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Simple Summary: A tiny human sample is enough to uncover the complete genome sequence of
that individual with the advances in biomedical technologies and data analysis. Jumping genes
constituting about half of the human genome, have been implicated in cancer and predisposition to
inflammatory reactions. Inflammation may restrict the activity of these genes and reduce the tumor
burden. This article summarizes related literature on factors regulating jumping genes and discusses
their immune-related evidence made available by genome-wide studies.

Abstract: Advances in sequencing technologies and the bioinformatic analysis of big data facilitate
the study of jumping genes’ activity in the human genome in cancer from a broad perspective.
Retrotransposons, which move from one genomic site to another by a copy-and-paste mechanism,
are regulated by various molecular pathways that may be disrupted during tumorigenesis. Active
retrotransposons can stimulate type I IFN responses. Although accumulated evidence suggests
that retrotransposons can induce inflammation, the research investigating the exact mechanism
of triggering these responses is ongoing. Understanding these mechanisms could improve the
therapeutic management of cancer through the use of retrotransposon-induced inflammation as a
tool to instigate immune responses to tumors.

Keywords: transposable elements; mobile genome; insertions; tumorigenesis; immunity; type I IFN;
jumping genes

1. Background

“You just know sooner or later, it will come out in the wash, but you may have to
wait sometime.” Dr. Barbara McClintock conveyed this statement upon receiving the
Nobel Prize recognizing her discovery of transposable elements (TEs) [1]. TEs are mobile
DNA sequences that can move from one genomic location to another in a process called
“transposition” [2]. Transposition in the genome is facilitated by one or more proteins
encoded by a TE [3]. In this review, we shed light on the regulatory mechanisms affecting
the active classes of TEs and their immunological impact on human cancer using evidence
from recent genome-wide studies. As illustrated in Figure 1, TEs are categorized into
two broad classes: DNA transposons and retrotransposons, based on their transposition
intermediate and mobility mechanisms [3]. DNA transposons are sequences that use
element-encoded transposases to move from one genomic location to another by a cut-and-
paste mechanism [3]. A retrotransposon element inserts into a new genomic location by
a copy-and-paste mechanism using an RNA intermediate [3,4]. This article’s focus is on
retrotransposons since there is no evidence of DNA transposon insertion into the human
genome in the last 37 million years [5].
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Figure 1. Transposable element classes, structure, and activity. (a) A doughnut chart represents 
fractions of human genome reference sequence constituents, as described in the recent telomere-to-
telomere (T2T) assembly [6]. (b) TE main categories: first class, DNA transposons; second class, 
retrotransposons. The latter is subcategorized into elements having or lacking LTRs. LTR-containing 
elements include HERVs family, and non-LTR elements include SINEs, LINEs, and pseudogenes 
families. (c) Outline diagrams to represent structure of example elements per classes of transposable 
elements; Alu element from SINEs family is composed of two monomers separated by adenosine-
rich (AR) linker. The left monomer contains an internal RNA polymerase III promoter (bars labeled 
A and B), and the right monomer is followed by a poly (A) tail. L1 element is a protein-coding 
element of the LINEs family; it has an internal promoter in its 5′ untranslated region (5′UTR) 
followed by a primate-specific antisense region (ORF0) and regions encoding L1 proteins (ORF1 and 
ORF2). ORF1p is a nuclear binding protein, and ORF2p has EN, RT, and cysteine-rich (C) domains. 
L1 element is ended by a poly (A) tail in its 3′ untranslated region (3′UTR). HERV-K element of the 
HERVs family contains two LTR regions separated by gag, pol, and env regions. Mariner of the 
DNA transposons class encodes transposase, an enzyme that binds and cuts near inverted repeats 
flanking the element (denoted by little arrows). 

According to the presence or absence of long terminal repeats (LTR) in their 
sequences, retrotransposons are subdivided into LTR- and non-LTR-containing elements 
[3]. Human endogenous retroviruses (HERVs) are autonomous protein-encoding LTR-
containing elements [6]. Most HERV elements are non-functional due to accumulated 
mutations or internal recombination, resulting in solitary LTRs [7]. However, the evidence 
suggests the recent insertion of HERV elements within the human population in 
polymorphic loci [8]. Retrotransposons lacking LTR include long interspersed elements 
(LINEs) and short interspersed elements (SINEs) [6]. Of these, the most active elements 
retrotransposing in the human genome include autonomous LINE-1 (L1) from the LINEs 
and non-autonomous Alu from the SINEs (reviewed in [3]). L1 has two promoters (sense 
and antisense) to transcribe three different open-reading frame (ORF) regions. The sense 
promotor transcribes ORF1 and ORF2 [9,10]. At the same time, the antisense promoter 
transcribes a primate-specific ORF (ORF0) in the opposite orientation to that of L1 [11]. 
ORF1 encodes a 40 kDa protein (ORF1p) with a nucleic acid chaperone and RNA binding 
activities [12]. ORF2 encodes a 150 kDa protein (ORF2p) that has endonuclease (EN) and 
reverse transcriptase (RT) activities [13,14]. The Alu elements are primate-specific 

Figure 1. Transposable element classes, structure, and activity. (a) A doughnut chart represents
fractions of human genome reference sequence constituents, as described in the recent telomere-
to-telomere (T2T) assembly [6]. (b) TE main categories: first class, DNA transposons; second class,
retrotransposons. The latter is subcategorized into elements having or lacking LTRs. LTR-containing
elements include HERVs family, and non-LTR elements include SINEs, LINEs, and pseudogenes
families. (c) Outline diagrams to represent structure of example elements per classes of transposable
elements; Alu element from SINEs family is composed of two monomers separated by adenosine-rich
(AR) linker. The left monomer contains an internal RNA polymerase III promoter (bars labeled A
and B), and the right monomer is followed by a poly (A) tail. L1 element is a protein-coding element
of the LINEs family; it has an internal promoter in its 5′ untranslated region (5′UTR) followed by a
primate-specific antisense region (ORF0) and regions encoding L1 proteins (ORF1 and ORF2). ORF1p
is a nuclear binding protein, and ORF2p has EN, RT, and cysteine-rich (C) domains. L1 element is
ended by a poly (A) tail in its 3′ untranslated region (3′UTR). HERV-K element of the HERVs family
contains two LTR regions separated by gag, pol, and env regions. Mariner of the DNA transposons
class encodes transposase, an enzyme that binds and cuts near inverted repeats flanking the element
(denoted by little arrows).

According to the presence or absence of long terminal repeats (LTR) in their sequences,
retrotransposons are subdivided into LTR- and non-LTR-containing elements [3]. Human
endogenous retroviruses (HERVs) are autonomous protein-encoding LTR-containing el-
ements [6]. Most HERV elements are non-functional due to accumulated mutations or
internal recombination, resulting in solitary LTRs [7]. However, the evidence suggests the
recent insertion of HERV elements within the human population in polymorphic loci [8].
Retrotransposons lacking LTR include long interspersed elements (LINEs) and short inter-
spersed elements (SINEs) [6]. Of these, the most active elements retrotransposing in the
human genome include autonomous LINE-1 (L1) from the LINEs and non-autonomous Alu
from the SINEs (reviewed in [3]). L1 has two promoters (sense and antisense) to transcribe
three different open-reading frame (ORF) regions. The sense promotor transcribes ORF1
and ORF2 [9,10]. At the same time, the antisense promoter transcribes a primate-specific
ORF (ORF0) in the opposite orientation to that of L1 [11]. ORF1 encodes a 40 kDa protein
(ORF1p) with a nucleic acid chaperone and RNA binding activities [12]. ORF2 encodes
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a 150 kDa protein (ORF2p) that has endonuclease (EN) and reverse transcriptase (RT)
activities [13,14]. The Alu elements are primate-specific retrotransposons, with the most
recent amplification in lineages attributed to a series of Y subfamilies (Ya5 and Yb8 domi-
nate in humans) [15]. Each Alu element comprises two dimers ancestrally derived from
the 7SL RNA and separated by a short polyA sequence. A longer polyA tail occupies
its 3′ end [15]. Alu elements do not encode proteins; instead, they hijack L1 proteins to
mediate their retrotransposition [15], which occurs through the life cycle of L1, starting
with the transcription of L1 mRNA from its genomic copy [3]. L1 RNA is exported to
the cytoplasm, where the ORF1p and ORF2p proteins are translated [16]. These proteins
bind the retrotransposon RNA (L1/Alu) to form a ribonucleoprotein particle (RNP) [17,18].
The RNP is imported into the nucleus to facilitate L1/Alu retrotransposition via two dis-
tinct pathways [19]. The canonical pathway is called target-primed reverse transcription
(TPRT) [20,21], in which the L1 EN activity produces a nick at a target site in the genomic
DNA [13,22]. It preferentially cuts DNA at the consensus sequence 5′-TTTT/A-3′ or its
variants [22]. Then, using the retrotransposon RNA as a template, the L1 RT moiety extends
the unbound 3′-OH group from DNA to begin reverse transcription, starting within the
polyA tail of the retrotransposon RNA [3,22]. Retrotransposition can also occur via an
endonuclease-independent pathway or non-classical L1 insertion. Endonuclease cleavage
is not required in this pathway, and the reverse transcription is initiated at pre-existing
DNA break regions [23,24].

De novo retrotransposon insertions can occur in exons, introns, or the regulatory
regions of the genome, disrupting their function, providing new promoter and enhancer
regions, and contributing to disease [25,26]. These insertions can exert deleterious, “disrup-
tive,” or beneficial “exaptation” effects on the host [27]. Retrotransposition in introns can
affect the splicing process by different mechanisms [28,29]. It can provide alternative (donor
or acceptor) splice sites, cause exonization (a process by which genes acquire new exons
from intronic DNA sequences), or promote exon skipping [28,29]. Alternative splicing and
exon-acquisition events of the CHRM3 gene, a muscarinic acetylcholine receptor family
member, are examples of TE integrations into the host genome that are naturally selected
and conserved over generations [30]. About 62% of exonizations in the human genome
are Alu-derived [31]. The insertion of Alu into one of the Factor VIII gene introns resulted
in exon skipping and the consequent onset of hemophilia A [32]. Table 1 outlines the
mechanisms by which retrotransposons can impact genomic structure and function.

Table 1. Mechanisms by which retrotransposons can affect the genome structure.

Retrotransposons Regulatory Effect Citation Schematic Illustration

Alternative promoter [25,33,34]
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2. Regulation of Retrotransposons and Their Association with Tumorigenesis

Reports have demonstrated that retrotransposon expression and activity occur primar-
ily in cells associated with the germline, with little expression in most somatic tissues under
physiological conditions [51]. L1 retrotranspositions can occur during early human embry-
onic development [52]. They were identified in neuronal precursor cells [53] and have been
observed in various cell lines when a tagged L1 construct was employed. However, limited
data are available on whether retrotranspositions occur in normal somatic adult tissues
other than the brain [54–56]. A few findings indicated that somatic insertions in hepatocytes
and the esophagus, stomach, and colon may have occurred during embryogenesis [57–59].
This lack of evidence could be related to the somatic insertions occurring in a few cells
within the tissue that are challenging to identify in whole-tissue sequencing.

De novo somatic insertions were identified in different tumor tissues of epithelial
origin at varying frequencies [60,61]. These insertions are characterized by the fact that they
have more 5′ truncations and exist with less dependence on L1-encoded EN cleavage than
germline insertions [62]. Retrotransposon activity was associated with tumorigenesis in the
early observations of Miki et al., who detected that a novel L1 insertion impacted the tumor
suppressor APC in colon cancer but not in normal colon tissues from affected individu-
als [63]. More than two decades later, another L1 insertion was found to disrupt the other
allele of the APC gene, which contributed to colon tumorigenesis [64]. ST18 (suppression of
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tumorigenicity 18) and PTEN genes were other tumor suppressors interrupted by new L1
insertions in hepatocellular carcinoma and endometrial cancer, respectively [65,66]. There
is much evidence to show that retrotransposons are crucial contributors to tumorigenesis,
especially with the global epigenetic dysregulation that characterizes tumorigenesis [67].

By introducing the high-throughput L1-sequencing assay, Iskow et al. could identify
a hypomethylation signature that characterized lung tumors, which made them more L1-
permissive and had a higher frequency of L1 somatic insertion than the brain tumors included
in that study [68]. Tumors of epithelial origin, such as colorectal, prostate, and ovarian cancers,
showed more pronounced L1 activity than the brain and blood cancer types with the perfor-
mance of single-nucleotide resolution analysis of TE insertions in whole-genome sequencing
datasets [61]. In agreement with these findings, colorectal and lung cancers were the most
frequently affected by L1 somatic insertions exhibiting hypomethylated promotors by tracking
down the L1 insertion sources via the identification of 3′ transductions [69]. The preference
for retrotransposon activity in specific tumor types could be related to a range of transcription
factors activated in specific cell types over others. The activation of transcription factors
in epithelial tumors might modulate retrotransposon expression and activity. For example,
epithelial tumors such as breast, colorectal, prostate, and cervical cancers are characterized by
Oct1 (Octamer transcription factor 1, POU2F1) protein upregulation [70–73]. Oct1 controls
stem cell phenotypes in normal and tumor cells [73]. In epithelial cells, high Oct1 protein
expression was spatially correlated with stem cell niches and the increased expression of stem
cell markers such as ALDH1 [73]. Transcription factors like Oct1 may play a role in epithelial
cell de-differentiation into a more stem-like phenotype [74]. These cells may be more disposed
to L1 retrotransposition than other populations of cancer cells [74].

Several transcription factors were demonstrated to regulate the transcription of retro-
transposons by binding their promoters. These factors include YY1, RUNX3, p53, Oct4,
Sox2, Nanog, KLF4, MYC, and CTCF [75–83]. Although the L1 5′UTR promoter region
is prone to higher mutation rates than the L1 ORF regions, the evolutionary analysis
showed conservation in the transcription factor binding sites among human-specific L1
elements [84]. The transcription factors regulating retrotransposon expression are not
isolated from other regulators that modulate retrotransposon activity in the cell. Each of
these regulators is a part of different pathways that make up an interconnected network of
factors controlling retrotransposon expression and activity.

Retrotransposons have long been considered genomic threats to somatic cellular func-
tions and are under control mechanisms that restrict their activity [85]. These regulation
mechanisms sometimes fail in cases of age or disease [85]. The factors restricting retrotrans-
posons fall into one of two categories: cytoplasmic or nuclear—most factors acting in the
cytoplasm limit the retrotransposon’s expression by post-transcriptional mechanisms. The
suppressing nuclear factors either restrict the transcription of retrotransposons or interfere
with their genomic integration (see Table 2). These factors (being cytoplasmic or nuclear)
are illustrated in Figure 2 based on the retrotransposon’s life cycle.

Table 2. Regulators of retrotransposon activity and their mechanism of regulation.

Regulator Examples Regulation Level Regulation Mechanism Study Model Citations

Transcription
factors

YY1, RUNX3, p53,
Oct4, Sox2, Nanog,
KLF4, MYC, CTCF,

and BRCA1

Nuclear
Retrotransposon promoter
binding and transcription

activation.

HeLa
NTeraD1

143B
HCT116
HEPG2
hESCs
MCF-7
K-562

GM12878
HEK-293

ES2

[75–83,86]
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Table 2. Cont.

Regulator Examples Regulation Level Regulation Mechanism Study Model Citations

DNA
methyltransferase

enzymes
DNMT Nuclear

DNA methylation of CpGs
(retrotransposons contain

~half of CpG islands in the
human genome).

Genome browser
analysis [87,88]

Histone marks H3K9me3 and
H3K27me3 Nuclear

Suppressive histone
modifications associated

with heterochromatin and
frequently found on

nucleosomes at TE loci.

147 cell types and
ENCODE data [89]

KRAB-ZFP/KAP1
complex Nuclear

Transcriptional regulation
of retrotransposons by

inducing heterochromatin
formation in somatic cells

and promoting DNA
methylation in early

embryonic cells.

Human and mouse
ESCs [90,91]

Cytosine
deaminases

AID, APOBEC1,
APOBEC2,

APOBEC3, and
APOBEC4

Nuclear/
Cellular

Antiviral factors act to
restrict retrotransposon by
deaminating cytosine to
uracil within DNA and
RNA molecules or by

physically interacting with
retrotransposon RT to

interfere with DNA
polymerization during
TPRT and target RNP

complexes for
sequestration in stress

granules (SGs).

LLC-Mk2, Huh-7,
HEK-293, HeLa,
and U2OS cells

[92–96]

Aicardi–Goutières
syndrome-
associated

genes

SAMHD1 and
TREX1

Nuclear/
Cellular

Part of anti-retroviral
response, SAMHD1

interacts directly with
ORF2p in L1 RNP
complexes. TERX1

interacts with ORF1p to
change its subcellular

localization and triggers
its depletion.

HEK 293T, HeLa,
and U2OS cells [97,98]

Piwi-interacting
RNA (piRNA)

Nuclear/
Cellular

These can form
piRNA-induced silencing
complex (piRISC), which
allows PIWI proteins to

specifically recognize and
cleave retrotransposon

transcripts by PIWI. PIWI
proteins and piRNAs can
also mediate CpG DNA

methylation of
retrotransposon

promoters.

Mouse ESCs and D.
melanogaster

model
[99,100]
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Table 2. Cont.

Regulator Examples Regulation Level Regulation Mechanism Study Model Citations

Antiviral response
elements

MOV10, RNase L,
and ZAP Cellular

MOV10 sequesters L1
RNP and degrades L1

RNAs in SGs and
cytoplasmic processing

bodies (P-bodies). RNase
L targets L1 RNA for

degradation by an
unknown mechanism.

ZAP prevents the
accumulation of L1

mRNA in the cytoplasm
by targeting it to SGs.

HeLa, HEK 293T,
and SW982 cells [101–103]
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Figure 2. Retrotransposon levels of regulation throughout its life cycle. The regulation of retrotrans-
poson activity can occur at the transcriptional level by histone modification or DNA methylation; at
the post-transcriptional level by targeting RNA for degradation; and at the genomic insertion level
by interfering with RNP complexes integrity or inhibiting TPRT.

3. Retrotransposons in Cancer from a Genome-Wide Perspective

Recent advances in bioinformatics tools have paved the way for studying retrotrans-
posons. It is a significant challenge to precisely determine their insertion sites using
standard DNA sequencing technologies. This difficulty can be related to the retrotranspo-
son sequence characteristics or the available data quality. The L1 sequence, for example,
differs among genomic copies in terms of the polyadenylation signal and 3′ UTR, with
most copies being 5′ truncated [104–106]. Most available whole-genome sequencing (WGS)
data consist of single- or paired-end short reads of about 100–250 nt in length [107]. Using
these reads to detect 6000 kbp L1 insertions requires methods to identify the sequences
overlapping TE elements and new genomic locations. Filters and measures are needed
to reduce the number of false-positive insertions detected while maintaining reasonable
sensitivity in detecting new TE insertion events [107].
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Large-scale sequencing projects include data from thousands of individuals deposited
in public databases such as The Cancer Genome Atlas (TCGA) and the International Cancer
Genome Consortium (ICGC). In addition, bioinformatics tools and pipelines have facilitated
the comprehensive detection and analysis of retrotransposons in cancer [108]. The available
tools that accelerate research in the TE field can range from data repositories to insertion
detecting tools and strategies to investigate the TEs’ biological impacts. Databases such as
RepBase Update and the European database of L1HS retrotransposon insertions (EUL1Db)
were developed as repositories focused on assembling TE consensus sequences with the
reference genome and identifying common polymorphic TE insertions [109,110].

Two factors are required to identify TE polymorphisms in an individual sequenced
genome: an available reference genome and the annotated TE sequences in that genome;
both are made accessible in public databases. TE polymorphisms are detected using reads
that span the borders of retrotransposons and new genomic locations in the search for retro-
transposons not yet included in the reference sequence [107]. Some identified polymorphic
insertions were linked to diseases such as hemophilia [37] and Rett syndrome [111]. Many
TE detection software tools have been developed to identify germline and somatic TE
insertions using short-read sequencing, as in the TCGA [108]. Short reads do not frequently
span the entire interval affected by retrotransposon-mediated genomic rearrangement [107].
Therefore, computational tools were developed to utilize up to three strategies in detecting
TE insertions: inference from discordant read pair (DRP) mapping; clustering of split reads
(SR); and sequence re-alignment through the identification of TE-specific motifs [112]. DRP
methods detect a pair of reads from the same TE insert whose alignment to the reference
sequence has an orientation or distance that differs from the expected range [113]. No
identification of exact junctions between TEs and the reference genome is possible using
DRP methods alone [107].

On the other hand, the SR methods detect reads that map partially with the surround-
ing genome and partially in a TE sequence [113] (Figure 3A). Non-reference SRs are clipped
to align with the reference sequence and can be used to identify the junctions between
the TE and reference genome sequence [107]. Therefore, SR strategies provide a higher
positional accuracy by identifying the junction between the TE and host sequence. DRP
strategies, on the other hand, offer higher sensitivity, providing more reads to support TE
insertions [108]. However, another strategy is required to refine the DRP mapping by re-
quiring an SR- or TE-specific motif detection to exclude TE-unrelated rearrangements [107].
In the TE-specific motif detection strategy, tools were developed to identify insertions
by looking for common TE signatures, such as target site duplications (TSDs) flanking
most TE insertions, long stretches of poly (A) tails, and 3′ transduction in L1-mediated
insertions [108].

The TE field advances have been extended to offer tools that predict the impacts of
TEs on gene regulation, such as measuring the overlap with other genomic regions, looking
for associations with transcription regulation datasets, or considering signs for negative
or positive selection [108]. In searching for active TEs and studying the effect of these
elements on the expression of nearby genes, alignment tools were developed, such as
RepEnrich [114] and SQuIRE [115]. These tools are designed to identify the differential
expression analysis of TEs in chromatin immunoprecipitation (ChIP) sequencing and/or
RNA sequencing data [114]. The RepEnrich tool creates a series of contiguous segments
representing all TE instances of each TE subfamily annotated in the TE repository (e.g.,
Repbase, Figure 3B) [114]. These series are then used to identify reads that map only to
one subfamily of TEs, such as L1HS (Figure 3C). The reads identified using this tool can be
described as unique to a particular subfamily in the genome. The SQuIRE tool quantifies
the TE subfamily expression and performs differential analyses on TEs and genes at the
locus level [115] (Figure 3D). As summarized in Table 3, genome-wide research follows one
of two strategies used to study retrotransposon activity in cancer: targeted resequencing
assays and bioinformatics analysis of WGS or whole-exome sequencing (WES) data.
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Figure 3. Genome-wide retrotransposon studies workflow. (A) TE novel insertions are detected in
the human genome using sequencing reads using different mapping strategies, including DRP and
SR. (B–D) The consensus sequences of active TE classes are obtained from repository databases and
aligned to identify their differential expression in the genome.

Table 3. Retrotransposon activity in cancer genome-wide studies.

Citation Data Used
(Database) Sample Size Strategy Focus Important Findings

[61] WGS (TCGA) 43 TE analyze
(DRP reads)

Identifying novel
insertions

One hundred and ninety-four
somatic TE insertions in tumors,
biased toward hypomethylated

regions. Tumors of epithelial origin
showed more pronounced L1 activity

than brain and blood cancer types.

[64] generated data 19 RC-seq Identifying novel
insertions

L1-mediated mechanisms enabling
tumorigenesis in hepatocellular

carcinoma, identified insertions in
MCC and ST18.

[69] WGS (TCGA and
ICGC) 244 TraFiC pipeline

(DRP reads)

Insertion
characteristics

and impact

A total of 2756 L1 somatic insertions
in tumors, with colorectal and lung

cancers being the most affected.
Insertions exhibited hypomethylated

promotors by tracking down
their sources.

L1 insertions demonstrated minimal
to no effect on the course of

tumorigenesis.
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Table 3. Cont.

Citation Data Used
(Database) Sample Size Strategy Focus Important Findings

[66] WGS, WES
(TCGA) 967

TranspoSeq
(DRP and SR

reads)

Identifying novel
insertions

Eight hundred and ten somatic
retrotransposon insertions in

epithelial cancers; many of them
occurred in known cancer genes (by

WGS).
Thirty-five novel somatic

retrotransposon insertions (by WES),
including an insertion into an exon of

the PTEN.

[64] WGS 11 MELT (DRP
and SR reads)

Identifying novel
insertions

Hot L1 insertion in APC gene in
colon cancer.

[116] generated data 30 RC-seq Identifying novel
insertions

Eighty-eight tumor-specific L1
insertions in ovarian tumors; one
intronic insertion added a novel
cis-enhancer to STC1 gene and

promoted chemoresistance in cells
bearing this mutation.

[117] generated data 35 patients, 10
mice RC-seq Identifying novel

insertions

First report of L1 activity in HCC
murine tumors, identified 8 L1
tumor-specific insertions in 25

patients with alcohol abuse and 3 L1
insertions in 10 intra-hepatic
cholangiocarcinoma patients.

[118]
WGS, RNA-seq
(TCGA, EGA,

dbGaP)
298

Modified TE
analyzer (DRP

reads)

Identifying novel
insertions and

impact

L1 activity positively associated with
TP53 mutation.

L1 insertion in exon of MOV10.
Low L1 activity in tumors with high

immune signature.

[119] generated data 28 ATLAS-Seq Characteristics of
L1 integration

L1 shows a broad capacity for
integration into all chromatin states
compared to other mobile elements.
L1 integration is influenced by the
replication timing of target regions;

distribution of new L1 insertions
differs from those of pre-existing

L1 elements.

[120] WGS, RNA-seq
(PCAWG) 2954 TraFiC pipeline

(DRP reads)

Impact of
insertions on

structural
variation

A total of 19,166 somatically acquired
retrotransposition events that affected

35% of samples.
L1 induced somatic structural

variation in esophageal
adenocarcinoma and was the second
most frequent in head and neck and

colorectal cancers.

[86] WGS, RNA-seq
(TCGA and GDC)

WGS: 54
ovarian cancers

(OVCA) and
matched
normal.

RNA-seq: 379
OVCA and 486
breast cancers.

MELT,
RepEnrich, and

Bayesian
correlation

Identifying
causes and

consequences of
retrotransposon

expression in
ovarian and
breast cancer

Observed divergent inflammatory
responses associated with

retrotransposon expression in ovarian
and breast cancer. Identified new

factors inducing expression of
endogenous retrotransposons such as

anti-viral responses and the tumor
suppressor BRCA1.
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4. Immune Signature of Retrotransposons in Cancer

Most of the (above-mentioned) genome-wide studies were focused on identifying
new insertions and characterizing their effect on tumor-modulating genes. There is also
a growing interest in identifying the factors controlling retrotransposon RNA expression
or the factors triggered by its activation, such as the emerging data demonstrating that
retrotransposon activation can be immunogenic and may instigate IFN and apoptosis
signaling [118,121–124].

Tumors with high immune activity, such as those associated with the Epstein–Barr
virus (EBV) infection, demonstrated a low number of L1 insertions [118]. Reports also
indicate high retrotransposon activity in head and neck squamous cell carcinoma (HNSCC)
patients. The overexpression of retrotransposons in HNSCC was shown to be associated
with robust DNA CpG demethylation of tumor tissue [125]. A high expression of the
long terminal repeat (LTR) retrotransposon HERVs in HNSCC cases was accompanied by
high cytolytic effectors, which correlated positively with cytolytic immune activity [126].
This activity could be related to the oncogenic human papillomavirus (HPV), whose
infection is among the etiological factors contributing to a subset of HNSCC tumors.
HPV-positive cases often present with better outcomes [127] and are less likely to have
TP53 mutation [66]. These tumors have also demonstrated less retrotransposon somatic
insertions (i.e., activity) [66]. The examples above suggest the involvement of a defense
mechanism against retrotransposons resembling antiviral actions.

Many retrotransposon regulation mechanisms are similarly used to protect cells from
exogenous viral infections. When nucleic acids of foreign origin are detected by endosomal
or pattern recognition receptors (PRR), an IFN-driven immune response is initiated to
eliminate the affected cell populations [128]. The cell is equipped with a heterogeneous
group of PRRs that includes but is not limited to Toll-like receptors (TLR3, TLR7, TLR8,
and TLR9); the RNA sensors RIG-I (retinoic acid-inducible gene I), MDA5 (melanoma
differentiation-associated protein 5), and LGP2 (RIG-I-like receptor LGP2); and the DNA
sensors cGAS (cyclic GMP-AMP synthase) and AIM2 (absent in melanoma 2) [129].

Specific criteria, including location, nucleic acid sequence pattern, and threshold
quantity, determine which nucleic acid each PRR senses [129]. TLR nucleic acid binding
domains face the lumen of endosomal compartments, and the other PRRs are present in
the cytoplasm [129]. TLR3 binds dsRNA of >40 bp size; TLR7/8 bind fragmented RNA
with unmodified nucleosides; and TLR9 binds ssDNA of >11 nt size with a high affinity to
the unmethylated cytosine CpG motif [129]. RIG-I binds >20 bp dsRNA with blunt end
conformation; MDA5 binds >1–2 Kb dsRNA; cGAS binds dsDNA of >20–40 bp size; and
AIM2 binds dsDNA of >50–80 bp size [129]. The quantity of detected nucleic acid can
be affected by the increased supply that causes the accumulation of nucleic acids and the
defective mechanisms of their clearance.

The failure of one or more of the (above-described) retrotransposon regulatory mech-
anisms (due to aging, tumorigenesis, or autoimmune disease) can result in retrotranspo-
son activation. This activity promotes dsRNA or dsDNA (sequences of different sizes
and motifs) release into the cytoplasm and their detection by cGAS or MDA5, respec-
tively [123,124,130]. Most ADAR-mediated A-to-I RNA editing sites are found in close
proximity to retrotransposons. Upon the depletion of ADAR1 in conditions such as Aicardi–
Goutières syndrome and some cancers, unedited endogenous RNAs trigger a chronic type
I IFN response via MDA5 facilitated by the LGP2 RNA sensor [131]. The activation of
L1 during cellular senescence triggered the release of L1 dsDNA in the cytoplasm and
promoted type I IFN responses and sterile inflammation [122].

In addition to the evidence summarized in Table 4 below, many examples suggest the
retrotransposon activation of innate immune response in cancer. By analyzing TCGA RNA
sequencing data, specific HERV elements were highly enriched in tumor samples compared
to their normal counterparts, and this enrichment was associated with an increased im-
mune response [126]. Another piece of evidence showed that cytosolic ssDNA and dsDNA
in several tumor cell lines were mainly retrotransposon-derived and associated with the
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cGAS-activated STING and type I IFN response [130]. Activating HERV expression using
DNMT inhibitors (DNMTi) in cancer cells triggered cytosolic dsRNA release, and MDA5
stimulated immune response [124]. In addition, expressing ERV sequences in TLR3, TLR7,
and TLR9 triple-deficient mice failed to induce a sufficient immune response, resulting in
their development of T-cell acute lymphoblastic leukemia and their early death [132]. Blood
samples from individuals with the autoimmune disease SLE, systemic lupus erythemato-
sus, were enriched in Alu RNA associated with high levels of type I IFN response [133].
Although the triggers of retrotransposon activation in the disorders mentioned above may
differ, their induction of TEs is likely to be the cause of the IFN responses as a means of
protection. A feedback loop may be generated to inhibit L1 activity, as suggested by specific
interferon-stimulated proteins directly interacting with its encoded ORF1p [134].

Table 4. Retrotransposon activity and associated immune response in cancer.

Citation Model Used TE Class Type of Immune
Response Results Summary

[135] hTERT1604, HCT116,
SKMEL Cells HERV and L1

Innate immune
response to viral

infection via dsRNA
sensing pathway.

Indirect T cell signaling

UHRF1 is required to suppress
retrotransposon expression in human cells

independently of DNA methylation.
The downregulation of UHRF1 activated

strong innate immune signaling, as
confirmed by its restoration.

[136] HEK293T, U87MG,
THP-1, A549 cells Alu and L1

Innate immune
response to viral

infection via MDA5

Constitutive activation of MDA5
(gain-of-function mutation) results from
the loss of tolerance to cellular dsRNAs

formed by Alu.
Alu:Alu hybrids activate wild-type MDA5

under the ADAR1 deficiency.

[137] Healthy donors’
PBMCs, PDACs HERV and LINEs Homeostatic and/or

IFN-activated ISGs

Infection of tumor cells with H-1PV
oncolytic virus is associated with a

profound inhibition of TEs and innate
immunity.

[138] AML human cell
lines HERV and LINEs

Innate immune
response via

dsRNA-sensing
pathway

Loss of SETDB1 gene in AML activates
TEs which produce dsRNAs and trigger

type I IFN response and apoptosis.

[139] HEK293T L1 Innate immune
response

MDA5 directly binds to L1 5′-UTR and
suppresses its promoter activity and

inhibits its retrotransposition.

[118]

TCGA data of
colorectal, stomach,

and esophageal
cancers

L1

Innate and adaptive
immune response

TLR and/or STAT6
signaling

GI tumors with high immune activity
(e.g., those with EBV infection) carry a
low number of L1 insertions and high

levels of L1 suppressors (APOBEC3s and
SAMHD1).

Negative correlation between L1
regulatory T cells and PD1 signaling.

[140] HEK 293T and
2102EP cells L1 Innate immunity via

TRIM5α

TRIM5α repress L1 activity by interacting
with its RNPs in the cytoplasm.

This interaction induces innate immune
signaling via AP-1 and NF-κB to inhibit

L1 promoter activity.

[141]
A549, MDCK, HEK
293T, and TZM-bl

cells

HERV, LINE, and
SINE

Innate immunity via
TRIM28/KAP1

Influenza virus-triggered loss of
SUMO-modified TRIM28, activates

retrotransposons.
Released cytosolic dsRNA induced

IFN-mediated defense pathway.
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Table 4. Cont.

Citation Model Used TE Class Type of Immune
Response Results Summary

[142]
Neuroblastoma

transgenic mouse
model, 4T1 cells

L1, SINE, and
HERV

NF-κb and type I IFN
inflammatory

pathways

L1 de-silencing promoted drug resistance
and activated IFN signaling.

The use of NRTI reversed
these phenotypes.

[143] CMML and AML
patients LINE, SINE, HERV Type I IFN pathway DNMTi-treated samples presented TEs

activation and IFN response triggering.

[144] H69 cells and TCGA
data HERV

Innate immune
signaling via MAVS
and STING adaptive

immune response

Mesenchymal tumor subpopulations
trigger expression of a specific set of ERVs

when exposed to IFNγ.

[145] HT-29, HEK293T, and
HeLa HERV

Innate immune
response via MDA5

and MAVS

ING3 loss decreased H3K27
trimethylation enrichment at

HERVs.HERV activation induced
IFN signaling.

Tumor-specific characteristics may alter the tumor microenvironment and play a
role in retrotransposon expression and its associated immune response. TP53, for exam-
ple, has immunomodulatory roles, and its dysfunction associates with immunosuppres-
sion [126,146], which is consistent with the evidence of gastrointestinal tumors with TP53
mutations showing low immune activity and higher loads of L1 insertions than tumors
with wild-type TP53 [118]. Also, evidence from colon cancer shows that in response to
viral infection in cells, TP53 induces an IFN-dependent antiviral response by activating
IFN-stimulated genes [147]. Another piece of evidence showed that TP53 cooperates with
DNA methylation to maintain the silencing of SINEs and other non-coding RNAs [148].
The TP53-deficient cells in this study exhibited high SINE element expression accompanied
by a high type I IFN response [148]. However, not all tumors exhibit the same type of TP53
mutation, and not all mutations result in TP53 protein deficiency [149]. TP53 mutation can
contribute to tumorigenesis by losing TP53 function and gaining mutant functions [149].
Whereas frequent TP53 loss of function mutations in basal-like breast cancer could increase
retrotransposon expression and the associated IFN response, the TP53 gain of function
mutations in high-grade serous ovarian tumors could reduce retrotransposon expression
and its associated IFN response [86].

Apart from TP53, gastrointestinal tumors had strong associations between retrotrans-
posons and TLRs or IFN-induced mRNAs, which was not the case in breast and ovarian
cancers [86,118]. Also, IFNε, which is hormonally regulated and expressed in the cells
of reproductive organs [150], presented high associations with retrotransposon expres-
sion in breast and ovarian cancers [86]. It could be that because retrotransposons contain
several binding motifs for estrogen response elements (ERE) [151], they may play a role
in IFNε expression in the tumors of reproductive organs. Therefore, the effect of IFN
on retrotransposons could be related to the hormone-regulated microenvironment and
might be tumor type-specific. The context-dependent IFN signaling associated with the
ER+ and ER-negative breast cancer subtypes, which impacts their response to therapy
and overall outcomes, reinforces the above notion [152]. It could be interesting to extend
these experiments to identify the levels of retrotransposon expression among ER+ and ER-
breast tumors. The examples above support the assertion that the tumor type and specific
characteristics could affect the retrotransposon’s expression and linked immune response.
These variabilities should be considered when studying the retrotransposon’s activity in
different types of cancer.



Cancers 2023, 15, 4340 14 of 23

5. Therapeutic Opportunities for Retrotransposon Activity in Cancer

Throughout their evolutionary timeline, significant retrotransposon-related activities
at the genomic and cellular levels have been attributed to their RT [14]. However, retrotrans-
poson genomic insertions in cancer have drawn considerable attention beyond the attention
given to retrotransposon RT activity [153]. RT activity was shown to increase during tu-
morigenesis. Anti-retroviral non-nucleoside reverse transcriptase inhibitors (NNRTIs),
such as efavirenz and nevirapine, reduced RT activity significantly by inducing conforma-
tional changes in the enzyme [154,155]. The NNRTIs reduced tumor growth by decreasing
cellular proliferation and promoting differentiation [156,157]. The effect of inhibiting RT
using NNRTIs was similar to that of the L1 siRNA suppressing effect; therefore, they were
assumed to target L1 activity [158]. Other lines of evidence suggest that another class of
RT inhibitors, nucleoside reverse transcriptase inhibitors (NRTIs), are capable of inhibit-
ing L1 activity and having anticancer effects in cells [159,160]. This evidence suggests
that L1-encoded RT is a potential marker for diagnostic purposes and a potential target
for therapeutic intervention. However, further work is still required to understand the
exact mechanism of the observed effect of RT inhibitors on cancer [161]. Although both
NRTIs and NNRTIs could inhibit cancer cell growth, only NRTIs inhibited telomerase
RT in vitro [162], which may suggest a mechanism related to L1 RT particularly to affect
cancer growth.

Among the mechanisms that activate retrotransposons, demethylating agents such as
DNMTi act by releasing the epigenetic restriction placed on retrotransposons [123,125,163].
Activating various TE classes in glioblastoma cells triggered type I and II IFN responses [125].
TE-derived peptides were processed and presented on MHC class I molecules that activated
adaptive immunity [125]. Activation of HERVs resulted in a viral mimicry response of
dsRNAs, inducing the MDA5/MAVS RNA recognition pathway and the downstream
activation of interferon response factor 7 (IRF7) [123]. Recent evidence (based on TCGA
data analysis and in vitro DNMTi treatment of ovarian cancer cells) suggested that high
HERV expression in patients was associated with better survival and correlated with the
infiltration of cytotoxic T cells [164]. The use of DNA-hypomethylating agent 5-azacitidine
(AZA) in colon and ovarian cancer cell models was associated with the increased expression
of HERV and L1 RNA [124,165]. HERV expression was linked to regulatory T cell tumor
infiltrates and predicted cytolytic activity in AZA-treated cells [165].

In contrast, L1 expression correlated with TP53 status and predicted AZA drug sen-
sitivity [165]. A dinitroazetidine derivative (RRx-001), another hypomethylating drug
less toxic than AZA, is currently in phase II clinical trials [166]. RRx-001 induced antitu-
morigenic effects by activating the expression of HERV and IFN-responsive genes [166].
Similarly, treating colon cancer cells and tumor organoids with another derivative of a hy-
pomethylating agent (5-aza-2′-deoxycytidine) was sufficient to induce a growth-inhibiting
immune response by triggering retrotransposon expression [123,163]. Interestingly, the
combination of DNMTi and HDACi selectively induced LTR retrotransposons more ef-
ficiently than using each drug individually [167]. The treatment-activated TSS of LTR
elements induced them de novo from non-annotated TSS [167]. This activation resulted in
chimeric products with predicted immunogenic functions [167].

In addition, some targeted cancer therapeutics and chemotherapeutic agents were
shown to activate retrotransposon expression in cancer cells [121,168]. Cyclin-dependent
kinases 4 and 6 (CDK4/6) inhibitors repressed DNMT1 and caused activation of repeat
elements, including retrotransposons in breast cancer [168]. This activation promoted cyto-
toxic T-cell-mediated clearance of tumor cells and increased tumor immunogenicity [168].
However, some cells within a heterogeneous cancer population may develop adaptation
mechanisms to survive the challenging tumor microenvironment conditions [121]. These
cells could modulate retrotransposon expression with lethal drug exposures by maintaining
their epigenetic repression [121]. This evidence suggests combining HDACi with other
targeted therapeutics may enhance their efficacy in treating cancer [128].
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The examples mentioned above support the notion that retrotransposon activation in
tumors may contribute to their turning into ‘hot tumors’, which are inflamed and T-cell-
infiltrated tumors [169]. In such a microenvironment, the antitumor immune response
will reduce the tumor burden and sensitize it to other targeted therapies and immunother-
apy [169]. Retrotransposon activity in cancer probably occurs more in specific tumor types
than in others [60,61]. It is unclear whether this is related to a more vigorous immune de-
fense or a higher level of cellular adaptation by implementing changes in their epigenome
or transcriptome [10].

Tumor-derived extracellular vesicles (EVs) are enriched in retrotransposon RNA and
involved in the horizontal transfer of retrotransposons to normal cells. They may broadly
influence the tumor microenvironment and immune response [170,171]. This evidence
suggests that EVs facilitate the release and transfer of retrotransposons to other cells,
contributing to tumor evolution or metastasis (if derived from tumor cells). Also, retrotrans-
poson RNA transfer can influence recipient cells’ transcriptional and post-transcriptional
regulation. For example, the increased L1-derived RNA transcripts in recipient cells after
the EVs transfer activate members of the APOBEC3 [171]. EVs are currently subject to mul-
tiple clinical trials at different phases and are to be used as non-invasive tools for diagnosis
and therapeutics. They can serve as cargo for drug delivery in cancer and other condi-
tions (as referred to https://clinicaltrials.gov/, accessed on 18 June 2023). The increased
expression of retrotransposons in EVs derived from tumor cells compared to those derived
from normal cells [170] could potentially serve as a valuable biomarker for diagnostic
purposes. Studies to characterize the origin, biogenesis, and destination of EVs containing
retrotransposon RNA and protein in cancer patients are currently needed to understand
their potential fully.

6. Closing Remarks

Overall, the advances in sequencing technologies and bioinformatic analysis made
studying the activity of retrotransposons in cancer more accessible than before. However,
these advances are accompanied by the complexities of dealing with big data. Therefore,
tools are being developed to study retrotransposons to cope with these concerns and bring
rigorous methods and strategies to keep the field moving forward.

Different cellular and molecular mechanisms regulate the activity of retrotransposons
in the human genome. The deregulation of these mechanisms can activate retrotransposons
and contribute to the process of tumorigenesis. Accumulating evidence indicates strong
associations between retrotransposons and type I IFN immune responses. Retrotrans-
posons could be carried in the extracellular space by tumor-derived EVs, which facilitate
their release in the cytosol of surrounding cells, where different PRRs detect them. This
detection can activate IRF-mediated type I IFN responses. An inflammatory response could
be generated from IFN signaling, leading to a negative feedback loop to inhibit further
retrotransposon activity (Figure 4). Extensive research to validate these assumptions is
required in different types of tumors; this research is currently more accessible due to the
advances in sequencing technologies and the strategies of bioinformatic data analysis.

Prospectively, these retrotransposon-induced inflammatory responses could be used
as tools to improve options for cancer treatment by considering the variations between
different types of cancer and tailoring the therapeutic choices to the associated response.

https://clinicaltrials.gov/
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endosomal TLRs. The activated PRRs induce an IRF-mediated type I IFN response, stimulating
inflammatory responses. These responses could create negative feedback on the retrotransposons to
inhibit their activity.
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