic mutation data in cancer genomics. By providing a range of visualization and
analysis functions, it allows researchers to gain insights into cancer’s genetic mechanisms
and to identify potential therapeutic targets. While Maftools was originally designed for
bulk DNA-seq analyses, it can potentially be applied to the analysis of somatic mutations
in scDNA-seq data, particularly if the data have been aggregated to generate a mutation
frequency matrix or mutation annotation format (MAF) file. Maftools has also been used
to detect mutations in PCa specimens, as well as for meta-analyses [268,306]. Therefore, it
provides an additional tool for identifying mutations that could be linked to lineage-plastic
PCa. To achieve this, a selection of the most appropriate cohorts is mandatory to enhance
the reliability of the results at a genomic level.

CopyKit is an R package designed to preprocess and analyze single-cell CNV genomic
data in advance of the detection and visualization of CNVs, including those that occur at
low allele frequencies and in subclonal populations [269]. CopyKit enables the analysis of
the copy number substructures of tumor samples, as well as in furthering the investigation
into the intratumoral heterogeneity that is frequently seen in PCa [307]. It also provides a
quality control module to process high-quality aneuploid cells for downstream analyses.
It marks euploid cells and then filters low-quality cells. CopyKit employs a Bayesian
framework for CNV detection, which allows for the accurate estimation of the copy number
and allele frequency, as well as the assessment of uncertainty and false discovery rates. The
package includes a range of visualization tools, such as heatmaps and scatter plots, which
enable the exploration and interpretation of CNV data at different scales. CopyKit is a user-
friendly tool that can facilitate the analysis and interpretation of CNV data in a range of
genomic sequencing applications, including single-cell sequencing and tumor heterogeneity
studies. It provides the advantage of detecting CNVs even in low allele frequencies and in
subclonal populations, enabling a better characterization of heterogeneous PCa samples.

HMMcopy is a hidden Markov model (HMM)-based package that provides a wide
range of tools for the preprocessing, analysis, visualization, and downstream analysis of
genomic data [301]. HMMcopy provides a set of functions and algorithms for detecting
and quantifying CNVs from sequencing data, particularly in the context of scDNA-seq.
The main advantage of HMMcopy is its ability to accurately detect low-frequency CNVs
and mosaic events, which can be missed using other methods. In addition, it enables the
simultaneous inference of the segmentation and absolute copy number [302]. After reading
the sequencing data, segmentation takes place; then, based on the segment data, a HMM
is trained to infer the most likely copy number states. While HMMcopy has mainly been
used for other types of data (CGH data), it has also been applied to large-scale scDNA-seq
data. The main limitation of HMMcopy is the manual calibration of many parameters
and its unreliable detection of ploidy, which often results in an inaccurate copy number
estimation [270]. HMMcopy is a frequently used tool for studying CNVs in prostate cancer
and has been used to reveal potential biomarkers of lethal outcomes in patients with
PCa [308–310].

CHISEL (Copy number Haplotype Inference in Single cells using Evolutionary Links)
is the first tool for allele-specific and haplotype-specific copy number inference in scDNA-
seq data [271]. Using a matched normal or pseudonormal sample derived from diploid cells,
CHISEL can overcome the low coverage of scDNA-seq data to detect CNAs by amplifying
the weak SNP signal. It can also calculate the B-allele frequency (BAF) in genomic regions
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of approximately 5 Mb by combining a reference-based algorithm with a novel algorithm
to phase short haplotype blocks in each cell. CHISEL provides a hierarchical clustering
of cells with similar genomic characteristics, as well as tools for gene enrichment and
downstream analyses. It can also be integrated with other single-cell sequencing data types
such as RNA-seq to better understand tumor evolution and lineage plasticity. CHISEL
offers different Python commands to run either the entire pipeline with all the steps or only
some specific steps (chisel, chisel_nonormal, etc.).

6.2. Transcriptomics

Bioinformatic approaches that aim to analyze scRNA-seq data represent the vast ma-
jority of tools for characterizing lineage plasticity, either through tracing trajectories, using
machine learning algorithms, or identifying HPCSs. The Waddington optimal transporta-
tion (Waddington-OT) model is a well-known algorithm [273] based on the idea that cells
are randomly drawn from a probability distribution of gene expressions and that each cell
has a distribution of likely origins and possible fates. This framework uses longitudinal
scRNA-seq data to understand how these probability distributions change over time. It
applies the mathematical approach of optimal transport to investigate the process of cellu-
lar reprogramming after a transient overexpression of transcription factors [47] to answer
various questions, such as what types of cells arise during reprogramming, which devel-
opmental paths lead to reprogramming and alternative fates, and what intrinsic factors
and cell–cell interactions play a role in this process. The insights of this framework could
potentially improve the efficiency of cell reprogramming toward a desired outcome. Re-
garding the application of the Waddington-OT model to scRNA-seq data, the development
of the code first requires the loading and normalizing of patient data. Then, highly variable
genes are selected and the parameters of the model are defined. Next, random initial cell
states are generated and the developmental landscape and gradient are identified. Lastly,
the “OTclust” function is used to find cell trajectories based on the Waddington-OT model.
The Waddington-OT model was used in a recent publication based on the identification
of HPCSs in lung carcinoma [247], and can also be used for longitudinal studies in PCa
to highlight cell populations with HPCS characteristics. However, it requires a sequential
scRNA-seq data collection, which elevates the experimental cost.

Similar to the Waddington-OT model, Forrow et al. [242] developed an algorithm
called Lineage-OT that aims to combine lineage tracing and trajectory inference in a unified
manner. The framework utilizes mathematical tools from graphical models and optimal
transport to reconstruct developmental trajectories from time courses with snapshots of
both cell states and lineages. According to the findings, incorporating lineage data into the
framework results in improved accuracy in tracking complex state transitions with even
fewer measured time points. Furthermore, the integration of lineage tracing with trajectory
inference could enable the accurate reconstruction of developmental pathways that are
difficult to recover using state-based methods alone. Therefore, optimal transportation
models could potentially be used, not only to define lineage tracing in longitudinal sam-
ples, but also to develop predictor models of whether a tumor is destined to progress in
aggressive phenotypes or whether it is likely to remain with consistent lineage even after
its expansion.

Monocle 2 is an R package that focuses on cell fate identification via reversed graph
embedding (RGE), a machine learning approach for a more accurate reconstruction of single-
cell trajectories [274,275]. The pipeline works on scRNA-seq data and includes: (a) differ-
entially expressed gene identification for each cluster using t-distributed stochastic neigh-
bor embedding (t-SNE) dimension reduction followed by density peak clustering [311];
(b) pseudotime trajectory reconstruction using the DDRTree RGE algorithm, which is per-
formed to lead at a “principal graph” [312,313]. The principal graph is shaped as a curve
with branches, where the breakpoints are the “intermediate” datasets and the branches are
different cellular states/outcomes [274]. In addition, a branch expression analysis modeling
(BEAM) algorithm is used to identify genes with significant branch-dependent expressions
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in order to determine the intermediate datasets [314]. After reading and preprocessing
the data, the developmental trajectory is generated using Monocle 2’s DDRTree algorithm.
Monocle 3 has now been released and further information on installing and using this ver-
sion is available at https://cole-trapnell-lab.github.io/monocle3/ (accessed on 1 July 2023).
The publication of the updated Monocle version is not yet available, as it is currently in the
beta phase of its development. However, this tool could be powerful for the identification
of cellular states within the same dataset compared to the Waddington-OT and Lineage-OT
models. Monocle 2 shows a significant advantage of lineage tracing within the same sample,
enabling the investigation of tumor heterogeneity within a single specimen. This would
be compelling for the identification of HPCS populations in PCa specimens that could
determine the presence or absence of lineage plasticity events.

The Seurat R package is a popular toolkit for the analysis, visualization, and explo-
ration of scRNA-seq data [276]. This tool could be employed to identify and quantify
lineage plasticity signatures by providing a comprehensive toolkit for single-cell data anal-
yses, enabling researchers to uncover cellular heterogeneity and developmental trajectories.
It includes many techniques and methods for data transmutation, detection, infiltration
of doublet genes (scDblFinder), and data normalization. For a downstream analysis, vari-
ous Seurat-supported techniques are available, such as the principal components analysis
(PCA), clustering, and the UMAP package, which simplifies data visualization by condens-
ing it into two dimensions. Cell cluster identification is achieved through the “FindClusters”
function, employing a shared nearest neighbor (SNN) modularity optimization-based clus-
tering algorithm. SNN compares the nearest neighbors of each cell and defines clusters
based on the similarity of their local neighborhoods. Thus, the “FindClusters” function can
effectively group cells with similar gene expression profiles, which often represent distinct
cell types or states. Additionally, the Seurat package offers an accessible and computa-
tionally efficient gene signature function called “AddModuleScore” [278,280]. The module
score represents the average expression of a group of genes (usually related to a specific
biological function or pathway) in each cell, adjusted for the overall gene expression level
in that cell. This allows researchers to compare the activity of certain gene sets between
different cell types or conditions. AddModuleScore has been extensively used to test
molecular signatures in PCa [315–317] and could be further used for molecular signatures
linked with lineage-plastic disease.

Unlike the “AddModuleScore” function in the Seurat package, which normalizes
its scores using the dataset’s average expression, UCell [279] uses the Mann–Whitney U
analysis to calculate gene signature scores. This package allows researchers to investigate
the activity of specific gene sets in individual cells, facilitating the identification of cellular
subpopulations and uncovering biological processes or pathways that are active in distinct
cell types or states. Thus, gene signature scoring algorithms are accessible and assist
in enhancing signatures as potential biomarkers for various conditions, such as lineage
plasticity. A molecular signature indicative of lineage plasticity could significantly improve
cancer prognosis and therapeutic markers for PCa.

CytoTRACE [281] is one of the first tools that aims to measure the presence of lin-
eage plasticity and improve our understanding of cellular dynamics in cancer progres-
sion. It is a computational method designed to analyze scRNA-seq data to predict the
differentiation potential of individual cell clusters. It also leverages single-cell gene ex-
pression data to rank cells based on their differentiation states, from undifferentiated
stem cells to more differentiated cell types. CytoTRACE can potentially serve as an in-
dependent measure of lineage plasticity, as it calculates the number of expressed genes
per cell using single-cell transcriptomic data. With its extensive coverage, including over
18,000 annotated gene sets, it allows for the identification of 52 experimentally determined
cell states. This comprehensive approach enables researchers to investigate cellular hier-
archies and differentiation potentials, making CytoTRACE a valuable tool for assessing
lineage plasticity in various biological contexts. Furthermore, using single-cell transcrip-
tomic and bulk ATAC-seq of human paraxial mesoderm lineage phenotypes, Gulati et al.

https://cole-trapnell-lab.github.io/monocle3/


Cancers 2023, 15, 4357 20 of 38

determined that less differentiated cells possess larger gene counts, which also reflects a
more open chromatin accessibility profile compared to well-differentiated cell states. This
algorithm could potentially be applied to identify HPCS clusters during the evolution of
PCa and set a fundamental milestone in the HPCS identification of lineage-plastic PCa.

6.3. Epigenetics

Epigenetic studies aim to describe the epigenomic landscape of a tumor to bet-
ter elucidate the underlying biology of cancer evolution. ChIP-seq of histone markers
(i.e., H3K27ac and H3K4me1) or ATAC-seq can reveal the chromatin accessibility of a
cell state during tumor progression and evolution, while DNA methylation sequencing
(DNAme-seq) can be used to identify hypermethylated and hypomethylated regions that
can be correlated with disease state or other properties, including lineage
plasticity [281,285–292,318–320]. These analyses can reveal candidate epigenetic biomark-
ers that are linked to lineage plasticity. Here, we discussed the most common packages that
are used for ChIP-seq, DNAme-seq, and ATAC-seq analyses.

6.3.1. ChIP-Seq Analysis Tools

The model-based analysis of ChIP-seq (MACS) remains the most well-known tool for
identifying enriched regions of transcription factor binding and histone modifications from
ChIP-seq data [282,283]. The updated version MACS2 uses a combination of modeling
and peak merging strategies to accurately identify enriched regions [284]. MACS2, in
addition to Poisson distribution, incorporates a local lambda model to account for local
biases in the data and a dynamic threshold to control for false positives. MACS2 can detect
both broad and sharp peaks in contrast with MACS, which was designed for sharp peaks.
Additionally, MACS2 provides options for conducting a downstream analysis, such as
peak annotation and motif discovery. MACS2 has been used in PCa to identify chromatin
regions that are altered upon the acquisition of ENZA-resistance and enabled the selection
of the appropriate therapy to target ENZA-resistant CRPC [321]. In addition, recent studies
have used MACS2 to describe the epigenetic landscape of primary and aggressive subtypes
of PCa, enabling the identification of candidate therapeutic targets [322,323]. Further
investigations of the epigenetic landscape of lineage-plastic PCa using MACS2 could
inform candidate epigenetic markers and therapeutic targets.

SICER (spatial clustering for identification of ChIP-enriched regions) is a widely used
peak-calling method for ChIP-seq data [285,324]. SICER uses a clustering approach to
identify enriched regions based on spatial proximity and divides the genome into nonover-
lapping windows of size w and identifies regions of enrichment. Then, it applies a clustering
algorithm to group these regions into larger enriched domains. To complete this operation,
an algorithm is developed in Python using the parameters of the window size and a thresh-
old approach allows SICER to identify smaller, closely spaced enriched regions that lead
to high sensitivity and specificity. SICER also incorporates an FDR estimation method to
control for multiple testing, providing a measure of statistical significance for the identified
regions. Additionally, SICER can detect both broad and sharp peaks, whereas MACS is
optimized for sharp peaks. Using SICER, Coleman et al. [325] determined the epigenetic
landscape of BRD4 binding sites and identified BET bromodomain inhibitor sensitivity
through MYC suppression, while Dhar et al. [326] introduced the MTA1/Epi-miR-22/E-
cadherin axis as an important metastasis-promoting epigenetic signaling pathway in PCa.

ChIPseeker is an R Bioconductor package that is also well known for the annotation
and visualization of ChIP-seq data [286]. ChIPseeker annotates ChIP-seq peaks to genomic
features, including genes, exons, introns, promoters, and enhancers. It also provides
custom annotation functions that can be used to annotate user-defined genomic features
(e.g., “annotatePeak”). Its visualization functions include heatmaps (“plotHeatmap”),
profiles, and genome browser tracks, allowing users to explore and visualize ChIP-seq data
in a variety of ways. ChIPseeker also provides the opportunity for the downstream and
enrichment analysis of the genes annotated by the ChIP-seq peaks, which could provide
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insight into the biological processes and pathways regulated by the transcription factors or
histone modifications of interest. The main difference between MACS and ChIPseeker is
that MACS focuses on peak calling and the identification of enriched regions of ChIP-seq
data, while ChIPseeker is primarily used for the annotation and visualization of ChIP-
seq peaks. Recent studies used ChIPseeker to screen chromatin alterations upon drug
administration in PCa samples [169,327].

6.3.2. DNAme-Seq Analysis Tools

Bismark is a widely known tool for the alignment and analysis of DNAme data,
providing simultaneous read mapping and methylation calling in a single command [287].
It has been designed in bash language to perform the alignment of bisulfite-treated reads
to a reference genome provided by the user and to available public databases. It then
discriminates the methylation status between cytosine residues in CpG, CHG, and CHH
contexts, enabling the visualization of methylation data to interpret the results. Bismark
is a highly configurable tool that allows users to adjust its parameters, such as alignment
stringency, quality filtering, and read trimming. It also provides options for filtering out
PCR duplicates and calculating differential methylation between samples. Bismark is
available as a command-line tool and can be run on Linux, MacOS, and Windows operating
systems. It requires a Perl [328,329] programming language, as well as the installation
of either the Bowtie [330,331] or Bowtie 2 [332,333] alignment programs. Bismark can
work with whole-genome bisulfite sequencing (WGBS) data and representation bisulfite
sequencing (RRBS) data. It has been extensively used to study the epigenetic landscape
of the whole spectrum of PCa providing important insights into hypomethylated and
hypermethylated genes in each cell state [334–337].

BS Seeker is another tool for the alignment of bisulfite-treated reads to a reference
genome. It can also identify methylated and unmethylated cytosines at a single-base
resolution [288]. To perform these functions, lists containing the command and its argu-
ments to run BS Seeker for alignment or methylation calling are necessary. BS Seeker also
uses Bowtie to map the bisulfite reads generated from WGBS or RRBS data. It includes
the post-procedure removal of low-quality mappings based on the number of mismatches.
While Bismark uses a bisulfite-aware alignment algorithm that accounts for the effects of
bisulfite treatment on the DNA sequence, BS Seeker uses a two-step alignment approach
that first aligns the reads to an unconverted reference genome and then uses a bisulfite
conversion algorithm to generate a converted genome for the alignment of the bisulfite-
treated reads. This approach may provide greater flexibility in the choice of a reference
genome and alignment algorithm, but may also introduce some biases or inaccuracies in
the conversion process.

MethylKit is an R package that has been designed for the analysis and visualization of
DNA methylation data [289]. It provides a variety of tools for the identification of differen-
tially methylated regions (DMRs) from bisulfite sequencing data, as well as functions for
the downstream analysis of DMRs. It includes algorithms for data normalization and visu-
alization tools, such as heatmaps, scatter plots, and density plots, for the interpretation of
findings. In addition, MethylKit enables the annotation of the genomic and gene ontology
analyses of the DMRs. In contrast to Bismark and BS Seeker, which focus on alignment,
MethylKit focuses on the analysis and visualization of the results. MethylKit has been used
in PCa for the identification and annotation of differentially methylated sites that could
reveal potential epigenetic markers linked to different disease states [9,335,338].

6.3.3. ATAC-Seq Analysis Tools

Many tools that can be used for ChIP-seq analyses are also applicable for bulk ATAC-
seq analyses, including MACS2 and ChIPSeeker [284,286]. Here, we highlighted a number
of tools that could be used to analyze single-cell ATAC-seq data.

Single-Nucleus Analysis Pipeline for ATAC-seq (snapATAC) is one of the few packages
designed for conducting a comprehensive single-cell ATAC-seq (scATAC-seq) analysis [291].
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SnapATAC provides a variety of tools, including the alignment of the read to a reference
genome, quality control, peak calling, visualization, and clustering. It allows for the identifi-
cation of cellular heterogeneity by comparing chromatin accessibility profiles between cells.
In addition, the tool supports the integration of single-cell gene expression data, which
allows for the identification of cell types and states based on chromatin accessibility and
gene expression patterns. It can also predict enhancer–promoter interactions and enables
batch correction, differential accessibility analysis, identification of lineage trajectories and
key transcription factors. In PCa, snapATAC has been used to study chromatin sites that
are shared in low-grade PCa and lost in high-grade samples [339].

Cellcano is a recently developed tool for the inference of cellular hierarchies in scATAC-
seq data [292]. It uses a two-round supervised learning algorithm to identify cell types.
First, it uses the reference dataset to train a multilayer perceptron to identify anchor cells in
the target dataset. Then, using these anchor cells, it trains a knowledge distiller model (KD
model) [340] to learn the relationships between chromatin accessibility profiles and cell
types. The trained KD model is then applied to predict the cell types of non anchor cells.
Cellcano is a recent tool and no publications on PCa have been published yet. However, it
is a promising tool for cell type annotation in scATAC data, and could be used to provide
insights into tumor heterogeneity observed at the chromatin level.

Signac is a recent R tool that has been designed for the analysis and visualization
of scATAC-seq data [293]. It provides a variety of tools, including peak calling, quality
control, visualization, clustering, and integration with scRNA-seq data. It also enables the
identification of differentially accessible peaks, enriched motifs, key transcription factors,
and gene annotation of the peaks. Importantly, Signac has been designed to interact with
the Seurat package, enabling multiomics analyses. In PCa, Signac has been used to identify
epigenetic markers of metastatic potential, which is in the same direction as the goal of
identifying markers of lineage-plastic disease [341,342].

EpiAnno is a Python tool that has recently been developed for scATAC-seq data
analyses using a probabilistic generative model and a Bayesian neural network [294]. The
model is designed to embed cells into a latent space where each cell type corresponds to a
Gaussian mixture distribution. EpiAnno characterizes cell heterogeneity and has shown
accurate results for within-dataset and cross-dataset annotations. The trained EpiAnno
and learned cell-embedding parameters are interpretable and can reveal biological insights
through a tissue-specific expression enrichment analysis, partitioned heritability analysis,
cell type-specific enhancer identification, and cell type-specific cis-coaccessibility analysis.
Since EpiAnno is a recently developed tool, no publications in PCa are available. However,
it provides important features for studying intratumoral heterogeneity, which is one of the
most important characteristics of PCa.

6.4. Enrichment Analysis

Gene enrichment analyses provide descriptions of upstream and downstream regula-
tory pathways and associated molecules, which are necessary to elucidate the biological
background of cancer development and evolution. Gene enrichment analyses can be
performed using computational software (i.e., GSEA and IPA), while publicly available
databases (i.e., NCBI/NIH, GEO, and TCGA) provide an essential repository of well-
defined data and molecular signatures that could be used in this setting [295,296,343,344].

The gene set enrichment analysis (GSEA v. 4.3.2) is a powerful global tool for the
characterization of cellular functions and pathway enrichment, as well as endogenous
and exogenous changes and the relations between the genes of individual datasets. GSEA
requires a ranked list of genes through differential expression, as well as the selection of
the window of the ranked list and preferred parameters for analysis [345]. In this way,
GSEA provides the analysis of an extended list of gene sets with information regarding
the expression status (upregulation or downregulation) of the input datasets. The vast
majority of publications have used GSEA to perform pathway enrichment analyses, and it
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has provided important insights into the underlying mechanisms of PCa development and
evolution [346–353].

Ingenuity Pathway Analysis (IPA Summer Release (2023)) is another software broadly
used for gene set analyses, aiming to elucidate upstream and downstream biological events.
In contrast to GSEA, IPA predicts the master regulators for each upstream or downstream
regulatory pathway and potential targets for drug development and experiments [296].
While both software are easy to use with detailed tutorials, GSEA has the advantage of being
free of fees, while IPA requires a subscription fee. IPA has been extensively used in PCa to
study canonical pathways and molecule interactions in different disease states [354–359].

Improvements in this field are continuous, and online platforms for enrichment analy-
sis have already emerged. Enrichr analysis is an integrative web-based tool for enrichment
analysis that includes one of the biggest lists of gene set libraries [297,298]. Enrichr visual-
izes the enrichment results as clustergrams and includes information about differentially
expressed genes after drug, gene, disease, and pathogen perturbations. Another web-based
tool, FLAME [300], allows for the input of multiple gene lists with a parallel exploration
and analysis, and utilizes STRING’S API [360] to generate interactive protein–protein inter-
action (PPI) networks. FLAME provides a visual analytics approach with adjustments and
parameter options in addition to heatmaps, bar charts, Manhattan plots, networks, and
tables.

7. Conclusions and Future Directions

The identification of the determinants of lineage plasticity and the definition of a
measurable metric of such signatures at the molecular level in PCa are predicted to trans-
late into prognostic and predictive biomarkers of the disease, as well as new therapeutic
strategies, particularly with the goal of addressing chemoresistance. NGS technologies
are promising tools for the development of such measures. Single-cell NGS technologies
studying GEMMs, human tissues, and PDXs allow us to perform longitudinal lineage
tracing across the different cell states that arise during tumor development, therapy resis-
tance, migration, and metastasis [361–363]. As presented in this review, NGS assays have
been used to provide high-resolution information relevant to intratumoral heterogeneity
and the tumor microenvironment at genetic, transcriptional, and epigenetic levels and to
identify crucial factors and cell states that promote tumor progression, therapy resistance,
and migration [364–368].

Historically, microscopy methods have been tried and tested for their efficacy as a
robust tool for analyzing cancer-related challenges. The evolution of NGS, the emergence
of big data, and the plethora of machine learning tools create a highly promising molecular
avenue for cancer analysis. Once technological and analytical hurdles have been resolved,
it is predicted that the application of DNA-seq in molecular pathology evaluation of tumors
could eventually rival that of the microscope [369]. Moving forward, the research commu-
nity should focus on integrating these two aspects to achieve a system-level understanding
of lineage plasticity, which would yield more reliable and comprehensive results.

Combined defects in the tumor suppressors RB1, TP53, and PTEN seem to be signifi-
cant for PCa lineage plasticity events. In addition, epigenetic alterations, including the over-
expression of epigenetic modulators such as EZH2 and SOX2, seem to be involved in tumor
evolution as components of lineage plasticity. Epimutation clocks similar to those proposed
in recent studies [246,370] remain to be characterized in PCa. Furthermore, the presence of
HPCS clusters could be used as candidate biomarkers for lineage plasticity, which is linked
to aggressive phenotypes. The characterization of lineage-plasticity-associated chromatin
remodeling could also represent a fundamental milestone for understanding and targeting
lineage-plastic PCa. Unique signatures identified through enrichment analyses and sig-
nature scores could inform the characterization of lineage plasticity, revealing additional
targets to disrupt the driver events.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cancers15174357/s1, Table S1: clinical trials of epigenetic
modulators that have been or are being tested in PCa (retrieved from https://ClinicalTrials.gov,
accessed on 31 May 2023).
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Giambartolomei, C.; et al. Extensive Androgen Receptor Enhancer Heterogeneity in Primary Prostate Cancers Underlies Tran-
scriptional Diversity and Metastatic Potential. Nat. Commun. 2022, 13, 7367. [CrossRef] [PubMed]

342. Taavitsainen, S.; Engedal, N.; Cao, S.; Handle, F.; Erickson, A.; Prekovic, S.; Wetterskog, D.; Tolonen, T.; Vuorinen, E.M.;
Kiviaho, A.; et al. Single-Cell ATAC and RNA Sequencing Reveal Pre-Existing and Persistent Cells Associated with Prostate
Cancer Relapse. Nat. Commun. 2021, 12, 5307. [CrossRef] [PubMed]

343. Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.M.; Ozenberger, B.A.; Ellrott, K.; Sander, C.; Stuart, J.M.; Chang, K.;
Creighton, C.J.; et al. The Cancer Genome Atlas Pan-Cancer Analysis Project. Nat. Genet. 2013, 45, 1113–1120. [CrossRef]

344. Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI Gene Expression and Hybridization Array Data Repository.
Nucleic Acids Res. 2002, 30, 207–210. [CrossRef]

345. Hung, J.-H.; Yang, T.-H.; Hu, Z.; Weng, Z.; DeLisi, C. Gene Set Enrichment Analysis: Performance Evaluation and Usage
Guidelines. Brief. Bioinform. 2012, 13, 281–291. [CrossRef]

346. Zhao, Y.; Tao, Z.; Li, L.; Zheng, J.; Chen, X. Predicting Biochemical-Recurrence-Free Survival Using a Three-Metabolic-Gene Risk
Score Model in Prostate Cancer Patients. BMC Cancer 2022, 22, 239. [CrossRef]

347. Wang, Y.; Wang, J.; Tang, Q.; Ren, G. Identification of UBE2C as Hub Gene in Driving Prostate Cancer by Integrated Bioinformatics
Analysis. PLoS ONE 2021, 16, e0247827. [CrossRef]

348. Yu, C.; Cao, H.; He, X.; Sun, P.; Feng, Y.; Chen, L.; Gong, H. Cyclin-Dependent Kinase Inhibitor 3 (CDKN3) Plays a Critical Role in
Prostate Cancer via Regulating Cell Cycle and DNA Replication Signaling. Biomed. Pharmacother. 2017, 96, 1109–1118. [CrossRef]

349. Chen, W.S.; Aggarwal, R.; Zhang, L.; Zhao, S.G.; Thomas, G.V.; Beer, T.M.; Quigley, D.A.; Foye, A.; Playdle, D.; Huang, J.; et al.
Genomic Drivers of Poor Prognosis and Enzalutamide Resistance in Metastatic Castration-Resistant Prostate Cancer (Figure
Presented.). Eur. Urol. 2019, 76, 562–571. [CrossRef]

350. Gong, H.; Chen, X.Y.; Jin, Y.C.; Lu, J.S.; Cai, Y.J.; Wei, O.; Zhao, J.; Zhang, W.Y.; Wen, X.F.; Wang, Y.M.; et al. Expression of
ARHGAP10 Correlates with Prognosis of Prostate Cancer. Int. J. Clin. Exp. Pathol. 2019, 12, 3839–3846. [PubMed]

351. Patel, R.; Brzezinska, E.A.; Repiscak, P.; Ahmad, I.; Mui, E.; Gao, M.; Blomme, A.; Harle, V.; Tan, E.H.; Malviya, G.; et al.
Activation of β-Catenin Cooperates with Loss of Pten to Drive AR-Independent Castration-Resistant Prostate Cancer. Cancer Res.
2020, 80, 576–590. [CrossRef] [PubMed]

352. Irshad, S.; Bansal, M.; Castillo-Martin, M.; Zheng, T.; Aytes, A.; Wenske, S.; Le Magnen, C.; Guarnieri, P.; Sumazin, P.;
Benson, M.C.; et al. A Molecular Signature Predictive of Indolent Prostate Cancer. Sci. Transl. Med. 2013, 5, 202ra122. [CrossRef]
[PubMed]

353. Chen, W.Y.; Wen, Y.C.; Lin, S.R.; Yeh, H.L.; Jiang, K.C.; Chen, W.H.; Lin, Y.S.; Zhang, Q.; Liew, P.L.; Hsiao, M.; et al. Nerve
Growth Factor Interacts with CHRM4 and Promotes Neuroendocrine Differentiation of Prostate Cancer and Castration Resistance.
Commun. Biol. 2021, 4, 22. [CrossRef] [PubMed]

354. Savli, H.; Szendröi, A.; Romics, I.; Nagy, B. Gene Network and Canonical Pathway Analysis in Prostate Cancer: A Microarray
Study. Exp. Mol. Med. 2008, 40, 176–185. [CrossRef]

355. Sethi, S.; Kong, D.; Land, S.; Dyson, G.; Sakr, W.A.; Sarkar, F.H. Comprehensive Molecular Oncogenomic Profiling and MiRNA
Analysis of Prostate Cancer. Am. J. Transl. Res. 2013, 5, 200–211.

https://doi.org/10.1007/978-1-4842-5863-7
https://doi.org/10.1186/gb-2009-10-3-r25
https://www.ncbi.nlm.nih.gov/pubmed/19261174
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/s41588-020-0648-8
https://doi.org/10.1016/j.ajpath.2013.08.018
https://doi.org/10.1038/s41586-020-2135-x
https://doi.org/10.1016/j.gene.2016.09.032
https://doi.org/10.1158/0008-5472.CAN-21-0371
https://doi.org/10.1038/s41467-021-27615-8
https://www.ncbi.nlm.nih.gov/pubmed/34911933
https://doi.org/10.1038/s41467-022-35135-2
https://www.ncbi.nlm.nih.gov/pubmed/36450752
https://doi.org/10.1038/s41467-021-25624-1
https://www.ncbi.nlm.nih.gov/pubmed/34489465
https://doi.org/10.1038/ng.2764
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1093/bib/bbr049
https://doi.org/10.1186/s12885-022-09331-8
https://doi.org/10.1371/journal.pone.0247827
https://doi.org/10.1016/j.biopha.2017.11.112
https://doi.org/10.1016/j.eururo.2019.03.020
https://www.ncbi.nlm.nih.gov/pubmed/31933772
https://doi.org/10.1158/0008-5472.CAN-19-1684
https://www.ncbi.nlm.nih.gov/pubmed/31719098
https://doi.org/10.1126/scitranslmed.3006408
https://www.ncbi.nlm.nih.gov/pubmed/24027026
https://doi.org/10.1038/s42003-020-01549-1
https://www.ncbi.nlm.nih.gov/pubmed/33398073
https://doi.org/10.3858/emm.2008.40.2.176


Cancers 2023, 15, 4357 38 of 38

356. Wu, X.C.; Yu, Y.Z.; Zuo, Y.Z.; Song, X.L.; Zhou, Z.E.; Xiao, Y.; Luo, D.S.; Yan, W.G.; Zhao, S.C. Identification of UAP1L1 as a Critical
Factor for Prostate Cancer and Underlying Molecular Mechanism in Tumorigenicity. J. Transl. Med. 2022, 20, 91. [CrossRef]

357. Russo, A.L.; Jedlicka, K.; Wernick, M.; McNally, D.; Kirk, M.; Sproull, M.; Smith, S.; Shankavaram, U.; Kaushal, A.;
Figg, W.D.; et al. Urine Analysis and Protein Networking Identify Met as a Marker of Metastatic Prostate Cancer. Clin. Cancer Res.
2009, 15, 4292–4298. [CrossRef]

358. Farashi, S.; Kryza, T.; Batra, J. Pathway Analysis of Genes Identified through Post-GWAS to Underpin Prostate Cancer Aetiology.
Genes 2020, 11, 526. [CrossRef]

359. Nagaya, N.; Rosenfeld, J.; Lee, G.T.; Kim, I.Y. RNA-Seq Profile of African American Men with a Clinically Localized Prostate
Cancer. Prostate Int. 2021, 9, 125–131. [CrossRef]

360. Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.;
Tsafou, K.P.; et al. STRING V10: Protein-Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Res.
2015, 43, D447–D452. [CrossRef] [PubMed]

361. Woodworth, M.B.; Girskis, K.M.; Walsh, C.A. Building a Lineage from Single Cells: Genetic Techniques for Cell Lineage Tracking.
Nat. Rev. Genet. 2017, 18, 230–244. [CrossRef] [PubMed]

362. Castro, L.N.G.; Tirosh, I.; Suvà, M.L. Decoding Cancer Biology One Cell at a Time. Cancer Discov. 2021, 11, 960–970. [CrossRef]
[PubMed]

363. LaFave, L.M.; Savage, R.E.; Buenrostro, J.D. Single-Cell Epigenomics Reveals Mechanisms of Cancer Progression. Annu. Rev.
Cancer Biol. 2022, 6, 167–185. [CrossRef]

364. Guruprasad, P.; Lee, Y.G.; Kim, K.H.; Ruella, M. The Current Landscape of Single-Cell Transcriptomics for Cancer Immunotherapy.
J. Exp. Med. 2021, 218, e20201574. [CrossRef] [PubMed]

365. Bernard, V.; Semaan, A.; Huang, J.; Anthony San Lucas, F.; Mulu, F.C.; Stephens, B.M.; Guerrero, P.A.; Huang, Y.; Zhao, J.;
Kamyabi, N.; et al. Single-Cell Transcriptomics of Pancreatic Cancer Precursors Demonstrates Epithelial and Microenvironmental
Heterogeneity as an Early Event in Neoplastic Progression. Clin. Cancer Res. 2019, 25, 2194–2205. [CrossRef]

366. Wu, S.Z.; Al-Eryani, G.; Roden, D.L.; Junankar, S.; Harvey, K.; Andersson, A.; Thennavan, A.; Wang, C.; Torpy, J.R.;
Bartonicek, N.; et al. A Single-Cell and Spatially Resolved Atlas of Human Breast Cancers. Nat. Genet. 2021, 53, 1334–1347.
[CrossRef]

367. Saviano, A.; Henderson, N.C.; Baumert, T.F. Single-Cell Genomics and Spatial Transcriptomics: Discovery of Novel Cell States
and Cellular Interactions in Liver Physiology and Disease Biology. J. Hepatol. 2020, 73, 1219–1230. [CrossRef]

368. Siefert, J.C.; Cioni, B.; Muraro, M.J.; Alshalalfa, M.; Vivie, J.; van der Poel, H.G.; Schoots, I.G.; Bekers, E.; Feng, F.Y.;
Wessels, L.F.A.; et al. The Prognostic Potential of Human Prostate Cancer-Associated Macrophage Subtypes as Revealed by
Single-Cell Transcriptomics. Mol. Cancer Res. 2021, 19, 1778–1791. [CrossRef]

369. Shendure, J.; Balasubramanian, S.; Church, G.M.; Gilbert, W.; Rogers, J.; Schloss, J.A.; Waterston, R.H. DNA Sequencing at 40:
Past, Present and Future. Nature 2017, 550, 345–353. [CrossRef]

370. Baylin, S.B.; Jones, P.A. Epigenetic Determinants of Cancer. Cold Spring Harb. Perspect. Biol. 2016, 8, a019505. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s12967-022-03291-0
https://doi.org/10.1158/1078-0432.CCR-09-0599
https://doi.org/10.3390/genes11050526
https://doi.org/10.1016/j.prnil.2020.11.002
https://doi.org/10.1093/nar/gku1003
https://www.ncbi.nlm.nih.gov/pubmed/25352553
https://doi.org/10.1038/nrg.2016.159
https://www.ncbi.nlm.nih.gov/pubmed/28111472
https://doi.org/10.1158/2159-8290.CD-20-1376
https://www.ncbi.nlm.nih.gov/pubmed/33811126
https://doi.org/10.1146/annurev-cancerbio-070620-094453
https://doi.org/10.1084/jem.20201574
https://www.ncbi.nlm.nih.gov/pubmed/33601414
https://doi.org/10.1158/1078-0432.CCR-18-1955
https://doi.org/10.1038/s41588-021-00911-1
https://doi.org/10.1016/j.jhep.2020.06.004
https://doi.org/10.1158/1541-7786.MCR-20-0740
https://doi.org/10.1038/nature24286
https://doi.org/10.1101/cshperspect.a019505
https://www.ncbi.nlm.nih.gov/pubmed/27194046

	Introduction 
	Genomic Drivers of PCa Progression and Evolution 
	Epigenetic Changes in PCa Evolution 
	DNA Methylation 
	Histone PTMs 
	Chromatin Remodeling through ncRNAs 

	PCa Heterogeneity as Defined by Transcriptomic Profiles 
	Computational and Molecular Perspectives on Lineage Plasticity 
	Bioinformatic Tools for Lineage Plasticity Signatures and Measures 
	Genomics 
	Transcriptomics 
	Epigenetics 
	ChIP-Seq Analysis Tools 
	DNAme-Seq Analysis Tools 
	ATAC-Seq Analysis Tools 

	Enrichment Analysis 

	Conclusions and Future Directions 
	References

