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Simple Summary: The extensive array of applications in 3D culture models closely mimics the
precise physiological conditions of in vivo settings, enabling the investigation of anticancer drug
resistance, which suggests that, in addition to genes, cell structure significantly impacts toxicity
outcomes. Commercial 3D culture systems offer a valuable platform to explore various facets of
oral cancer research. These models present an ethical and reproducible alternative to animal studies,
facilitating the examination of oral microbial population dynamics, cellular interactions between
cancer cells and immune cells, and the role of macrophage cells in oral cancer.

Abstract: The onset and progression of oral cancer are accompanied by a dynamic interaction with the
host immune system, and the immune cells within the tumor microenvironment play a pivotal role in
the development of the tumor. By exploring the cellular immunity of oral cancer, we can gain insight
into the contribution of both tumor cells and immune cells to tumorigenesis. This understanding is
crucial for developing effective immunotherapeutic strategies to combat oral cancer. Studies of cancer
immunology present unique challenges in terms of modeling due to the extraordinary complexity
of the immune system. With its multitude of cellular components, each with distinct subtypes and
various activation states, the immune system interacts with cancer cells and other components of
the tumor, ultimately shaping the course of the disease. Conventional two-dimensional (2D) culture
methods fall short of capturing these intricate cellular interactions. Mouse models enable us to learn
about tumor biology in complicated and dynamic physiological systems but have limitations as
the murine immune system differs significantly from that of humans. In light of these challenges,
three-dimensional (3D) culture systems offer an alternative approach to studying cancer immunology
and filling the existing gaps in available models. These 3D culture models provide a means to
investigate complex cellular interactions that are difficult to replicate in 2D cultures. The direct study
of the interaction between immune cells and cancer cells of human origin offers a more relevant and
representative platform compared to mouse models, enabling advancements in our understanding of
cancer immunology. This review explores commonly used 3D culture models and highlights their
significant contributions to expanding our knowledge of cancer immunology. By harnessing the
power of 3D culture systems, we can unlock new insights that pave the way for improved strategies
in the battle against oral cancer.

Keywords: oral cancer; extracellular matrix; two/three-dimensional (2D/3D) model; immune cells;
tumor cells; stromal cell

1. Introduction

Head and neck cancers (HNCs), positioned as the seventh most prevalent cancer on
a global scale, carry a significant burden of mortality. In 2018 alone, staggeringly, more
than 170,000 deaths were attributed to HNCs, which also exhibit a discouraging prognosis
characterized by a 5-year relative survival rate of about 68% in developing countries [1,2].
The WHO reports indicating that there are approximately 900,000 annual cases of HNCs,

Cancers 2023, 15, 4266. https://doi.org/10.3390/cancers15174266 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15174266
https://doi.org/10.3390/cancers15174266
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-3168-7998
https://orcid.org/0000-0001-8357-1471
https://doi.org/10.3390/cancers15174266
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15174266?type=check_update&version=2


Cancers 2023, 15, 4266 2 of 28

resulting in more than 400,000 deaths [3]. Particularly disheartening is the fact that devel-
oping countries experience even lower survival rates in this context [4–7]. Furthermore,
oral cancer, encompassing approximately half of HNC instances, predominantly manifests
as oral squamous cell carcinoma (OSCC), accounting for roughly 90% of these cases [8,9].

OSCC occurs within the oral cavity, encompassing vital areas such as the lips, gums,
inner linings of the cheeks and lips, the front two-thirds of the tongue, the floor beneath
the tongue, and the roof of the mouth [10]. Despite significant strides made in diagnostic
techniques and the availability of various treatment approaches, the worldwide 5-year sur-
vival rate for OSCC continues to linger below 50%, underscoring the persistent challenges
in effectively combatting this disease [11].

OSCC is characterized by an abundance of immune cells infiltrating the tumor, making
it a tumor with high immunogenicity [12]. Within the tumor microenvironment (TME),
which is a complex landscape consisting of the extracellular matrix (ECM), various stromal
cells, and immune cells, there exists a dynamic interplay and coordination with the tumor
cells. Examples of these interacting cells include tumor-associated macrophages (TAMs),
regulatory T cells (Tregs), cancer-associated fibroblasts (CAFs), and endothelial cells [13].
Furthermore, the innate immune system contributes to the TME through macrophages,
dendritic cells (DCs), neutrophils, myeloid-derived suppressor cells (MDSCs), natural killer
cells (NKs), and innate lymphoid cells. The adaptive immune response is represented by T
cells and B cells [14]. The communication and interaction among these cells, along with the
ECM and tumor cells, play a significant role in driving tumor progression [15,16].

The utilization of three-dimensional (3D) models provides a novel avenue for inves-
tigating cancer immunology in preclinical studies. These models offer a more realistic
and physiologically relevant environment compared to traditional two-dimensional (2D)
models. Unlike murine models, 3D models are cost-effective, amenable to high-throughput
research requirements, and can incorporate human cancers and immune components. The
application of 3D models has significantly advanced various areas of cancer immunology
research [17,18]. Among the commonly employed 3D models are spheroids, organoids,
and microfluidic chips.

This paper aims to discuss the functions of immune cells related to tumors with a
focus on in vitro cell culture technology. The review also provides an overview of the
application of 3D models involved in oral microbial pathogenesis, drug discovery, and
cell–cell interaction in carcinogenesis. Finally, the potential application of 3D models in the
study of TAM functions in oral cancer is discussed.

2. Tumor Immune Microenvironment of Oral Cancer

The tumor immune microenvironment (TIME) of oral cancer is a complicated system
composed of immune cells, cytokines, and chemokines that interact with tumor cells to
promote or prevent tumor growth [19,20]. It is proven that the immunological microen-
vironment is vital in developing oral cancer and potentially serves as a target for cancer
therapy [21,22].

In most cases, pro-inflammatory cytokines (IFN-γ, IL-2, IL-1α, IL-1β, TNF-α, IL-17,
and IL-8), anti-inflammatory cytokines (IL-4 and IL-10), and pro-/anti-inflammatory cy-
tokines (IL-6 and TGF-β) are unbalanced in oral cancer, resulting in an immunosuppressive
environment. This immunosuppressive milieu permits cancer cells to avoid detection by
the immune system [23,24]. A study showed how an unbalanced quantity of cytokines can
act like a two-edged sword. In the study, IL-10, as an anti-inflammatory cytokine, exhibited
an elevated expression, while TGF-β experienced a reduction. This situation ultimately led
to the suppression of the immune system in the progressive stage of OSCC [25]. Therefore,
gaining insights into the markers associated with oral cancer and comprehending the
intricate dynamics between cancer cells, stromal cells, and the tumor microenvironment
hold paramount significance in the realms of diagnosis and treatment.
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2.1. Interaction between the Immune System and Tumor Cells

The immune system has a dual role in tumor growth, either suppressing it or promot-
ing it, known as immunoediting [26]. Initially, the immune system can eliminate tumor
cells, a phase called immunosurveillance. During this stage, there are lively molecules and
immune cells at work, capable of identifying and eliminating cancerous cells. Furthermore,
perilous signals such as Type I interferons (IFNs) are discharged by dying tumor cells or
injured tissues as the tumor advances. These signals rouse the immune cells and promote
a flexible, tailored anti-tumor immune reaction. Certain molecules such as MHC class
I chain-related protein A and B (MICA and MICB) and the histocompatibility 60 (H60),
which are plentiful on the surface of tumor cells, bind to activation receptors found on
immune cells, setting them into action. The distribution of cluster of differentiation (CD)4+

T and CD8+ T cells facilitates a harmonized and well-balanced activation of both the innate
and adaptive immune responses [27].

If the defective cells are not completely removed, the equilibrium phase begins, where
tumor cells remain dormant with the help of interleukin (IL)-12, T cells, and IFN-γ [28].
During this phase, the adaptive immune system becomes crucial, leading to two possible
outcomes: regression and elimination of the tumor or its progression [29,30]. For example, it
was observed that after oral cancer cells in the dormancy stage were exposed to irradiation,
M2 TAMs actively induce neovasculogenesis, fostering the resurgence of oral cancer [31].
The escape phase, extensively studied in cancer immunoediting, often occurs due to T-cell
exhaustion [32]. This exhaustion involves intrinsic mechanisms of T cells, such as the
Programmed death-1 (PD-1)/Programmed Cell Death Ligand 1 (PD-L1) pathway and
immunoregulatory receptors such as cytotoxic T-lymphocyte antigen 4(CTLA-4), T-cell
immunoglobulin and mucin-domain containing-3 (TIM-3), and lymphocyte activation
gene-3 (LAG-3), as well as extrinsic pathways mediated by Tregs and MDSCs. These
pathways secrete cytokines such as transforming growth factor beta (TGF-β) [33]. The
interaction between hypoxia-inducible factor (HIF)-1α and immune cells contributes to the
evasion of the immune system by tumors, including OSCC [34].

2.2. Immune and Non-Immune Markers

One strategy for early detection of oral cancer is the identification of immune and
non-immune markers [35,36]. T cells, B cells, and NKs, among many other immune and
non-immune cells, are used to diagnose oral cancer [37–39]. Non-immune markers used in
diagnosis include changes in DNA, RNA, and protein expression levels. These markers can
help identify individuals who are most prone to being affected by the condition, allowing
for early identification and treatment [40]. Immune and non-immune biomarkers are listed
in Table 1.

Table 1. Immune and non-immune markers in oral cancer.

Type Secretory Cell Markers References

Immune
Cell

M1 TAMs CD11c, CD80, HLA-DR 1 [41–43]

M2 TAMs CD163, CD11b, CD206,
MRC1 2 [43–46]

DC

S100, CD1a, CD83, CD207,
CD208, CD80, CD11c,
CD86, HLA-DR
CLEC9A 3

[47–49]

NK cells CD57 [50–52]

pan T cell CD3 [12,53,54]

cytotoxic T cell CD8 [12,55,56]
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Table 1. Cont.

Type Secretory Cell Markers References

T helper cell CD4 [12,57,58]

Pan B cell CD19, CD20 [12,59,60]

MDSCs CD33, CD11b [61–63]

CAFs α SMA 4 [64–66]

Treg FOXP3+ CD4+ T cells or
CD4+ CD25+ CD127low [39,67,68]

Non-immune cell

endothelial cells CD34 [69–71]

Salivary biomarkers

L-phenylalanine
Sphinganine
Phytosphingosine
S-carboxymethyl-L-
cysteine

[72–74]

Genomic biomarkers ITGA3 5, ITGB4 expression [75–77]

Oral cancer cell CCR7 6 [78–80]

Oral cancer cell MYO1B 7 [81–83]
1 Human Leukocyte Antigen-DR isotype, 2 Mannose Receptor C-Type 1, 3 C-type lectin domain family 9 member
A, 4 Alpha-Smooth Muscle Actin, 5 Integrin Subunit Alpha 3, 6 C-C chemokine receptor type 7, 7 Myosin IB.

2.3. Stromal Cell and Extracellular Matrix (ECM) on Cancer Immunity

The intricate makeup of the tumor microenvironment and the interactions between
the tumor and its surrounding stroma play a pivotal role in fueling tumor growth and
facilitating its spread, resulting in unfavorable clinical outcomes in understanding and
defining the disease, as it exerts significant influence over cancer cell invasion, migration,
angiogenesis, resistance to drugs [84,85], maintenance of cancer stem cells [86], and evasion
of immune surveillance [87,88].

Within the TME, the tumor stroma represents the noncancerous components and
consists of an abundant ECM and various supportive cell types [89]. These include CAFs,
endothelial cells, pericytes, and immune cells such as lymphocytes, neutrophils, DCs,
monocytes, and TAMs, which are the most prevalent cell types. Additionally, there are less
common factors such as MDSCs and mesenchymal stromal cells (MSCs) [84,90], as well as
platelets [87,91]. These stromal cells actively engage in intricate interactions with tumor
cells, with one another, and with the ECM. They achieve this by releasing chemokines,
growth factors (GFs), enzymes, extracellular vesicles, and miRNAs that regulate the ex-
pression of genes and proteins, thereby influencing metabolic pathways associated with
cancer [92]. Consequently, different cell types can either promote or suppress tumor growth
depending on the specific cellular context [93]. Current in vitro culture models come with
numerous limitations, including a lack of the dynamic interplay between cells and their sur-
rounding environment, and alterations in cell shape, orientation, and proliferation. These
disadvantages prompted the development of alternative models that better simulate in vivo
conditions. Among these approaches, 3D culture appeared to be a promising method to
bridge the gap and led to a significant emphasis on developing accurate models to study
and simulate TME interactions both in laboratory settings and in living organisms [94].
Table 2 shows the role and function of stromal cells in oral cancer.
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Table 2. Mechanism and function of stromal cells in OSCC.

Stromal Cells Mechanism Function References

CAFs

Production of numerous ECM proteins such
as HAS2 1 expression by CAFs

Tumor cell invasion
by increasing ECM-degrading MMPs 2 and
decreasing TIMPs 3

[95,96]

high expression of α-SMA in CAFs OSCC invasion into the bone by increasing
expression of RANKL 4 and OPG 5 [97–100]

High secretion of IL-1α by OSCC
upregulated expression of secretory
cytokines, including CCL7 6, CXCL1 7, and
IL-8

Tumor cell proliferation [101–103]

IGF-1 overexpression in CAF and activation
of PI3K-AKT and Hedgehog signaling
pathways

Tumor cell proliferation, migration
invasion, tumorsphere formation
angiogenesis.

[104–106]

Overexpression of NOTCH-1 in CAFs Increasing tumor volume
angiogenesis in OSCC [107–109]

Overexpression of IL-6 in CAFs Expression of VGEF in CAFs and OSCC
angiogenesis in OSCC [110–112]

Multiple factors derived from CAFs, such as
CXCL12 and MCP-1 attract macrophages to
tumors and induce the M2 phenotype

A mediator for T-cell suppression [113,114]

IL-1α secreted from OSCC cells induces the
chemokine CCL7 in co-cultured CAF OSCC invasion and progression [115,116]

TAMs

increased expression of arginase I, IL-10 and
TGF-β

Suppressive effect on T cells and invasion
and metastasis of OSCC [117,118]

PDL-1 and IL-10 production in TAMs Immune escape of OSCC cells [119,120]

the secretion of EGFs 8 and the management
of collagen production by TAMs

OSCC invasion and progression [121,122]

EMT 9 induced by TAMs
decreased E-mucin and E-cadherin and
increased-vimentin protein in OSCC cells

OSCC invasion and progression [123–125]

activated the Hh 10 signaling pathway by
TAMs

Angiogenesis in OSCC [126,127]

Activation of TGF-β1/TβRII/Smad3
signaling pathway in TAMs VEGF secretions in OSCC [128,129]

TAM number modulation by PFKFB3 11 Angiogenesis in OSCC [130,131]

DCs activated the TNF-α/NF-κB/CXCR-4
pathway by pDCs 12 Oral cancer proliferation and invasion [132,133]

1 hyaluronan synthetase 2, 2 matrix metalloproteinases, 3 tissue inhibitors of metalloproteinases, 4 receptor
activator of NF-κB ligand, 5 tumor necrosis factor receptor superfamily member 11B, 6 chemokine ligand 7,
7 C-X-C motif chemokine 1, 8 epidermal growth factors, 9 Epithelial-mesenchymal transition, 10 Hedgehog,
11 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3, 12 plasmacytoid dendritic cells.

3. In Vitro Models in Oral Cancer

At present, the most common evaluation platform for drug development in oral cancer
is conventional 2D in vitro models to their low cost, high reproducibility, and potential
co-culture capability [134]. For example, cell co-culture in a 2D model helped in gaining a
deeper comprehension of how CAFs interact with cancer cells within the microenviron-
ment, revealing the potential for CAFs to regulate cancer cells as a means of therapeutic
mediator [135]. However, 2D in vitro models are unable to mimic the physical geometry
of the tumor, avoid the cross-contamination of culture media in multicellular models,
and mimic the oxygen deprivation and irregular irrigation of the hypoxia region, which
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are key factors in the evaluation of tumor progression, chemoresistance, and treatment
response [136,137]. Advanced in vitro systems, including spheroids, 3D scaffolds, and
microfluidic devices, have thus been developed to overcome these barriers [138]. Although
the application of these culture platforms to model the oral cancer microenvironment and
its drug discovery is still in its infancy, recent research on oral cancer has used 3D in vitro
models to advance the growing need for these systems for clinical translation, which is
categorized into two forms, scaffold-free and scaffold-based strategies (Figure 1, Table 3).
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Figure 1. Comparison of 2D and 3D models for oral cancer studies and exploring cellular interactions
in these conditions. In a 2D culture, cells establish connections with neighboring cells, the container’s
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communication with neighboring cells and the extracellular matrix. Created with BioRender.com.

Table 3. Comparison among 2D model, 3D model, and animal model.

2D Model 3D Model Animal
Model

Modeling human development and disease - + +

High costs, high personal, and work effort - - +

High-throughput screening + + -

Personalized medicine - + -

Vascularization and immune system - - +

Architecture - + +
The signs indicate - and +, -: negative, and +: positive.

BioRender.com
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3.1. Two-Dimensional Models

In the realm of in vitro cancer research, the traditional way of cultivating cells in a
flat, 2D environment using culture flasks or Petri dishes has long been favored due to
its cost-effectiveness, simplicity, and ability to yield consistent results. The application of
2D cell culture models is accepted as a means to evaluate how cells respond to potential
drugs. While the acceptance and uses of 2D cell culture have undoubtedly contributed
to the advancement of comprehending the mechanisms of drug action, it is not without
its constraints [139,140]. Therefore, this straightforward approach falls short of capturing
the intricate, diverse, and ever-changing nature of the TME due to a range of limitations.
These drawbacks encompass insufficient cell differentiation, unrealistic cell growth patterns,
diminished drug resistance, and inaccurate reactions to mechanical or chemical signals [141].
Consequently, employing this 2D culture technique creates notable discrepancies when
compared to the dynamic conditions present in living organisms, encompassing factors
such as tissue development, specialized cell functions, cell division, cellular migration,
gene and protein expression, signal transduction, and responsiveness to stimuli [142,143].

Relying solely on the 2D pre-clinical model is far from ideal and can generate mis-
leading research results, primarily because cells exhibit distinct behaviors when cultured
in a 2D setting compared to when they are organized in a 3D structure [144]. The earliest
indication of this phenomenon dates back to 1985 when Miller and colleagues made a
noteworthy discovery: tumor cells cultivated as multicellular spheroids within a collagen
gel displayed heightened resistance to drugs compared to cells grown as a single layer [145].
Recent studies exploring the response to chemotherapy and radiation treatment in both 2D
and 3D spheroids have yielded similar findings. These investigations revealed that oral
cancer cells cultured in 3D tumor spheroids exhibited enhanced resistance to radiation and
greater viability, even when exposed to higher doses of cisplatin [146–148].

3.2. Three-Dimensional Models

In a bid to overcome the constraints inherent in flat cell cultures, scientists have
ventured into the realm of creating advanced in vitro cancer models that embody 3D
structures. It has been scientifically established that the essential functions of the ECM and
its significance as a vital biomaterial in tissue engineering cannot be understated. When it
comes to obtaining the ECM for tissue engineering, two distinct strategies come into play:
the employment of scaffolds or the scaffold-free approach. Each approach brings forth its
own set of advantages and disadvantages; thus, the purpose of the research is decisive in
choosing a type of strategy. The scaffold-based approach entails the utilization of an external
material as a substitute for the natural ECM. This method grants the ability to manipulate
the mechanical and chemical aspects of the cell’s ECM, while concurrently providing
enhanced structural integrity for the regeneration of larger tissues [149]. Conversely, the
scaffold-free approach facilitates tissue formation by compelling cells to aggregate into
small spheres, aptly named “spheroids”, which possess the capacity to develop an inherent
ECM. This approach offers several benefits, including a high initial cell density, swift
formation, and the creation of a self-organized tissue-like structure [150] (Figure 2).
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3.2.1. Scaffold-Free Strategy

The scaffold-free method takes a unique “bottom-up” approach to constructing tissues.
Instead of using scaffolds, it relies on small building blocks in three forms: spheroid, cell
sheet, or tissue strands. These building blocks naturally combine and form larger structures.
Unlike the scaffold-based technique, the scaffold-free method does not heavily rely on
cell growth and movement, making the tissue construction process faster. One significant
advantage of this approach is its capability to create complex tissue and organ structures
by using diverse building blocks made up of different types of cells [150].

In a study, a cell sheet was made up of patient-specific epithelial and sub-epithelial cells
to create a co-culture system for head and neck squamous cell carcinoma (HNSCC) patient-
derived explants. The findings revealed that this co-culture system significantly enhanced
the survival and longevity of the explants compared to other non-matrix models [151].
Moreover, the system also demonstrated a decrease in viable cancer cells following standard-
of-care treatments. However, despite the potential of cell sheet cultural techniques, they are
not easily accessible, challenging to establish, and expensive, which limits their widespread
adoption [152]. In addition, there is no original study about tissue strand technology and
oral cancer. Thus, most studies in oral cancer using the scaffold-free method focus on
spheroids and their advanced form, the organoid, which is addressed in the following
sections.

Spheroid

Tumor cells, when cultivated as spheroids, take on a 3D structure that emphasizes
cell-to-cell connections rather than interactions with the culture substrate. These spheroids,
unlike conventional 2D cell cultures, provide numerous benefits. They foster enhanced cell-
to-cell communication and facilitate improved diffusion of vital substances and molecules.
Multicellular tumor spheroids bear a striking resemblance to avascular tumor masses found
in large solid tumors. They exhibit comparable characteristics in terms of appearance,

BioRender.com
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growth dynamics, cell division, drug permeability, nutrient gradients, oxygen levels, and
the formation of a hypoxic core [153].

As in the case of in vivo tumors, deep within the spheroid, cells encounter limited
diffusion of nutrients, causing the development of a necrotic core. Additionally, the
accumulation of metabolic waste and decreased nutrient availability leads to a notable
decrease in the microenvironment’s pH. This pH gradient has the potential to affect drug
release and influence the activity of genes related to multiple drug resistance, such as
Multiple drug resistance (MDR). Consequently, therapeutics targeting hypoxic regions may
face reduced uptake [154]. On the other hand, cells residing in the outer boundary of the
spheroid (around 100–300 µm from the surface) enjoy better access to oxygen and nutrients,
leading to heightened rates of proliferation [155].

Numerous investigations have showcased the potential of oral cancer spheroids as
a valuable tool for replicating different aspects of tumor tissue, particularly its growth
state and hypoxic conditions [156–158]. However, the utilization of this system is limited
due to the spheroids’ constrained ability to self-renew and differentiate. Furthermore,
spheroids can only mimic small-scale microenvironments since controlling their growth
becomes challenging during culturing, resulting in central necrosis if they exceed a certain
size [159]. Moreover, spheroids lack the intricate complexity found in actual tumor tissues,
primarily because they are often composed of a single cell line and have minimal ECM
deposition [153]. In response to these limitations, researchers have devised spheroids that
incorporate diverse stromal components, such as CAFs, alongside epithelial HNSCC cancer
cells. The aim is to establish a more representative tumor model that accounts for the crucial
role of stromal cells in tumorigenesis [160].

Organoid

An organoid represents a more advanced version of a cellular spheroid that remark-
ably imitates the physicochemical conditions of a specific tissue. In contrast to spheroids,
organoids possess a more organized cellular architecture when grown on specific matrices,
resulting in a structured arrangement of cells [161]. Organoids can display various biologi-
cal characteristics akin to living tissues, such as tissue organization, regenerative capacity,
drug responses, and the retention of tumor heterogeneity [162]. Notably, Driehuis et al. [163]
successfully generated human mucosal organoids from 31 patient-derived HNSCC sam-
ples originating from diverse head and neck regions. Through immunohistochemical and
genetic analyses, it was revealed that these organoids preserved the histological traits
and molecular abnormalities observed in the original tumor specimens. Functionally, the
organoids exhibited distinct sensitivity to a range of drugs, including cisplatin, carboplatin,
cetuximab, and radiotherapy, highlighting their potential for drug screening in HNSCC.
Furthermore, when transplanted beneath the skin of mice, the organoids displayed atyp-
ical features, tripolar mitotic figures, nuclear pleomorphism, and invasion into muscle
tissue, showcasing their tumorigenic abilities in vivo. These findings indicate that HNSCC
organoids faithfully replicate the genetic, histological, and functional aspects of HNSCC
and hold promise as a platform for personalized cancer therapy.

Nevertheless, despite the benefits of organoids, there remain various limitations that
necessitate attention. Tumor organoids usually recreate tumors originating from a single
organ and fail to capture the intricate nature of cancer metastasis that involves multiple
organs. Additionally, organoid cultures do not faithfully reproduce the spatial arrange-
ment of cellular and non-cellular constituents within the tumor microenvironment [162].
Consequently, there are discrepancies in organoid complexity, size, morphology, and 3D
structure, posing challenges in the standardization of organoid culture protocols [164].

3.2.2. Scaffold-Based Strategy

Scaffolds crafted from natural substances such as collagen, Matrigel, and silk, as well
as synthetic materials including polyethylene glycol (PEG) and poly(lactic-co-glycolic acid)
(PLGA), or a combination thereof, offer robust support for cell development and can emu-
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late numerous mechanical and biochemical characteristics of the original ECM [165]. The
approach of utilizing scaffolds has been extensively employed to engineer diverse oral
tissues, facilitating the exploration of underlying cancer mechanisms. For instance, scien-
tists have ingeniously created human-tissue-engineered oral mucosal models (TEOMMs)
by seeding keratinocytes onto matrices populated with fibroblasts and culturing them at
the interface between air and liquid [166]. TEOMMs have enabled researchers to capture
distinct stages of OSCC, encompassing oral dysplasia, early invasive OSCC, and the neo-
plastic transformation associated with stromal fibroblasts [167–169]. As an illustration,
Sawant et al. [170] developed a TEOMM representing normal, dysplastic, and malignant
tongue tissues to investigate the neoplastic progression throughout various stages of tongue
tumorigenesis. Histomorphometry, immunohistochemistry, and electron microscopy analy-
ses performed on the three types of models demonstrated comparable stratified growth,
cell proliferation, and differentiation between co-cultures and their respective native tis-
sues. These findings suggest that crucial steps in the development of oral tumors can be
replicated in vitro using scaffold-based engineered tissues.

Limitation and Improvement of 3D Model

However, it is crucial to acknowledge that the distinctions between traditional 3D
models and the authentic TME go beyond mere dimensional variations. The development
of cancer involves a multifaceted process influenced by numerous cues that synergisti-
cally manifest cancer hallmarks. Consequently, to capture in vivo scenarios with greater
fidelity, it is imperative to devise biomimetic in vitro alternatives. In general, the conven-
tional in vitro 3D models face notable limitations, including the constrained potential for
vascularization and the absence of well-arranged spatial distribution of tumor cells and
ECM compositions. These factors are pivotal aspects of the native TME. The 3D in vitro
models incorporate co-culture of cancer cells with several types of stromal cells to mimic
tumor characteristics in vivo. In vitro, 3D culture revealed more aggressive behaviors
and resistance to anticancer medicines than 2D culture, underlining the potential use of
chemotherapy screening [134]. Advanced cancer screening models have the potential to
reduce drug development costs by reducing the number of animals required for clinical
trials [171].

To tackle this obstacle, the utilization of microfluidic platforms presents a promising
solution to mimic complex and dynamic tumor microenvironments. These platforms,
intricately crafted at a microscopic scale, consist of interconnected chambers, membranes,
and grooves that facilitate the controlled manipulation of small fluid volumes. They
have found extensive applications in the field of in vitro modeling, including the devel-
opment of organ-on-a-chip models [172–175] and point-of-care systems [176]. Within the
realm of cancer research, microfluidic platforms are predominantly constructed using ad-
vanced techniques such as lithography and surface micromachining, employing materials
such as polydimethylsiloxane, silicon, glass, polycarbonate, and polymethylmethacry-
late [172,174,177,178].

4. Application of 3D Model in Oral Cancer
4.1. Oral Microbiota Study

OSCCs, which refer to malignant growths in the epithelial lining of the lip and oral
cavity, contribute significantly to global mortality and morbidity [1]. The primary cul-
prits behind OSCC are believed to be tobacco and alcohol consumption. However, recent
research suggests that factors such as inflammation and the oral microbiome also play
a role in developing oral cancer. The presence of bacterial dysbiosis in surface lesion
samples of OSCC is characterized by significant alterations in bacterial composition and
bacterial gene functions compared to control samples. Specifically, a notable enrichment of
periodontitis-associated taxa within the OSCC samples was observed, including Fusobac-
terium, Dialister, Peptostreptococcus, Filifactor, Peptococcus, Catonella, and Parvimonas [179].
Several inflammatory mediators, salivary proteins, and oral microbiota are shared between
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inflammatory conditions of the oral cavity (IL-1, IL-6, IL-8, TNF-α), such as periodontitis,
and oral cancer [180,181].

To imitate the interactions between a host and microorganisms in the mouth, an ideal
host model should possess the ability to support a viable microbial community. It should
facilitate the exchange of metabolites and nutrients with the microbes, interpret microbial
signals, respond accordingly, and eventually achieve a state of balance within a specific
timeframe [182].

Due to their increased physiological relevance, 3D host models are becoming increas-
ingly valuable for both fundamental research and clinical applications. In the current
field of oral (dental) research, animal models and 2D cell models continue to be heavily
relied upon for mechanistic studies and pre-clinical testing of oral hygiene products and
medications. These studies encompass various areas, such as the treatment of salivary
secretory disorders, oral wound healing, and oral cancers [183–185]. Since hard tissues
contain relatively few organic components, studies on corresponding host–microbe interac-
tions have predominantly focused on biofilms formed on inorganic surfaces, extensively
exploring their metabolism, composition, and structures [186–188].

The earliest organotypic models of the host involved using tissue explants embedded
in or cultured on various types of 3D gels to create a structure resembling an organ [189].
In the case of oral 3D models, the tissue is obtained by directly removing a section of
oral mucosa from a human or animal [190]. However, due to ethical concerns and the
limited availability of human oral mucosa, along with significant variations between
donors [191], researchers began developing in vitro reconstructed organotypic models as a
scalable and reproducible alternative. These models were designed to replicate important
biological characteristics of the oral epithelium or oral mucosa (gingiva), including the
3D tissue architecture and the communication between different types of host cells and
ECM. Organotypic models of oral cancer have proven their worth in the discovery of novel
drug targets, evaluating the effectiveness of drug delivery systems, and confirming the
biosafety and compatibility of graft materials for oral-maxillofacial surgery. Extensive
reviews of these models can be found elsewhere [192–194] (Figure 3A). However, despite
the significant impact of the oral microbiota on host physiology and pathology, it has not
been widely incorporated into these models. In the studies that have begun to address this,
researchers have employed various representative microorganisms to imitate host–microbe
interactions in different oral niches.

Various types of cells were used as host cell sources in 3D oral host–microbe interaction
models, including cancer cell lines [195,196], immortalized cell lines [197,198], and primary
cells [186,199]. Studies utilizing these different cell sources showed similar outcomes when
exposed to specific microbes, such as Candida albicans, in terms of tissue histology, Lactate
dehydrogenase (LDH release), Human beta-defensin-2 (hBD2) expression, and secretions
of TNF-α, IL-1β, and CXCL-8 [200].

When exposed to commensal microbial species, reconstructed human mucosal (RHM)
models using either primary gingival cells or immortalized telomerase reverse transcriptase
(TERT) cell lines exhibited similar responses. They remained viable and showed protective
responses, such as activation of toll-like receptor (TLR) signaling pathways, increased
expression of antimicrobial peptides (Elafin, hBD-2, hBD-3), and release of cytokines (IL-6,
CXCL8, CXCL1, and C-C Motif Chemokine Ligand (CCL) 20) (Shang et al., 2018, 2019, 2020).
Following exposure to a pathogenic biofilm composed of five species, two RHM models
constructed with different keratinocyte cell lines demonstrated comparable levels of tissue
damage, which were lower than those observed in a commercial reconstructed human
epidermis (RHE) model after the same biofilm exposure [195]. Another study suggested a
slightly higher invasion of Porphyromonas gingivalis occurred in 3D models using the H357
cell line (Human oral squamous cell carcinoma) compared to primary keratinocytes, but
the difference was not significant [201].
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Figure 3. The most common application of 3D culture in oral cancer is related to examining the
microbial population in oral cancer, drug screening, and the interaction between immune cells and
cancer cells. (A) The first application can be a suitable model for investigating infection; it facilitates
the study of the relationship between cells and microbes, and is ideal for the screening of effective
drugs for infection control in oral cancer. (B) The second approach offers a solution to explore
drug resistance mechanisms and examine crucial cellular interactions more effectively. (C) Finally,
the investigation of interactions between oral cancer cells and immune cells involves labeling and
imaging cell contacts to identify cell functions. Created with BioRender.com.

4.2. Drug Discovery

Currently, the most commonly used method to evaluate drug development for HNCs
is the conventional 2D in vitro model. These models are favored due to their low cost, high
reproducibility, and potential for co-culture capabilities [134]. However, there are certain
limitations with 2D models that need to be addressed. Firstly, they are unable to replicate
the physical structure of tumors. Secondly, they cannot prevent the mixing of culture media
in multicellular models, which can lead to cross-contamination. Lastly, they fail to simulate
the oxygen deprivation and irregular blood flow in the hypoxia region, which are crucial
factors in assessing tumor progression, chemoresistance, and treatment response [136,137].
To overcome these challenges, advanced in vitro systems such as spheroids, 3D scaffolds,
and microfluidic devices have been developed [138]. Although the use of these culture
platforms to model the HNCs and oral cancer microenvironment, and facilitate drug
discovery, is still in its early stages, recent research in HNCs has shown promising results
using 3D in vitro models. These advancements are essential to meet the increasing demand
for improved systems for clinical translation (Table 4, Figure 3B).

BioRender.com
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Table 4. 3D models for drug discovery in OSCC and HNCs.

3D Models Drug Application Reference

Spheroid

Cetuximab
Cisplatin

To assess the impact of both 2D and 3D
culture techniques on gene expression
related to cell junctions, cell adhesions,
cell cycle, and metabolism.
To verify the feasibility and practicality
of this novel 3D culture approach for
oral cancer research.

[147,202–204]

Cisplatin
Doxorubicin
Methotrexate

To evaluate the differences in
chemoresistance between 2D and 3D
culture methods.

[205–207]

Cisplatin
5-FU
2-Gy
Radiation

To assess and compare the efficacy of
2D and 3D methods as platforms for
chemotherapy and radiotherapy
testing.

[208,209]

Cetuximab

To develop a biologically significant
in vitro model of HNSCC that
accurately replicates the tumor
environment by incorporating both
tumor cells and CAFs in a 3D culture
system.

[210]

Organotypic models

Cisplatin
Docetaxel ± 5-FU

To evaluate and compare the suitability
of 2D and 3D methods as platforms for
assessing chemotherapy sensitivity.

[151,211,212]

Cisplatin ± (carboplatin, cetuximab,
radiotherapy)

To assess and compare the effectiveness
of 2D and 3D methods as platforms for
chemotherapy screening and
regenerative purposes.

[163,213]

Cetuximab
mTOR inhibitor
Canertinib
Dactolisib
PF-04691502
Apitolisib
Omipalisib
Refametinib
binimetinib
trametinib
pimasertib
trametinib

To evaluate and compare the efficacy of
2D and 3D methods as platforms for
dual drug screening.

[214,215]

Microfluidic
platforms

5-FU
Cisplatin ± (Paclitaxel, Cetuximab,
Carboplatin) The use of a dynamic culture method as

a platform for chemotherapy screening.

[175,216,217]

IDO1 inhibitor ± (PDL1 antibody,
Nivolumab) [172,218]

4.3. Cell–Cell Interactions

Understanding the progression of cancer heavily relies on comprehending the intricate
microenvironment in which malignant tumor cells thrive [219]. The physical and bio-
chemical attributes of this environment play a pivotal role in regulating various aspects of
cancer, including cell differentiation, proliferation, invasion, and metastasis [220]. Thus, it
is imperative to gain insights into the interactions and communication between cancer cells
and their surrounding tissue, referred to as the tumor stroma, as this interplay profoundly
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influences the advancement of the disease. In order to mimic the conditions of TME, 3D
in vitro models have become widely employed [221,222] (Figure 3C).

The use of 3D organoid models in co-culture systems has emerged as a prominent
area of research, particularly in the evaluation of anticancer properties. These models aim
to mimic the complex interactions occurring within the tumor microenvironment [223].
Likewise, the exchange of signals between stromal cells and cancer cells through paracrine
signaling has been recognized to promote both cell proliferation and the development
of drug resistance. In Table 5, various model systems employed in studies related to
HNCs are presented. These models offer the advantage of customization according to the
specific parameters being investigated, surpassing traditional techniques. For example,
to understand the role of monocytes, they can be cultured alongside HNC cells [224–227].
Similarly, fibroblasts and peripheral blood mononuclear cells (PBMCs) can be co-cultured
with HNC cells for epidermal growth factor receptor (EGFR)-related investigations [228]
and antibody testing [229], respectively.

Several previous studies have provided evidence regarding the involvement of TAMs
and Human Dermal Fibroblasts (HDFs) in cancer stemness and invasion,
respectively [230,231]. The response to drugs targeting EGFR has been investigated with
CAFs, revealing variations [214]. Various organoid models of HNCs have been estab-
lished to investigate signaling pathways, such as Extracellular signal-regulated kinase 1/2
(ERK1/2) and Nanog [232], as well as their interactions with Human herpes simplex-1
(HSV1) and papillomavirus type 16 (HPV16) [163], the invasiveness of cancer [233], drug
screening [234], and other defining characteristics [235]. An innovative microfluidics plat-
form called the Hydrodynamic Shuttling Chip (HSC) has been developed to separate and
co-culture single-cell SCC with lymphatic endothelial cells, enabling the observation of cell
motility and intercellular communication [236].

Table 5. Interactions of oral cancer cells and immune cells.

3D Model Aim Result References

Co-culture of monocytes with
spheroids originating
Malignant/benign HNC

The connection between the
response of this cytokine
co-culture and the prediction
of outcomes.

The secretion of IL-6 during in vitro
co-culture with monocytes and BF
1-spheroids serves as a prognostic indicator
for recurrence and overall prognosis,
whereas co-culture with monocytes and MF
2-spheroids predicts the likelihood of
recurrence.

[227]

Co-culture of HNC cell line with
fibroblasts in spheroid form

Generation of a spheroid
model of EGFR-expressing
HNC.

The upregulation of chemokine expression
by anti-EGFR mAb 3 promotes the
infiltration of leukocytes into tumor
spheroids. This unique mechanism of action
of anti-EGFR mAb could potentially enhance
the anti-tumor effects of the antibody in
living organisms.

[228]

Spheroid form of HNC cell line
culture with leukocytes from
PBMC 4

The evaluation of utilizing a
3D tumor cell culture model,
specifically spheroids, as a
suitable representation of
micro-metastases.

The utilization of the spheroid model
demonstrates the manifestation of
pathophysiological traits, intricacy, and
heterogeneity of tumor tissue observed
in vivo, which significantly impacts the
effectiveness of therapeutic interventions.

[229]
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Table 5. Cont.

3D Model Aim Result References

Co culture of HNC spheroids with
TAMs

The signaling of CD44,
influenced by TAMs, has the
potential to facilitate stemness
through the
PI3K-4EBP1-SOX2 pathway.
This effect may occur by
regulating the availability of
HA 5, which is the primary
ligand for CD44.

The results establish a mechanistic
connection between CD44 in tumor cells,
TAMs, and the properties of CSCs 6 at the
interface between tumor and stroma. This
connection highlights a crucial area for
targeting and discovering drugs.

[231]

Co-culture of HNC cell line with
HDFs

The understanding of how
cancer cells, fibroblasts, and
the surrounding collagen
matrices interact and promote
cancer cell invasion in
different environments with
varying concentrations of
collagen.

The presence of HDFs played a crucial role in
facilitating the invasion of HNC cells into the
surrounding extracellular matrix
characterized by high collagen concentration,
elevated storage modulus, and narrow pore
sizes.

[230]

Co-culture of HNC cell line with
CAFS

Assessing the impact of CAFs
on the treatment response and
migratory behavior of HNC.

The presence of CAFs resulted in enhanced
cell proliferation within the tumor spheroids,
which was accompanied by elevated EGFR
expression. Notably, spheroids exhibiting
heightened EGFR expression displayed an
augmented response to cetuximab treatment.

[210]

HNC spheroids
Role of ERK1/2-Nanog
pathway in tumorigenesis in
HNC.

HNSCCs sustain a population of CSCs by
utilizing the ERK1/2 signaling pathway and
Nanog.

[232]

Oral mucosal Organoids and
HNC patient-derived tumoroids In vitro 3D model for HNC.

Drug screening for both existing and
experimental therapeutic treatments for
HNC.

[163]

HNC spheroids The correlation of CD44 and
HIF-1α expression.

By focusing on HIF-1α, the impact of
NOTCH1-induced stemness, which controls
the reaction to chemotherapy or
radiotherapy as well as the malignancy in
CD44+ HNSCCs, was reduced. Targeting the
signaling of HIF-1α/NOTCH1 could
potentially serve as a therapeutic approach
for the treatment of HNSCC.

[237]

Co-culture of OSCC cell line with
CAFS

Role of stromal NNMT 7 in
TME.

The harmful cancer-promoting effects caused
by stromal NNMT were reduced when
fibroblasts were treated with inhibitors
targeting collagen production, such as
losartan, tranilast, and halofuginone.

[238]

1 benign, 2 malignant, 3 monoclonal antibody, 4 peripheral blood mononuclear cells, 5 hyaluronic acid, 6 cancer
stem cells, 7 Nicotinamide N-methyltransferase.

5. Potential Application of 3D Model in Studying TAM Functions in Oral Cancer

Within the TME, immune cell components, notably TAMs [239,240], play a dominant
role in suppressing the adaptive immune system through various pathways [241,242].

TAMs employ multiple strategies to hinder the activity of immune cells. They express
receptor molecules for immune checkpoint proteins, including PD-1 and CTLA-4, while also
releasing cytokines and chemokines that trigger Treg-mediated suppression pathways [243].
This interplay between TAMs and other immune elements is bidirectional.

It is crucial to utilize 3D in vitro tumor models to investigate the interaction between
tumor cells and their microenvironment in a biologically relevant manner. Organotypic
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co-cultures have been previously employed to examine the malignant growth of human
SCC cell lines in vitro, where the cell lines are cultivated on a collagen-I gel containing
fibroblasts to mimic the stromal environment [244]. Recognizing the significant role played
by macrophages in tumor progression, this model was further developed by incorporating
macrophages into the collagen gel of these organotypic tumor co-cultures. This approach
was established as both a murine and a human system for studying skin SCCs. The
impact of macrophages on tumor progression relies on their polarization state. It was
demonstrated that in organotypic co-cultures, the polarization of macrophages can be
directed towards either an M1 or an M2 phenotype by introducing recombinant IFN-γ
and lipopolysaccharide (LPS) or IL-4, respectively, into the growth medium. Stimulation
of macrophages with IL-4 in these cultures led to an intensified invasion of tumor cells,
as evidenced by basement membrane degradation, increased collagenolytic activity, and
elevated levels of MMP-2 and MMP-9. Interestingly, prolonged co-culture with tumor cells
for three weeks resulted in spontaneous M2 polarization of macrophages without the need
for IL-4 treatment. Thus, the integration of macrophages into organotypic co-cultures of
murine or human skin SCCs has proven to be successful, providing a valuable model for
investigating the activation of macrophages towards a phenotype that supports tumor
growth [245].

The influence of different macrophage phenotypes on cancer cells was examined,
revealing that activated macrophages of the M2 phenotype had a substantial impact on
promoting the proliferation, migration, and invasion abilities of cancer cells. To mimic the
tumor microenvironment, co-cultures of M2 macrophages and cancer cells were established
within agarose hydrogels. It was confirmed that the expression of CXCL2, a chemokine,
was notably higher in the co-culture system. Functional analysis data indicated that the
addition of recombinant human CXCL2 significantly enhanced the migration and invasion
abilities of cancer cells while impairing their adhesion ability. Notably, the effects of CXCL2
on cancer cells were effectively diminished by neutralizing CXCL2 or blocking its receptor,
CXCR2. This observation suggests that CXCL2 may play a critical role in facilitating
metastasis [246].

TAMs exhibit a mixed phenotype combining characteristics of both M1 and M2
macrophages, and their distribution within the tumor microenvironment is believed to
be dynamic and evolving throughout tumor progression [247–249]. However, the under-
standing of how TAMs specifically influence the tumor microenvironment is limited by
the absence of suitable 3D in vitro models that can capture the intricate dynamics between
cells with high spatial and temporal resolution. To address this, a novel microphysiolog-
ical “tumor-on-a-chip” (TOC) device was employed to investigate the impact of distinct
subsets of macrophages on tumor behavior. The TOC device features three interconnected
chambers, with tumor cells loaded in both the upper and lower chambers, while the central
chamber contains a living microvascular network that can be perfused. When human pan-
creatic or colorectal cancer cells were introduced alongside M1-polarized macrophages, a
significant inhibition of tumor growth and tumor-induced angiogenesis was observed. De-
tailed protein analysis and neutralization studies using specific antibodies confirmed that
these effects were mediated through the production of C-X-C motif chemokines (CXCL9),
CXCL10, and CXCL11 by the M1 macrophages. In contrast, M2 macrophages facilitated
increased migration of tumor cells into the vascularized chamber, without inhibiting tumor
growth or angiogenesis. This innovative TOC model provides valuable insights into the
complex interactions between TAMs and tumor cells, shedding light on the contrasting
roles played by M1 and M2 macrophages in the tumor microenvironment [250].

Macrophages, commonly found within the TME, actively collaborate with cancer cells
during the invasion process [251,252], coinciding with the presence of elevated interstitial
flow (IF) levels [253,254]. Although studies have extensively explored the biochemical
mechanisms driving pro-tumor macrophage functions, IF within the TME has often been
neglected [239,255]. The concept of a 3D microfluidic model revolves around understanding
the dynamics of fluid movement within micro-sized channels and the advanced techniques
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involved in fabricating miniature devices comprising chambers and tunnels that serve as
pathways or confinement spaces for fluid flow [256]. Therefore, a novel 3D microfluidic
model was devised to investigate how IF impacts macrophage migration and its potential
contribution to cancer invasion when combined with tumor cells [257]. Interestingly, the
presence of either tumor cells or IF individually heightened macrophage migration in terms
of directionality and speed. However, when tumor cells and IF were simultaneously present,
no additional effect on macrophage migration directionality and speed was observed [257].

6. Conclusions and Future Perspective

Over the past decade, remarkable progress has been made in unraveling the mys-
teries of the immune system’s fight against cancer. These advancements have spanned
a wide range, from fundamental scientific research to practical clinical studies. As our
understanding of the underlying biology becomes more intricate, it is essential to employ
models that can capture this complexity. Three-dimensional culture systems have emerged
as invaluable tools that offer both complexity and interpretability.

Geometry, multicellularity, and continuous irrigation are important characteristics
for generating oral-cancer-specific in vitro models for drug screening and development.
Organotypic multicellular spheroid and organoid cultures are useful for simulating cancer-
specific TME by reflecting required shape and cell–cell/–ECM interactions found in tumor
tissues. Organotypic models can be integrated with microfluidic devices to assess cell-to-
cell communication and obstacles to mass transport of oxygen, nutrients, and medicinal
therapies. The use of a tumor-on-a-chip technology is intended to reduce the requirement
for animal models and the likelihood of clinical trial failures in translational research.

The application of 3D culture systems has revolutionized cancer research, shedding
light on various aspects such as the distribution of immunotherapy, the infiltration of
immune cells, and the suppression of the immune system caused by cancer. These systems
have provided new insights and deepened our understanding in these areas and beyond.
However, there are still untapped areas in the field of cancer immunology where 3D culture
systems have yet to make their mark.

For instance, understanding the migration and function of Treg cells, unraveling
the biology of myeloid-derived suppressor cells, and advancing vaccine development are
promising avenues that could benefit from the application of 3D culture systems. As the cost
of 3D technology decreases and accessibility improves, and as we explore the conceptual
possibilities of these systems, it is highly likely that their popularity will continue to soar.
In fact, they may even replace 2D culture methods altogether, marking a new era in cancer
research and therapy.

Hence, 3D culture systems present an immense prospect for investigating cancer
immunology; however, they do come with certain limitations. The heightened intricacy of
these systems can pose challenges when it comes to reproducing results both within and
between experiments. Additionally, compared to 2D culture systems, 3D culture systems
are costlier and less readily accessible. Some microscopy techniques may struggle to capture
images of 3D cultures due to their depth and limited transparency.

When it comes to utilizing 3D culture systems for studying cancer immunology, main-
taining primary immune cells in culture for extended periods can be difficult, regardless of
whether it is in a 2D or 3D environment. Moreover, the extraordinary complexity of the
immune system, with its multiple steps and interactions between various cell types, may
restrict the applicability of simple heterotypic or multicellular culture methods.

However, there is good news on the horizon. As technology continues to advance, the
accessibility, versatility, and relevance of 3D models are expected to expand concurrently.
This suggests that the limitations currently associated with 3D culture systems can be
overcome with further developments, opening up even more possibilities for exploring
cancer immunology in the future.
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