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Simple Summary: Intrahepatic cholangiocarcinoma is a disease with increasing incidence and poor
prognosis. The clinicians have a limited capability to predict tumor behavior because the strongest
predictors of survival are the pathology data that, unfortunately, can be determined only after surgery.
Recently, radiomics, i.e., the mathematical analysis of imaging modalities, led to a major improvement
in the non-invasive prediction of microscopic characteristics of several tumors. In this multicenter
study, we collected a large number of patients affected by intrahepatic cholangiocarcinoma and
we demonstrated that the radiomic data of the tumor and peritumoral tissue extracted from the
computed tomography at diagnosis have a strong association with tumor grading and microscopic

Cancers 2023, 15, 4204. https://doi.org/10.3390/cancers15174204 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15174204
https://doi.org/10.3390/cancers15174204
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-3932-1330
https://orcid.org/0000-0003-2300-0460
https://orcid.org/0000-0003-1596-2862
https://orcid.org/0000-0002-5059-3305
https://orcid.org/0000-0002-5631-1575
https://orcid.org/0000-0001-7932-5921
https://orcid.org/0000-0002-9551-4949
https://orcid.org/0000-0002-2003-9434
https://orcid.org/0000-0003-4334-5167
https://orcid.org/0000-0001-5862-6151
https://orcid.org/0000-0003-1713-4307
https://orcid.org/0000-0003-2214-6492
https://orcid.org/0000-0001-5798-5021
https://orcid.org/0000-0003-0165-1983
https://orcid.org/0000-0002-4108-4832
https://doi.org/10.3390/cancers15174204
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15174204?type=check_update&version=1


Cancers 2023, 15, 4204 2 of 14

vascular invasion, which are two major biomarkers of tumor aggressiveness. The combination
of radiomic and clinical data maximizes the accuracy of prediction. The integration of radiomics
into clinical decision processes is probably one of the following steps toward a precision medicine
approach in patients affected by intrahepatic cholangiocarcinoma.

Abstract: Standard imaging cannot assess the pathology details of intrahepatic cholangiocarcinoma
(ICC). We investigated whether CT-based radiomics may improve the prediction of tumor charac-
teristics. All consecutive patients undergoing liver resection for ICC (2009-2019) in six high-volume
centers were evaluated for inclusion. On the preoperative CT, we segmented the ICC (Tumor-VOI,
i.e., volume-of-interest) and a 5-mm parenchyma rim around the tumor (Margin-VOI). We considered
two types of pathology data: tumor grading (G) and microvascular invasion (MVI). The predictive
models were internally validated. Overall, 244 patients were analyzed: 82 (34%) had G3 tumors and
139 (57%) had MVI. For G3 prediction, the clinical model had an AUC = 0.69 and an Accuracy = 0.68
at internal cross-validation. The addition of radiomic features extracted from the portal phase of
CT improved the model performance (Clinical data+Tumor-VOI: AUC = 0.73/Accuracy = 0.72;
+Tumor-/Margin-VOI: AUC = 0.77/Accuracy = 0.77). Also for MVI prediction, the addition of portal
phase radiomics improved the model performance (Clinical data: AUC = 0.75/Accuracy = 0.70;
+Tumor-VOI: AUC = 0.82/Accuracy = 0.73; +Tumor-/Margin-VOI: AUC = 0.82/Accuracy = 0.75).
The permutation tests confirmed that a combined clinical–radiomic model outperforms a purely
clinical one (p < 0.05). The addition of the textural features extracted from the arterial phase had no
impact. In conclusion, the radiomic features of the tumor and peritumoral tissue extracted from the
portal phase of preoperative CT improve the prediction of ICC grading and MVI.

Keywords: mass-forming intra-hepatic cholangiocarcinoma; microvascular invasion; grading;
pathology data; prognosis; CT-based radiomics; advanced imaging and analyses; prediction of
outcome; peritumoral tissue; biomarkers

1. Introduction

Intrahepatic cholangiocarcinoma (ICC) is no longer a rare entity; to date, it is the
second most common primary hepatic malignancy with rapidly increasing incidence [1,2].
It is an aggressive tumor resistant to standard cytotoxic chemotherapy regimens [3]. The
only potentially curative approach is surgery [4]. However, recurrence frequently occurs
and affects long-term survival, which ranges between 25% and 40% at five years after
resection [4–6]. Even if standard morphological parameters (tumor size, number of foci,
and suspicious nodal metastases) have a good association with postoperative survival,
the pathology data (tumor grading, microscopic vascular invasion, and N status) are the
strongest prognosticators [7–9]. Unfortunately, these cannot be determined before surgery.
A reliable non-invasive preoperative assessment of pathology data would represent an
enormous asset for the multidisciplinary team since it would allow the selection of candi-
dates for resection and the indications to preoperative therapy in tumors with aggressive
biology to be refined.

In the last decade, the extraction of quantitative information from imaging has kindled
considerable interest. In particular, radiomics, defined as the high-throughput extraction
of textural features from medical images, has gained momentum [10]. There is growing
evidence that the “microscopic” pattern of both morphological and molecular imaging
can identify the intrinsic characteristics of the target tissue, such as vascularity and cel-
lular density [11,12]. For ICC, some preliminary studies have highlighted an association
between the radiomic features extracted from computed tomography (CT) and magnetic
resonance imaging (MRI) and the pathology characteristics [13]. However, the results for
tumor grading and microscopic vascular invasion (MVI) are discordant. Further, all papers
considered radiomic scores or signatures, i.e., a mathematical combination of textural fea-
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tures, that achieve the highest correlation with the outcome parameter but may discourage
validation and reduce the applicability of data. Finally, the authors did not consider the
peritumoral parenchyma, i.e., the liver/tumor interface where tumor progression occurs.
Our group recently highlighted that including the radiomic features of the peritumoral
region extracted from [18F]-fluorodeoxyglucose PET can improve the prediction of tumor
grading and MVI of ICC [14].

This large multicenter study aims (1) to elucidate if the radiomics of ICC and its
peritumoral tissue extracted from preoperative CT can contribute to the non-invasive
prediction of tumor grading and MVI; (2) to analyze the predictive performance of a
combined clinical–radiomic model in comparison with that of a pure clinical one (model
development).

2. Materials and Methods

The institutional databases of six high-volume centers were retrospectively analyzed to
identify all consecutive patients affected by mass-forming ICC undergoing liver resection
between January 2009 and December 2019. The complete list of the recruiting centers
is reported in Supplementary Table S1. The following inclusion criteria were applied:
adult subjects (≥18 years); diagnosis of ICC confirmed at final pathology; availability of
a preoperative contrast-enhanced CT with an adequate portal venous phase (acquired
within 70 to 90 s after contrast administration); and an interval between imaging and
surgery ≤ 60 days. We included exclusively multislice CT with a maximum slice thickness
of 5 mm. We utilized the following exclusion criteria: mixed ICC/hepatocellular carcinoma;
tumor size < 10 mm (such a small size could be inadequate for some radiomic indices
and peritumoral tissue analysis); low-quality imaging; surgery without liver resection
(i.e., explorative laparotomy); and previous loco-regional treatments, including ablation
or trans-arterial embolization. Neoadjuvant chemotherapy was not an exclusion criterion
but the CT after treatment was considered. If no CT after the end of treatment and before
surgery was performed, the patient was excluded. In the case of preoperative portal vein
embolization, the pre-embolization images were analyzed.

The study was performed according to the declaration of Helsinki and its subse-
quent amendments. The protocol was reviewed and approved by the ethics committee
of each participating center (for the coordinating center: protocol number 142/21, date
of approval 17 March 2021). Because of the retrospective nature of the investigation, the
need to obtain specific consent was waived. The study followed the TRIPOD guidelines
(Supplementary Table S2).

2.1. Study Endpoints

The main objective of the study was (1) to build a predictive model of the tumor
grading (G3 vs. G1-2) and MVI (present vs. absent) combining the clinical data with the
radiomic indices of the tumor and peritumoral tissue extracted from the portal phase of the
CT; (2) to compare the predictive performance of the combined clinical–radiomic model
with that of a purely clinical model. The secondary endpoints were (1) to analyze the
contribution of the radiomic data extracted from the arterial phase of CT; (2) to evaluate if
the center of origin influences the association between the radiomic features and outcomes
(tumor grading and MVI).

2.2. Imaging Acquisition, Tumor Segmentation, and Radiomic Features Extraction

Even if the images were acquired on different devices, all centers applied a similar
standardized protocol to perform CT for ICC staging, i.e., multiphasic breath-hold acqui-
sitions including a pre-contrast phase, an automatically bolus-triggered arterial phase, a
portal phase (acquired within 70 to 90 s after contrast administration), and an equilibrium
(late) phase (about 3 min after contrast administration).

The segmentation was performed in every participating center by a radiologist with
a long-standing experience in image analysis using the LifeX software application. The
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following precautions were adopted to ensure a consistent segmentation procedure across
all centers: (1) every institution utilized the same version of the software (version 6.3); (2) a
technical meeting was held before the analysis, during which a consensus was reached
about the procedure; and (3) the segmentation of the first two enrolled patients in each
collaborating center was performed under the scrutiny of a physician from the coordinat-
ing institution.

In subjects bearing multifocal ICC, only the largest lesion was analyzed. The tumor
volume segmentation (Tumor-VOI) was performed manually on the portal phase (Figure 1).
After that, the tumor volume was automatically expanded by 5 mm to generate a second
VOI, representing the peritumoral tissue (Margin-VOI). A width of 5 mm was defined a
priori to include a sufficient sample of tissue adequate for every tumor size. Every VOI was
visually checked by physicians and manually corrected if needed. Both VOIs were then
transferred to the arterial phase; if needed, the placement was manually corrected.
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Figure 1. Patient with a mass-forming ICC of the right liver. (a) The tumor was identified on the portal
phase of the CT; (b) manual segmentation of the tumor (violet area) and automatic segmentation of a
5 mm rim of peritumoral tissue (yellow area) were performed.

The radiomic features were extracted using the LifeX program [15] and were adherent
to the IBSI standard [16]. The full output of the analysis included 95 indices. Redundant
values, nuclear medicine parameters, cardiology-specific scores, “rim” values, discretized
indices, and technical information parameters were excluded. Forty-five indices were re-
tained for the analysis, including seven standard grey-level descriptors (HUmin, HUmean,
HUstd, HUmax, and the HU tertiles), four first-order parameters (skewness, kurtosis,
histogram_energy, and histogram_entropy), three shape-related indices (volume, spheric-
ity, and compacity), seven grey-level co-occurrence matrices (GLCM), eleven grey-level
run-length matrices (GLRLM), three neighboring grey-level difference matrices (NGLDM),
and eleven grey-level zone-length matrices (GLZLM).

2.3. Statistical Analyses

After merging the databases, outliers and missing data were analyzed. All outliers
were verified by sending queries to the participating centers and corrected if needed. The
missing values were managed as follows: all patients with missing values of the radiomic
features or the study endpoints (tumor grading or MVI) were excluded; for the remaining
variables, multiple imputation analysis was performed by Python miceforest software with
the ImputationKernel function if the proportion of missing data was <15% of cases.
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Categorical variables were compared with the chi-square or Fisher’s exact tests as
appropriate. Continuous variables were assessed graphically to determine distribution
normality and then compared with parametric (unpaired T-test) or non-parametric (Mann–
Whitney U-test) tests. Continuous variables were included as predictors to preserve and
maximize their predictive contribution.

A multivariate logistic regression model was performed to estimate the adjusted
association between each candidate predictor and (1) the tumor grading (G3 vs. G1-2),
and (2) the MVI (present vs. absent). The clinical variables were selected according to a
priori knowledge [6–9] and the results of univariate analysis (p-value < 0.1). The following
variables were considered: demographic data (age and gender), HBV/HCV infection,
liver cirrhosis, tumor characteristics (number, maximum diameter, and tumor pattern
according to Baheti et al. [17]), preoperative CA 19-9 value, administration of preoperative
chemotherapy, and type of scheduled resection (major/minor hepatectomy). The tumor
pattern combines the number and distribution of tumors as follows: pattern type 1, solitary
tumor; pattern type 2, multiple tumors into a single segment (including satellite nodules);
pattern type 3, multiple tumors into different segments.

All radiomic features were initially considered. For their selection and inclusion into
the model, the correlation between features was evaluated, and if >0.85, one of the two
features was removed. The radiomic indices of the Tumor-VOI and Margin-VOI were
assessed independently.

Different multivariate logistic regression models were tested (i.e., lasso logistic regres-
sion, ridge logistic regression, logistic regression with stepwise feature selection, logistic
regression with forward feature selection, and logistic regression with backward feature
selection). After the identification of the best model without accounting for the enrolment
center (logistic regression with backward selection), the center effect was analyzed, fitting a
suitable Mixed Effect Model (MEM) [18]. The center effect was evaluated by computing the
Variance Partition Coefficient (VPC) [19].

The final predictive model underwent internal stratified K-fold cross-validation with
k = 50. The results were reported in terms of mean (Std Dev) accuracy. Other machine
learning methods were tested (e.g., CART, Random Forest), but the ratio between the
sample size and the number of available features did not guarantee the stability of the
results. Permutation tests (one-sided) were used to compare the average performance of
the different models.

A p-value < 0.05 was considered significant for all the tests. The analyses were carried
out using STATA for Windows (StataCorp. 2019. Stata Statistical Software: Release 16.
College Station, TX, USA: StataCorp LLC), R (R Core Team 2021), and Python (Version 3).

3. Results

Two hundred and sixty-six patients were recruited across the six participating centers
(median 37, IQR 29-74). According to the inclusion criteria, 244 patients were retained
(51% females, median age 67.5 years). Of those, 215 (88%) had an adequate arterial phase
of CT. Patients’ characteristics are summarized in Table 1. In total, 82 (34%) patients had a
G3 tumor, and 139 (57%) had ICC with MVI. The univariate association of clinical variables
with tumor grading and MVI are detailed in Supplementary Table S3.

Table 1. Patient’s characteristics. Tumor pattern was defined according to Baheti et al. [17] as follows:
pattern type 1, solitary tumor; pattern type 2, multiple tumors into a single segment (including
satellite nodules); pattern type 3, multiple tumors into different segments.

Characteristic Number (%)—Median (Range) Missing (Number)

Age, years 67.5 (21–86) -

Sex, male/female 120 (49.2%):124 (50.8%) -
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Table 1. Cont.

Characteristic Number (%)—Median (Range) Missing (Number)

HBV infection 19 (7.8%) 1

HCV infection 27 (11.1%) 1

Liver cirrhosis 26 (10.7%) -

Tumor diameter, mm 50 (10–270) -

Solitary tumor 206 (84.4%) -

Tumor pattern

Type 1 151 (61.9%) -

Type 2 61 (25.0%) -

Type 3 32 (13.1%) -

Ca 19.9, U/mL 29 (0.2–67,456.3) 30

Ca 19.9 ≥ 55 U/mL 74 (30.3%) 30

Preoperative chemotherapy 26 (10.7%) -

Partial response 13 (50%)
3Stable disease 8 (30.8%)

Disease progression 2 (7.7%)

Major hepatectomy 128 (52.5%) -

Tumor grading, G3 82 (33.6%) -

Microscopic vascular invasion 139 (57%) -

3.1. Prediction of Tumor Grading (G3 vs. G1-2)

The models and their performances are detailed in Table 2, Figure 2, and Supplementary
Table S4. At cross-validation, after correcting for the center’s effect, the model based on clin-
ical data had the following performances: AUC = 0.694 ± 0.310, Sensitivity = 0.635 ± 0.422,
Specificity = 0.698 ± 0.210, and Accuracy = 0.680 ± 0.239. No variable had a significant
association with the outcome.

Table 2. Multivariate analyses of preoperative predictors of tumor grading (G3 vs. G1-2). Tumor
pattern was defined according to Baheti et al. [17] as follows: pattern type 1, solitary tumor; pattern
type 2, multiple tumors into a single segment (including satellite nodules); pattern type 3, multiple
tumors into different segments.

Parameter Odds Ratio Lower Bound Upper Bound p-Value

Model with preoperative clinical data

Age (years) 1.080 0.786 1.480 0.638

Sex 1.550 0.837 2.850 0.164

HBV 0.614 0.177 2.120 0.441

HCV 1.690 0.647 4.440 0.283

CA 19-9 (ng/mL) 1.110 0.803 1.530 0.528

Preoperative chemotherapy 1.310 0.505 3.380 0.582

Major hepatectomy 1.490 0.754 2.940 0.251

Cirrhosis 0.947 0.348 2.580 0.916

Tumor pattern
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Table 2. Cont.

Parameter Odds Ratio Lower Bound Upper Bound p-Value

Type 1 1 - - -

Type 2 1.200 0.541 2.640 0.658

Type 3 1.800 0.354 9.160 0.478

Tumor size (mm) 1.230 0.889 1.690 0.214

Single nodule 1.440 0.318 6.470 0.638

Model with preoperative clinical data + Tumor-VOI radiomics (portal phase)

Portal_Tumor_GLRLM_SRHGE 0.733 0.556 0.966 0.027

Model with preoperative clinical data + Tumor- and Margin-VOI radiomics (portal phase)

Major hepatectomy 1.661 1.132 2.438 0.010

Portal_Tumor_HUmin 1.521 0.944 2.453 0.085

Portal_Tumor_GLRLM_SRHGE 0.672 0.497 0.908 0.010

Portal_Margin_NGLDM_Busyness 0.644 0.442 0.938 0.022

Portal_Margin_GLZLM_ZLNU 2.050 1.284 3.274 0.003
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Figure 2. Performance of the best predictive models for tumor grading at the internal cross-validation.
Se: sensitivity; Sp: specificity.

After including the Tumor-VOI radiomics extracted from the portal phase of CT, the
model’s AUC, sensitivity, specificity, and accuracy increased to 0.731 ± 0.276, 0.706 ± 0.384,
0.745 ± 0.203, and 0.720 ± 0.222, respectively. One radiomic variable—GLRLM_SRHGE—
was retained in the model (OR = 0.733). When the radiomic features extracted from the
Margin-VOI were added (clinical variables + Tumor-VOI and Margin-VOI radiomics),
the AUC, sensitivity, and accuracy further increased (0.767 ± 0.270, 0.789 ± 0.339, and
0.765 ± 0.182, respectively), while specificity did not (0.741 ± 0.195). The final model
included one clinical variable (major hepatectomy, OR = 1.661), two Tumor-VOI features
(HUmin, OR = 1.521; and GLRLM_SRHGE, OR = 0.672), and two Margin-VOI features
(NGLDM_Busyness, OR = 0. 644; and GLZLM_ZLNU, OR = 2.050).

The permutation test, comparing the mean performances of the tested models, demon-
strated that the addition of the Tumor-VOI radiomic features to the clinical data improved
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the whole performance of the clinical model (p < 0.05, Table 3) and that the further addition
of the Margin-VOI radiomic features led to a further global improvement (p < 0.05).

Table 3. Results of the permutation tests for tumor grading.

Clinical vs. Tumor-VOI Clinical vs. Tumor- and
Margin-VOI

Tumor-VOI vs. Tumor- and
Margin-VOI

Tumor Grading

Accuracy 0.007 <0.001 <0.001

Specificity 0.035 <0.001 0.037

Sensitivity 0.028 <0.001 <0.001

Precision 0.003 <0.001 0.118

Pr AUC <0.001 <0.001 <0.001

Roc AUC 0.476 <0.001 <0.001

The addition of the radiomic features extracted from the arterial phase (Tumor-VOI
and Margin-VOI, 215 patients) did not grant an improvement in the model performance
(AUC = 0.730 ± 0.302, Sensitivity = 0.740 ± 0.327, and Accuracy = 0.760 ± 0.194) except
for a slight increase in the specificity (0.766 ± 0.215) (Supplementary Table S4). At the
permutation test, only the increase in specificity was significant (p < 0.05).

The VPC values were as follows: 25.9% for the pure clinical model, 30.0% for the model
combining clinical data and Tumor-VOI radiomics extracted from the portal phase, 26.6%
for the model combining clinical data and Tumor- and Margin-VOI radiomics derived from
the portal phase, and 13.9% for the model including the radiomic features extracted from
the arterial phase.

3.2. Prediction of Microscopic Vascular Invasion

The models and their performances are detailed in Table 4, Figure 3, and Supple-
mentary Table S5. At cross-validation, after correcting for the center’s effect, the model
based on clinical data (age, Ca 19-9 value, and major hepatectomy) had the following
performances: AUC = 0.752 ± 0.298, Sensitivity = 0.717 ± 0.302, Specificity = 0.673 ± 0.354,
and Accuracy = 0.696 ± 0.249.
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Table 4. Multivariate analyses of preoperative predictors of MVI.

Parameter Odds Ratio Lower Bound Upper Bound p-Value

Model with preoperative clinical data

Age (years) 0.992 0.987 0.998 0.007

CA 19-9 (ng/mL) 1.001 1.000 1.001 0.056

Major hepatectomy 3.296 1.934 5.617 <0.001

Model with preoperative clinical data + Tumor-VOI radiomics (portal phase)

Major hepatectomy 3.277 2.180 4.925 <0.001

Portal_Tumor_HUmin 0.496 0.307 0.800 0.004

Portal_Tumor_GLRLM_SRHGE 0.673 0502 0.902 0.008

Model with preoperative clinical data + Tumor- and Margin-VOI radiomics (portal phase)

Major hepatectomy 2.760 1.820 4.186 <0.001

Portal_Margin_HUQ2 0.651 0.460 0.922 0.015

Portal_Margin_Shape_Sphericity 0.560 0.408 0.768 <0.001

Portal_Margin_GLCM_Correlation 1.542 1.112 2.139 0.009

Portal_Margin_NGLDM_Contrast 1.436 0.924 2.231 0.107

Portal_Margin_GLZLM_SZHGE 1.636 1.043 2.567 0.032

After including the Tumor-VOI radiomics extracted from the portal phase of CT,
the model’s AUC, sensitivity, and accuracy increased (0.821 ± 0.236, 0.775 ± 0.294, and
0.725 ± 0.216, respectively), while specificity did not (0.655 ± 0.346). The model retained
three variables: major hepatectomy (OR = 3.277), HUmin (OR = 0.496), and GLRLM_SRHGE
(OR = 0.673). When adding the radiomic features of the Margin-VOI (clinical data + portal
Tumor- and Margin-VOI radiomics), the model’s AUC and sensitivity did not show a
further improvement (0.823 ± 0.230 and 0.777 ± 0.271, respectively), while specificity
increased to 0.714 ± 0.340. Overall accuracy reached 0.753 ± 0.236. The model re-
tained one clinical variable (major hepatectomy, OR = 2.760) and five Margin-VOI fea-
tures (HUQ2, OR = 0.651; Shape_Sphericity, OR = 0.560; GLCM_Correlation, OR = 1.542;
NGLDM_Contrast, OR = 1.436; and GLZLM_SZHGE, OR = 1.636).

At permutation test, comparing the mean performances of the tested models, the
Tumor-VOI radiomics extracted from the portal phase of the CT led to an AUC improve-
ment, while the addition of both Tumor-VOI and Margin-VOI radiomics improved all
performances in comparison with the clinical model and accuracy, specificity, and sensitiv-
ity in comparison with the clinical + Tumor-VOI model (p < 0.05, Table 5).

Table 5. Results of the permutation tests for MVI.

Clinical vs.
Tumor-VOI

Clinical vs.
Tumor- and Margin-VOI

Tumor-VOI vs.
Tumor- and Margin-VOI

Microscopic vascular invasion

Accuracy 0.295 <0.001 0.001

Specificity 0.072 <0.001 0.025

Sensitivity 0.152 <0.001 0.008

Precision 0.081 0.003 0.087

Pr AUC 0.014 0.008 0.212

Roc AUC 0.007 <0.001 0.112
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The addition of the radiomic features extracted from the arterial phase of the CT
(Supplementary Table S5) did not modify the model performances (AUC: 0.744 ± 0.285,
Sensitivity: 0.765 ± 0.301, and Specificity: 0.703 ± 0.285), except for a slight improvement
in the accuracy (0.759 ± 0.201). The permutation test confirmed the increase in accuracy as
the sole improvement achieved by adding the arterial phase radiomics (p < 0.05).

The VPC values were as follows: 21.2% for the pure clinical model, 24.4% for the model
combining clinical data and Tumor-VOI radiomics extracted from the portal phase, 19.8%
for the model combining clinical data and Tumor- and Margin-VOI radiomics extracted
from the portal phase, and 14.5% for the model including also the radiomic features
extracted from the arterial phase.

4. Discussion

The present study demonstrates that the radiomic analysis of the tumor and peritu-
moral tissue may predict the ICC grading and MVI. The features extracted from the portal
phase play a crucial role, while the ones from the arterial phase do not. The combined
clinical–radiomic model achieves the best predictive performance, even if a center’s effect
should be considered.

Surgery is the standard treatment of ICC, but some patients with aggressive tumors
do not benefit from resection and experience early recurrence and early cancer-related
death [6,8,9,20]. Tsilimigras et al. published a score based on the tumor size and number
and the clinical suspicion of lymph node metastases to predict early surgical failure [20].
High-risk patients should probably be considered for systemic therapy before any loco-
regional treatments. However, morphological parameters are a poor surrogate of tumor
biology and do not guarantee adequate selection of patients. Conci et al. demonstrated
that the ICC distribution rather than their number is crucial for prognosis and that surgery
remains the mainstay approach in patients with multifocal but localized disease [6]. The
pathology data are the ground truth of tumor biology and should drive treatment planning.
Among them, tumor grading and MVI are strong predictors of outcome [7–9]. The vascular
invasion is a key parameter in the TNM staging system, even more relevant than the
number of tumor foci [21].

The capability of radiomics to predict pathology data has been the object of several
publications for many tumors, including ICC [11,13,22]. The strongest evidence concerns
lymph node metastases [23–26]. Data about MVI and tumor grading are less robust. The
radiomic analysis based on preoperative CT [27] and MRI [28,29] guarantees an adequate
prediction of the MVI status (AUC range 0.76–0.85), but its clinical impact is unclear. While
Qian et al. reported that a combined radiological–radiomic model outperforms a pure
clinical one (AUC 0.95 vs. 0.73) [29], Xiang et al. did not confirm such results [27]. The
data about tumor grading are even less favorable: Peng et al. observed poor performances
of radiomics (AUC = 0.71) [30], and King et al. observed no association [31]. Additional
limitations of the available papers deserve consideration: all studies have been published by
Eastern centers and adopted signatures or scores combining multiple features to maximize
the performance of radiomics. The present series collected a large number of patients
(n = 244) with a high proportion of G3 and MVI+ tumors (one-third and half of patients,
respectively) and kept the single radiomics features apart, leading to a complete and easy
replicability of data.

In the present study, the pure clinical models showed unsatisfactory performances
for tumor grading (AUC < 0.70 without any significant predictors) and yielded inter-
mediate results for MVI (AUC = 0.75). The addition of the radiomic features led to a
substantial improvement in the predictive performances for both outcomes (tumor grading,
AUC = 0.73/Accuracy = 0.72; MVI, AUC = 0.82/Accuracy = 0.73), and the results were max-
imized when both the tumor and margin were considered (AUC = 0.77/Accuracy = 0.77
and AUC = 0.82/Accuracy = 0.75, respectively). The permutation test, which compares the
mean performance of the predictive models, confirmed that the clinical–radiomic models
outperform the clinical ones and that the combined analysis of the tumor and its margin
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outperforms the analysis of the tumor. The peritumoral tissue is the niche of relevant
biomarkers, such as micrometastases, satellite nodules, and immune infiltrate [32–34].
Yugawa et al. reported some associations between the radiomics of the peritumoral tissue
and immune infiltrate [35]. In the present series, only margin-related features were retained
in the final predictive models of MVI, reflecting that vascular invasion plays a key role in
tumor progression at the liver–tumor interface.

Looking at the final models, we may suggest some correlations between radiomic and
clinical data. High tumor grading (G3) was associated with portal contrast enhancement
(higher HUmin values), as well as with the inhomogeneous texture of both the tumor
(lower GLRLM_SRHGE) and peritumoral tissue (lower NGLDM_Busyness and higher
GLZLM_ZLNU). This pattern may reflect the presence of active tissue (as confirmed at
PET-CT evaluation [14]), peripheral neoangiogenesis, and necrotic areas. For MVI, the
final model retained four margin-related radiomic features: an irregular shape (lower
Sphericity) and coarseness of texture (higher GLCM_Correlation, GLZLM_SZHGE, and
NGLDM_Contrast) were associated with vascular invasion. Analogously, a previous study
by Fiz et al. demonstrated that higher values of NGLDM and GLRLM indices in the
peritumoral tissue at PET-CT predict MVI [14]. Even if further investigations are still
required in this clinical setting, it appears plausible that, as observed for colorectal liver
metastases, an infiltrative tumor profile and a more irregular peritumoral tissue could be
associated with higher tumor aggressiveness [36,37].

We also explored the contribution of the radiomic features extracted from the arterial
phase of the CT. ICC has specific patterns of enhancement in the arterial phase, which
have been associated with tumor biology and prognosis [38–41]. In the present analysis,
the radiomic features extracted from the arterial phase made a marginal contribution to
the models. Xiang et al. reported similar results: despite the radiomic analysis of both
the arterial and portal phase, the latter provided the best predictors of MVI [27]. Even if
further studies are needed to address such discrepancy, we may advance some hypotheses.
Firstly, the radiomics of the portal phase could provide the full information. Secondly, in a
retrospective setting, the arterial phase may suffer from a higher heterogeneity than the
portal one.

The present study is clinically relevant. The planning of treatment strategies for
aggressive diseases should rely on the accurate evaluation of tumor biology. Radiomics
allows a non-invasive prediction of the tumor grading and MVI, two highly relevant
biomarkers, and anticipates in the preoperative setting information usually available only
at the pathology analysis after surgery. In patients with borderline resectable ICC, the
presence of radiomic markers linked with an aggressive disease could be used as a possible
criterion to indicate a neoadjuvant treatment instead of upfront surgery. We obtained such
favorable results in a multicenter setting with unselected CT in a real-life scenario.

The present results are in line with the ones we previously obtained in a monocentric
analysis considering ICC and PET-based radiomics. Some radiomic indices were even
identified as predictors of pathology data in both studies. Because of the different study
design, we cannot compare the radiomics extracted from the two imaging modalities (CT
and PET) in terms of clinical benefit and usefulness. To date, CT and PET/CT should be
performed according to their clinical indications and, in the authors’ opinion, both are
needed in ICC patients who are candidates for surgery. In the near future, the availability
of fusion imaging (PET/CT contrast enhanced) and AI-based protocols applied to medical
imaging will lead to an easy extraction and integration of radiomics from multiple imaging
modalities, providing a unique and complete imaging-based profiling of ICC.

The transferability of present data into clinical practice needs some further steps.
Firstly, external validation is necessary; such validation should be prospective, multicentric,
and performed across international HPB units to definitively take radiomics to the bed-
side [42]. Secondly, the impact of the center’s effect needs some further investigation. The
data originated from different institutions and thus from different CT devices. The stan-
dardization of CT protocols remains an issue, but major efforts are ongoing to harmonize
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data from different image acquisitions [16]. Thirdly, segmentation was performed manually,
which is a time-consuming procedure. Available semi-automatic procedures still require
major manual corrections; the inclusion of the peritumoral rim further adds complexity. In
the near future, AI-powered automatic segmentation protocols will speed up the process
and ease the inclusion of radiomics into clinical practice. Finally, clear cut-off values of the
radiomic features should be identified to include the variables in the clinical models.

5. Conclusions

CT-based radiomic features extracted from the tumor and its margin provide an
accurate non-invasive prediction of tumor aggressiveness that standard clinical parameters
cannot reach. Integrating radiomics into clinical decision processes is probably one of the
next steps toward a precision medicine approach in ICC patients.
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ICC and MVI; Table S4: Multivariate analyses of preoperative predictors of tumor grading (G3 vs.
G1-2). Model with preoperative clinical data + Tumor- and Margin-VOI radiomics (portal and arterial
phases); Table S5: Multivariate analyses of preoperative predictors of MVI. Model with preoperative
clinical data + Tumor- and Margin-VOI radiomics (portal and arterial phases).
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