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Simple Summary: This review discusses the heterogeneity of breast cancer and strategies to under-
stand it using multi-omics profiling methods at the traditional bulk and single-cell levels. It begins
with the exploration of genomics and its role in classifying breast cancer into molecular subtypes.
Following that, it delves into the contribution of transcriptomics in illuminating the diverse gene ex-
pression patterns within individual breast cancer cells, further underscoring the disease’s complexity.
The narrative then addresses the impact of proteomics, which unveils intricate protein expression
patterns and modifications. Despite these advancements, it is essential to integrate multiple omics
approaches to fully unravel breast cancer heterogeneity. The integration of genomics, transcriptomics,
and proteomics at the single-cell level holds great promise for advancing breast cancer research and
management in the future.

Abstract: Breast cancer continues to pose a significant healthcare challenge worldwide for its inherent
molecular heterogeneity. This review offers an in-depth assessment of the molecular profiling under-
taken to understand this heterogeneity, focusing on multi-omics strategies applied both in traditional
bulk and single-cell levels. Genomic investigations have profoundly informed our comprehension
of breast cancer, enabling its categorization into six intrinsic molecular subtypes. Beyond genomics,
transcriptomics has rendered deeper insights into the gene expression landscape of breast cancer
cells. It has also facilitated the formulation of more precise predictive and prognostic models, thereby
enriching the field of personalized medicine in breast cancer. The comparison between traditional
and single-cell transcriptomics has identified unique gene expression patterns and facilitated the
understanding of cell-to-cell variability. Proteomics provides further insights into breast cancer sub-
types by illuminating intricate protein expression patterns and their post-translational modifications.
The adoption of single-cell proteomics has been instrumental in this regard, revealing the complex
dynamics of protein regulation and interaction. Despite these advancements, this review underscores
the need for a holistic integration of multiple ‘omics’ strategies to fully decipher breast cancer het-
erogeneity. Such integration not only ensures a comprehensive understanding of breast cancer’s
molecular complexities, but also promotes the development of personalized treatment strategies.

Keywords: breast cancer; heterogeneity; single-cell genome; single-cell transcriptome; single-cell proteome

1. Introduction

Breast cancer is one of the most prevalent cancers in women globally. In 2012,
there were 464,000 diagnosed cases of breast cancer and 131,000 deaths among European
women [1]. In 2020, breast cancer accounted for 2.26 million new cases globally, surpassing
lung cancer (2.2 million cases) to become the most commonly diagnosed cancer worldwide
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(Figure 1). In the same year, the disease caused an estimated 685,000 deaths [1–3]. Projec-
tions suggest that by 2030, new cases will reach 3.9 million globally, with fatalities rising to
766,000 [4].
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Despite considerable strides in both laboratory research and the clinical practice of
breast cancer, the global incidence and mortality rates continue to rise. At the root of
this persisting issue is the heterogeneous nature of breast cancer, which is not a mono-
lithic disease, but a spectrum of distinct subtypes, each representing a unique malignancy
within the breast’s cellular makeup. Current research categorizes these molecular subtypes
into six major classes: (i) hormone-receptor-positive breast cancer (ER+), (ii) hormone
receptor/HER2-positive breast cancer (ER+/HER2+), (iii) HER2-positive breast cancer
(HER2+), (iv) basal-like breast cancer, (v) claudin-low subtype, and (vi) normal-like sub-
type [5]. The distinct subtypes of breast cancer each present unique clinical features and
associated risk factors. This diversity extends to treatment responses and long-term patient
survival, which differ significantly across the subtypes. This inherent complexity adds lay-
ers of challenge to the effective diagnosis and treatment of breast cancer. For instance, the
basal-like subtype of breast cancer, characterized by high rates of cellular proliferation, is as-
sociated with distinct risk factors, which include the early onset of menstruation, a younger
age at the first full-term pregnancy, and the accumulation of abdominal fat. In contrast, pa-
tients with the claudin-low subtype, marked by an enrichment of epithelial–mesenchymal
transition markers, typically exhibit pronounced invasiveness. Such individuals often bear
the burden of exposure to chemicals and radiation in their early years, leading to a high
load of DNA damage induced by cancer genes and early chromosomal instability (CIN) [6].

The inherent heterogeneity of breast cancer presents considerable hurdles for con-
ventional diagnostic and therapeutic approaches. Generally, traditional methods depend
on analyzing bulk tumor tissue samples, a process which, by considering the average
expression levels, may obscure the underlying heterogeneity, complicating accurate tu-
mor classification. But emerging technologies such as single-cell analysis techniques offer
promising alternatives, already being widely used in oncology research. These techniques,
by investigating gene expression, phenotypes, protein levels, and other cellular properties
at an individual cell level, are well suited to address the challenge of tumor heterogeneity
(Figure 2) [7–9]. Particularly for highly heterogeneous cancers like breast cancer, a single-
cell analysis can help to predict cellular evolution during tumor progression. The analysis
of genetic and epigenetic variations as well as gene expression at the single-cell level is
among the techniques that enhance the precision of predicting tumor development trends,
evaluating treatment outcomes, and forecasting patient prognosis. Furthermore, single-cell
analysis techniques play a crucial role in devising novel therapeutic strategies. These
methods allow for the examination of genetic variations and phenotypic characteristics
of tumor cells in detail, which can lead to the identification of new therapeutic targets.
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Consequently, this paves the way for the development of highly targeted, precise treatment
strategies, enhancing the ability to predict treatment efficacy and potential drug resistance.
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Single-cell gene sequencing, leveraging the power of next-generation sequencing
(NGS), has emerged as a pivotal tool for investigating breast cancer heterogeneity [10].
Unlike traditional Sanger sequencing, NGS systems use massive parallel sequencing to yield
billions of DNA reads, from 36 to 150 base pairs, which can be aligned to the human genome.
This alignment allows for the detection of various genetic variations, including single-
nucleotide mutations, small insertions/deletions, and copy number variations, offering
a comprehensive view for streamlining the development of targeted treatment strategies.
A case in point is HER2-positive breast cancer, where single-cell sequencing detects the
diversity in HER2 gene amplification across different cells, facilitating the formulation of
bespoke treatment plans [11]. The versatile utility of NGS extends to RNA sequencing
(RNA-seq), which is a high-throughput technique enabling quantitative and sequence
analyses of diverse RNA types, along with their expression levels in cells and tissues.
RNA-seq facilitates an in-depth exploration of gene expression regulation, signaling, and
metabolic pathways pertinent to breast cancer, thereby enriching our understanding of
its molecular mechanisms. Intriguingly, beyond the recognized impact of non-coding
RNAs on breast cancer progression, even the half-life of mRNA serves as an informative
marker [12].

In molecular profiling, the strength of the correlation between molecular patterns and
cellular behavior is pivotal, as a higher correlation implies a more accurate reflection of
the tumor’s actual condition [13]. Complementing single-cell genomics and transcriptome,
the emergence of single-cell proteomics offers another potent instrument for investigating
breast cancer heterogeneity. This technique enables the detection and analysis of protein
expression at the single-cell level. It provides a more precise view of protein expression
compared to its RNA-sequencing counterpart, revealing insights into protein localization
and intra-cellular interactions. For instance, immunohistochemistry provides a more direct
appraisal of a patient’s tumor condition. This technique plays a pivotal role in breast
cancer diagnosis, as it involves staining clinical samples of breast cancer tissues to reveal
the expression of crucial proteins, including ER, PR, and HER2. The resultant immuno-
stained samples offer a visual map for clinicians, aiding them in identifying the subtype of
breast cancer and enabling effective pathological staging and treatment selection. Through
techniques like immunohistochemistry, we can not only discern between these subtypes,
but also detect signs of lymph node metastasis and monitor potential tumor recurrence.
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Such insights are pivotal for guiding treatment decisions and tracking the progression of
the disease [14–16].

In conclusion, breast cancer, as a pervasive global health challenge, necessitates a com-
prehensive understanding of its heterogeneity and progression. The profound relevance
of single-cell detection techniques, particularly the transition from single-cell genomics to
single-cell proteomics, opens a new frontier in the exploration of this heterogeneity, thereby
paving the way for more precise treatment strategies and reliable prognosis assessments.

2. Genomic Profiling
2.1. Traditional Genomic Profiling

In 1994, the BRCA1 gene was identified through positional cloning, followed by the
discovery of the BRCA2 gene in 1995. These genes play a crucial role in DNA damage repair
and maintaining genomic stability, thereby reducing the risk of tumor development [17,18].
BRCA1 and BRCA2 are tumor suppressor genes involved in repairing dsDNA breaks.
Mutations in these genes significantly increase the lifetime risk of developing breast cancer.
Inherited mutations in BRCA1 and BRCA2 account for a small percentage of breast cancer
cases. Tumors associated with BRCA1 mutations often exhibit a basal-like phenotype and
a higher histological grade, while those linked to BRCA2 mutations resemble sporadic
tumors more closely. Several specific scenarios can notably elevate the incidence of breast
cancer: (1) sequence variants encoding premature termination codons such as nonsense or
frameshift mutations occurring prior to the 1855th amino acid in BRCA1 and the 3309th
amino acid in BRCA2; (2) mutations located at splice site consensus sequences—either
the first or second base positioned upstream or downstream of an exon; (3) copy number
loss mutations leading to frameshift mutations prior to the 1855th amino acid of BRCA1
and the 3309th amino acid of BRCA2, or mutations eliminating one or more exons not
predicted or confirmed to produce functional in-frame RNA isoforms capable of restoring
BRCA1/2 gene function; and (4) copy number repeat variations of any size resulting in
the duplication of one or more exons, and proven to cause frameshift mutations before the
1855th amino acid of BRCA1 and the 3309th amino acid of BRCA2 [17,19].

Individuals harboring potential pathogenic variants in the BRCA1/2 genes can benefit
significantly from timely education and early screening. According to the European Society
for Medical Oncology (ESMO) guidelines [20], females identified with having mutations in
BRCA1, BRCA2, or other high-penetrance genes should initiate breast cancer prevention
education from the age of 18, maintain vigilant awareness of breast conditions, and comply
with regular medical check-ups. Physicians advocate for annual clinical breast examinations
complemented by breast X-ray imaging and magnetic resonance imaging (MRI) assessments
starting from the age of 25 [21]. Despite the insights gained from early genetic knowledge,
they did not immediately translate into clinical treatment strategies. The initial clinical data
highlighted that BRCA-associated tumors exhibited high sensitivity to poly (ADP-ribose)
polymerase (PARP) inhibitors. These inhibitors act on the PARP-mediated DNA damage
repair mechanism, thereby disrupting the tumor’s ability to repair its DNA. As of now,
PARP inhibitors are primarily accessible through clinical trials [22].

With the deepening understanding of breast cancer and the widespread use of NGS,
more relevant genes have been discovered (Table 1).

Table 1. Breast-cancer-relevant gene, discovery year, involved process, and mutation risk.

Gene Discovery Involved Process Mutation Risk Reference

PTEN 1997 apoptosis, cell cycle, and signal transduction activation of proliferation and
survival signals [23]

STK11 1997 cell cycle, metabolism, and energy balance activation of cell proliferation
and metabolic pathways [24]
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Table 1. Cont.

Gene Discovery Involved Process Mutation Risk Reference

CHEK2 1999 DNA repair and cell apoptosis impairments in DNA repair
and cell apoptosis processes [25]

PIK3CA 2004 regulation of signaling pathway activation of survival signals [26]

AKT1 2007 regulation of signaling pathway activation of cell proliferation
and survival signals [27]

BARD1 2010 DNA repair and cell apoptosis increased susceptibility to
breast cancer [28]

NF1 2015 regulation of signaling pathway increased rate of developing
breast cancer [29]

There was a study involving a large cohort of breast cancer patients who underwent
analysis for gene mutations and copy number variations, further substantiating the preva-
lence of gene alterations in this population [30]. TP53 gene mutations are commonly found
in the basal-like subtype, while the HER2-positive subtype also exhibits a high incidence
of TP53 gene mutations. Additionally, the HER2-positive subtype shows a significant
frequency of PIK3CA gene mutations. The basal-like and HER2-positive subtypes are
characterized by genomic instability and susceptibility to changes in gene copy numbers.
Conducting concurrent assessments of DNA copy number and gene mutations in breast
cancer cells enables the prediction of the cellular subtype. For example, it is known that
the amplification of Kras2 is associated with tumor progression, while insufficient Kras2
copy numbers delays tumor progression [31]. In an investigation involving 16 human
basal-like breast tumors, none displayed Kras2 mutations; however, an increased DNA
copy number at the Kras2 locus was observed in 9 of the tumors. These observations imply
that Kras2 amplification may modulate cell phenotypes or earmark target cell types that
are susceptible in basal-like tumors [32].

Furthermore, leveraging insights from patients’ DNA sequencing results proves in-
valuable in tailoring subsequent treatment strategies [33]. Taking the P53 gene as an
example, it plays a fundamental role as a key regulator of cellular processes, participating
in controlling cell proliferation and maintaining genomic integrity and stability. Activated
in response to an array of stress signals, the TP53 tumor suppressor protein curbs cell
transformation by precipitating cell cycle arrest, DNA repair, and apoptosis. In breast
cancer patients, however, TP53 gene mutations may precipitate a partial or complete func-
tional loss of the TP53 tumor suppressor protein, thereby undermining its capacity to
inhibit tumor development. Significantly, Asian breast cancer patients exhibit a mutation
frequency of 42.9% in the P53 gene, which surpasses the mutation rate of 30% observed
in Western breast cancer. This suggests a potentially higher degree of endocrine therapy
resistance and lower survival rates among this demographic. Hence, breast cancer patients
with inactivating mutations in the P53 gene necessitate swift intervention with appropriate
follow-ups, reexaminations, and immediate treatment. For those carrying TP53 mutations,
related treatment strategies can be explored in a clinical setting, which might include Gen-
dicine therapy either as a standalone treatment or in conjunction with radiation therapy,
chemotherapy, or hyperthermia, among other treatment approaches. Overall, the use
of such targeted treatment for TP53 mutations has achieved a complete response rate of
30–40% and a partial response rate of 50–60% in various clinical applications and studies,
with an overall response rate reaching 90–96% [34].

2.2. Single-Cell Genomic Profiling

While conventional genetic profiling can offer valuable insights, it faces significant
challenges, most notably its inability to differentiate between normal and tumorous tis-
sues. Breast tumors typically comprise a heterogeneous mix of cancerous cells, healthy
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tissues, stromal components, and infiltrating leukocytes. Histopathological assessments
have revealed that certain samples may contain a composition of around 60% normal
cells and 35% cancer cells, with a significant presence of infiltrating leukocytes [35]. The
information from these additional normal tissues can be considered in the results, which
may potentially overshadow crucial information and even lead to erroneous results. Addi-
tionally, traditional DNA analysis can only provide vague insights into cancer development
because large-scale analyses yield average DNA profiles for tumors, making it impossible
to differentiate and track each tumor cell lineage within a tumor tissue [36,37]. Such issues
can be addressed through single-cell DNA sequencing [7].

A pivotal step in scDNA-seq involves extracting minuscule quantities of DNA from
single cells, followed by whole-genome amplification (WGA). To minimize amplification-
related errors and biases, PCR-based methods are commonly utilized for copy number
variation (CNV) detection due to their ability to provide more uniform coverage. In contrast,
for single-nucleotide variation (SNV) detection, MDA-based techniques are favored owing
to their use of high-fidelity DNA polymerases that function at room temperature and
display a heightened sensitivity to single-base alterations [38,39].

CNVs are common in a wide range of cancer cell lines, with conventional genomic anal-
yses indicating their substantial influence in the emergence and progression of breast cancer.
An assessment and identification of genomic regions bearing copy number alterations—both
gains and losses—in tumor cells can facilitate the construction of lineage trees, elucidating
shared ancestry among tumor subpopulations [40]. Single-cell DNA sequencing enables
researchers to scrutinize CNVs and discern tumor cell subpopulations within solid tumors,
even at the early stages of breast cancer development [35]. By employing a comparative
analysis of CNV differences, researchers have categorized roughly 100 tumor cells into
three distinct subpopulations: a diploid (D) cell subpopulation characterized by a flat
morphology, a pseudodiploid (P) cell subpopulation showcasing varying degrees of devi-
ation from diploidy, and a subpopulation embodying complex genomic rearrangements,
mirroring the characteristics of a ‘late-stage’ tumor subpopulation. During the late stages
of breast cancer progression, liver metastasis invariably becomes a significant concern. By
employing pseudodiploid cells as reference standards, researchers have identified strik-
ing similarities between the copy number profiles of primary tumors and their metastatic
counterparts. This strongly suggests that the origin of metastatic cells can be traced predom-
inantly to late-stage amplifications, as opposed to intermediate stages or entirely divergent
subpopulations [35].

Conceptually, information pertaining to SNVs within breast cancer cells can be extrap-
olated from pre-existing WGA data. While this methodology has proven to be adequate
for detecting copy number variations, it falls short in resolving whole-genome mutations
at a granular base pair resolution. A commonly used approach is to increase coverage
by performing deep sequencing of these libraries. Researchers have developed a high-
coverage whole-genome and exome single-cell sequencing method using high-fidelity
DNA polymerase to amplify 22 chromosome-specific primer pairs. The amplified DNA is
then incubated with Tn5 transposase, which fragments and ligates the DNA for sequencing
adapters [41]. This technology achieves a low false-positive rate for point mutations, equiv-
alent to 1–2 errors per million base pairs [42,43]. Using this technique, researchers selected
invasive ductal carcinoma from estrogen-receptor-positive (ER1/PR1/HER2) breast cancer
patients for bulk and single-cell sequencing. After filtering germline variations, several
non-synonymous mutations were identified in the non-diploid tumor cell population, in-
cluding TBX3, NOTCH2, JAK1, ARAF, NOTCH3, MAP3K4, NTRK1, AFF4, CDH6, SETBP1,
AKAP9, MAP2K7, ECM2, and ECM1 [30].

Through a comprehensive analysis of the breast cancer dataset, investigators have
pinpointed two key pathways that are notably disrupted during tumor evolution: the
TGF-β signaling pathway and the extracellular matrix receptor signaling pathway [7]. This
revelation carries substantial clinical implications, as it enables healthcare professionals to
select appropriate chemotherapy drugs that specifically target these disrupted pathways.



Cancers 2023, 15, 4164 7 of 32

For example, TGF-β receptor I kinase inhibitors like LY2157299 can inhibit TGF-β signaling
pathway transmission, slowing down tumor growth and metastasis [44]. Additionally,
drugs targeting extracellular matrix receptor signaling are already being used in clinical
practice, such as anti-HER2 therapy for HER2-positive breast cancer patients [7]. These
findings offer new insights and approaches for breast cancer treatment.

While single-cell gene profiling technology has greatly advanced our understanding
of breast cancer tumor cells, offering high precision and efficiency and resolving some
standing challenges, ongoing discoveries of genetically and phenotypically unique cellular
subpopulations have prompted a shift in our perception of cancer. The cancer narrative
has evolved beyond viewing it as a homogeneous aggregation of tumor cells, and we now
embrace the reality of it as a spectrum of heterogeneous and evolving cancer subtypes [45].
This underlines that a sole reliance on DNA single-cell detection may fall short in addressing
the research demands presented by breast cancer heterogeneity and in guiding clinical
interventions directly. Therefore, it is necessary to utilize other single-cell omics detection
technologies to collectively address research questions in breast cancer.

3. Transcriptional Profiling
3.1. Traditional Transcriptional Profiling

While DNA sequencing offers valuable genetic insights into cells, aiding in the identi-
fication of cellular subpopulations and potentially predicting tumor development trends, it
falls short of fully capturing the functional states and metabolic activities that are pivotal to
comprehending cancer cell behavior. Therefore, its correlation with tumor cell behavior
is not strong enough and has not become a clinically recognized classification indicator.
Only genetically engineered mouse models of breast tumors with the inactivated genes
TP53, BRCA1, and RB have been designed to simulate the genetic alterations found in
human breast cancer [46]. When contrasted with DNA, transcriptional data provide a more
intuitive reflection of the biological processes and functional states within cells. In cancer,
different cellular subpopulations often express different genes and metabolic pathways.
Therefore, analyzing the transcriptome of cancer can help us better understand the different
subtypes of breast cancer and more accurately predict cellular behavior [47,48].

The transcriptome, a comprehensive assembly of RNA molecules expressed by cells
at a specific moment, includes messenger RNA (mRNA), functional RNA variants, and
stochastic transcripts [49]. Among them, mRNA can be transcribed into proteins and
accounts for approximately 1.5% of the total RNA [49,50]. Functional RNA includes various
types, among which long non-coding RNA (lncRNA) and small non-coding RNA (sncRNA)
are common [50]. lncRNAs, extending beyond 200 nucleotides in length, serve a multitude
of functions, encompassing post-transcriptional regulation, chromatin modification, RNA
processing and stability, and protein translation, among others [51]. On the other hand,
sncRNAs include shorter RNA types, such as microRNAs (miRNAs) and small interfering
RNAs (siRNAs), which regulate gene expression and function by modifying other RNA
molecules. Through transcriptome profiling, the expression levels of various RNA types
can be simultaneously detected, providing insights into gene expression and regulation
within cells [52,53].

3.1.1. mRNA Expression Profiling in Breast Cancer Heterogeneity

Gene expression profiling has greatly advanced the categorization of breast tumors.
Previous studies using DNA microarrays for transcriptome analysis identified four major
intrinsic subtypes of breast cancer (luminal A, luminal B, HER2-enriched, and basal-like)
and normal-like breast groups, which exhibited significant differences in incidence, survival
rate, and treatment response [54]. However, with the development of gene expression
research, breast tumors will be further subdivided into new molecular entities.

In 2007, through the analysis of 13 samples, researchers unearthed a novel molecular
subtype dubbed ‘claudin-low’. It is characterized by a low gene expression of tight junction
proteins, claudins 3, 4, and 7, as well as the calcium-dependent cell adhesion glycoprotein
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E-cadherin. Claudin-low tumors respond to standard neoadjuvant chemotherapy at a rate
that is intermediate between that of basal-like and luminal tumors [32]. The molecular
characterization of the intrinsic claudin-low subtype uncovered developmental structures
echoing those of typical epithelial breast tissue. While claudin-low tumors share consider-
able similarities with basal-like tumors, they display a notable decrease in the messenger
RNA (mRNA) expression of the cell cycle gene Ki67, hinting towards a potentially slower
tumor proliferation rate. Follow-up studies discerned 1308 and 359 genes that exhibited
markedly increased and decreased expressions, respectively, in tumors with a low level of
tight junction protein, firmly establishing it as a unique subtype of breast cancer [55].

Previously, normal-like breast cancer, which exhibits a gene profile resembling normal
breast epithelial cells, was not recognized as a distinct molecular subtype. Some studies
even suggested that it might represent a group of breast cancers that cannot be classified
due to potential contamination by normal epithelial cells [56]. However, further investiga-
tion isolated cells displaying normal-like breast cell characteristics, which demonstrated
insensitivity to certain chemotherapy drugs like the polyamine analogue DENSPM. While
DENSPM strongly inhibited the proliferation of breast cancer cell lines due to its impact
on polyamine biosynthesis and catabolism, normal-like breast cells swiftly recovered from
DENSPM-induced growth suppression without suffering irreversible detrimental effects,
suggesting that the isolated cells may indeed represent normal breast epithelial cells [57–59].

Further gene expression studies have supported the classification of normal-like breast
cells. Utilizing a dataset from 295 women with breast cancer samples, researchers performed
an analysis using five gene-expression-based models. Four of the models produced similar
predictions, indicating that normal-like breast cells exhibit significant gene expression
differences compared to the luminal B subtype and have lower recurrence rates and a
relatively favorable prognosis similar to the luminal A subtype [60].

Beyond the uncovering of novel breast cancer subtypes, gene expression profiling has
been harnessed to facilitate a more precise and thorough analysis of existing, controversial
breast cancer subtypes [61]. Triple-negative breast cancer (TNBC), comprising 10–20% of
all breast cancer cases, predominantly presents in younger patients. [62]. Unfortunately,
the prognosis for metastatic TNBC remains poor, with less than 30% of patients surviving
beyond 5 years, despite adjuvant chemotherapy being the standard treatment. Clearly,
there is an urgent need to better understand the molecular basis of TNBC and develop
effective therapeutic approaches for this aggressive breast cancer. Traditionally, the majority
of TNBCs, ranging from 50% to 90%, were designated as basal-like, which is a classification
based on immunohistochemistry (IHC) or associations with intrinsic molecular subtypes
of breast cancer [63–65]. However, recent studies utilizing gene expression profiling have
revealed the heterogeneity of TNBC. In a comprehensive analysis of gene expression
profiles from 3247 breast cancer samples, it was discovered that while 47% of TNBCs
showed a basal-like gene expression pattern, the remaining 53% were associated with
diverse molecular subtypes including luminal A (17%), normal-like (12%), luminal B (6%),
HER2 (6%), and some that remained unclassified (12%). This indicates that TNBC is not
limited to tumors with a basal-like phenotype, but rather represents a heterogeneous
collection of tumors with different phenotypes [66].

Following this, gene expression profiles were used as the basis for distinguishing
TNBC into seven distinct subtypes: basal-like 1 (BL1), basal-like 2 (BL2), immunomodula-
tory (IM), mesenchymal (M), mesenchymal stem-like (MSL), luminal androgen receptor
(LAR), and unstable (UNS) subtypes [66]. The BL1 subtype exhibits high activity in com-
ponents and pathways related to cell cycle and cell division, such as the DNA replication
response group. In contrast, the BL2 subtype is involved in growth factor signaling path-
ways, including the EGF, NGF, MET, Wnt/β-catenin, and IGF1R pathways, as well as in
glycolysis and gluconeogenesis processes. The IM subtype is characterized by its primary
activation of immune cell and cytokine signaling pathways, including antigen processing
and presentation, and core immune signaling transduction pathways. The M subtype is
distinctively enriched in pathways related to cellular movement, such as the Rho-regulated
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actin cytoskeleton, ECM receptor interaction, and pathways associated with cell differentia-
tion, like the Wnt, anaplastic lymphoma kinase (ALK), and TGF-β signaling pathways. The
MSL subtype is characterized by distinct patterns of inositol phosphate metabolism, calcium
signaling, and unique expression profiles of ABC transporters. Among the TNBC subtypes,
the LAR subgroup presents the most differential gene expression profile. Despite being
ER-negative, this subtype is notably enriched with genes implicated in hormone regulation
pathways, encompassing steroid synthesis, porphyrin metabolism, and androgen/estrogen
metabolism. The classification is pivotal, providing critical models for preclinical investiga-
tions of emerging targeted therapies. Patients with BL1 and BL2 subtypes could benefit
from medications that target highly proliferative tumors, including taxanes and other
anti-mitotic and DNA-damaging agents [67]. On the other hand, patients with the MSL/M
subtype would demonstrate an enhanced sensitivity to dasatinib [68]. Meanwhile, patients
with the LAR subtype would likely respond better to therapies targeting the androgen
receptor, such as enzalutamide [66].

3.1.2. mRNA Half-Life Detection in Breast Cancer Heterogeneity

In addition to studying the expression of coding RNAs, there have been a few stud-
ies on other properties of coding RNAs, such as the mRNA half-life [12]. Within the
cellular environment, gene expression upregulation can stimulate the synthesis of target
proteins. However, mRNA molecules that have fulfilled their role are usually degraded by
endogenous nucleases, thereby limiting their temporal stability and sustained expression.
If post-transcriptional mRNA molecules can reduce their chances of degradation and main-
tain long-term stability, they can facilitate the synthesis of a large amount of proteins and
play an important role in determining cell expression and influencing cell behavior [69].
Several mechanisms can regulate the stability of mRNA, including mRNA-binding proteins
and alternative polyadenylation, among others. These mechanisms predominantly act at
sites within the 3′ untranslated region (3′UTR) of mRNA, thereby influencing its degrada-
tion rate and overall stability [70,71]. The strict regulation of mRNA stability is crucial for
cells to execute their normal functions. In tumor cells such as breast cancer cells, changes
in mRNA stability often occur, resulting in the excessive production of a series of growth
factors, oncogenes, and other mediators involved in cancer progression, thus driving the
occurrence and development of tumors [72,73].

The modulation of the mRNA half-life is pivotal in breast cancer [74]. mRNA-binding
proteins hasten the degradation of mRNA by binding to its 3′UTR. In its role as a tumor sup-
pressor in breast cancer, the mRNA-binding protein TTP curtails the level of TTP-binding
protein, which permits mRNA to persist for an extended duration, consequently hastening
the progression of breast cancer tumors. Notably, by reducing mRNA stability, such as by
amplifying the expression level of TTP, the risk of death from recurrent breast cancer in
patients is slashed by two to three times. Therefore, TTP, which can reduce mRNA stability,
is also suggested as a useful negative prognostic indicator for breast cancer [75,76]. Alter-
native polyadenylation (APA) can also influence breast cancer progression by modulating
the length of the 3′UTR, thus augmenting RNA stability. A case in point is the shortening
of the 3′UTR, which, as reported by Lembo et al., is linked to poor prognosis [77]. The au-
thors suggest that shorter 3′UTRs may contain fewer regulatory elements that are typically
involved in mRNA decay, such as miRNA binding sites or AU-rich elements (AREs). By
favoring a shorter 3′UTR, the mRNA isoform’s degradation rate can be lowered by evading
potential miRNA- and RBP-mediated decay. This change in the ratio between long and
short isoforms can instigate a transition from a normal state to a cancerous state [77,78].
Moreover, hormones, such as estradiol, can also modulate cancer progression by influ-
encing the mRNA half-life. Estradiol, in particular, plays a significant role in the onset
and development of breast cancer. A recent study revealed that estrogen also contributes
to the regulation of the mRNA half-life. The researchers found that estrogen fosters the
event of intracellular APA, which results in the shortening of the 3′ untranslated region
(3′UTR) of CDC6 mRNA. CDC6 plays an important role in DNA repair, and by stabilizing
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CDC6, estrogen ultimately enhances the DNA repair function in tumor cells, promoting
the progression of breast cancer [79].

3.1.3. Functional RNAs in Breast Cancer Heterogeneity

In addition to coding RNAs (mRNAs), functional RNAs also hold significant impor-
tance in transcriptomic profiling studies of breast cancer. Research has demonstrated the
crucial roles of functional RNAs, such as small non-coding RNAs (sncRNAs) and long
non-coding RNAs (lncRNAs), in the initiation and progression of breast cancer.

Small non-coding RNAs (sncRNAs) are under 200 nucleotides long and encompass
various types of small RNAs. The most common types include miRNAs, piRNAs, rsRNAs,
and tsRNAs, each exhibiting different lengths, structures, and biological functions. Though
miRNAs were first discovered in the early 1990s, the earnest exploration and research
into their role in breast cancer did not commence until 2005, when their presence was
detected in breast tumors [80,81]. miRNA genes are widely distributed, with a considerable
proportion of them located in specific regions of chromosomes, including vulnerable sites
of gene alterations, as well as regions of deletion and amplification in human cancers. This
suggests a relationship between miRNAs and genomic changes in breast cancer [82,83].
Recent comprehensive analyses have extensively investigated the aberrantly expressed
miRNAs in human cancers. In-depth studies have been conducted on the functions of some
of these miRNAs in breast cancer (Figure 3), and specific miRNAs have been identified for
predicting and classifying breast cancer subtypes [48,52,84–86].

Cancers 2023, 15, x FOR PEER REVIEW 10 of 32 
 

 

progression by influencing the mRNA half-life. Estradiol, in particular, plays a significant 
role in the onset and development of breast cancer. A recent study revealed that estrogen 
also contributes to the regulation of the mRNA half-life. The researchers found that estro-
gen fosters the event of intracellular APA, which results in the shortening of the 3’ un-
translated region (3’UTR) of CDC6 mRNA. CDC6 plays an important role in DNA repair, 
and by stabilizing CDC6, estrogen ultimately enhances the DNA repair function in tumor 
cells, promoting the progression of breast cancer [79]. 

3.1.3. Functional RNAs in Breast Cancer Heterogeneity 
In addition to coding RNAs (mRNAs), functional RNAs also hold significant im-

portance in transcriptomic profiling studies of breast cancer. Research has demonstrated 
the crucial roles of functional RNAs, such as small non-coding RNAs (sncRNAs) and long 
non-coding RNAs (lncRNAs), in the initiation and progression of breast cancer. 

Small non-coding RNAs (sncRNAs) are under 200 nucleotides long and encompass 
various types of small RNAs. The most common types include miRNAs, piRNAs, 
rsRNAs, and tsRNAs, each exhibiting different lengths, structures, and biological func-
tions. Though miRNAs were first discovered in the early 1990s, the earnest exploration 
and research into their role in breast cancer did not commence until 2005, when their pres-
ence was detected in breast tumors [80,81]. miRNA genes are widely distributed, with a 
considerable proportion of them located in specific regions of chromosomes, including 
vulnerable sites of gene alterations, as well as regions of deletion and amplification in 
human cancers. This suggests a relationship between miRNAs and genomic changes in 
breast cancer [82,83]. Recent comprehensive analyses have extensively investigated the 
aberrantly expressed miRNAs in human cancers. In-depth studies have been conducted 
on the functions of some of these miRNAs in breast cancer (Figure 3), and specific miRNAs 
have been identified for predicting and classifying breast cancer subtypes [48,52,84–86]. 

 
Figure 3. Continuous rings showing an overlapping role of several miRNAs in breast cancer migra-
tion and invasion [85]. 

Initially, researchers distinguished normal and transformed cells based on disparities 
in miRNA expression between breast cancer cells and normal breast cells. In 2005, Iorio 
and colleagues identified specific miRNAs in breast cancer cells that differed from those 
in normal cells, enabling a flawless classification of tumors and normal tissues. Their ini-
tial study on miRNA dysregulation in breast cancer used a microarray analysis to com-
pare various breast cancer samples with normal breast tissue, identifying 17 upregulated 
and 12 downregulated miRNAs specific to breast cancer cells. Additionally, miRNA dif-
ferential expression was observed in ER-positive (11 miRNAs) and PR-positive (7 
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and invasion [85].

Initially, researchers distinguished normal and transformed cells based on disparities
in miRNA expression between breast cancer cells and normal breast cells. In 2005, Iorio
and colleagues identified specific miRNAs in breast cancer cells that differed from those in
normal cells, enabling a flawless classification of tumors and normal tissues. Their initial
study on miRNA dysregulation in breast cancer used a microarray analysis to compare
various breast cancer samples with normal breast tissue, identifying 17 upregulated and
12 downregulated miRNAs specific to breast cancer cells. Additionally, miRNA differential
expression was observed in ER-positive (11 miRNAs) and PR-positive (7 miRNAs) samples,
suggesting the potential of miRNAs as molecular markers for breast cancer subtyping [82].
As research on miRNAs advanced, scientists gained the ability to preliminarily categorize
basic types of breast cancer by analyzing the miRNA profiles of tumor cells. In a 2007 study,
the differential expression levels of 38 miRNAs in breast cancer tumor samples enabled
researchers to classify 51 out of 93 tumor samples, including 16 basal-like tumors, 15 luminal
A, 9 luminal B, 5 HER2-positive, and 6 normal-like tumors [87]. Although they could
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not determine specific miRNAs for each subtype of breast cancer tumor, this finding
demonstrates the ability of miRNA features to classify the five molecular subtypes of breast
tumors (luminal A, luminal B, basal-like, HER2-positive, and normal-like).

As research has evolved, investigators have shifted their focus from merely distinguish-
ing miRNA expression differences to exploring specific miRNAs associated with various
breast cancer subtypes. In 2011, researchers were able to differentiate between HER2-
positive patients and TNBC patients. Specifically, through barcode Solexa sequencing, the
study investigated 185 breast specimens, including 11 normal breast tissues, 17 ductal carci-
nomas in situ (DCIS), 151 invasive cancers, and 6 ductal cell lines, and identified miRNAs
specific to TNBC. miR-17-92 and miR-19a showed approximately three-fold higher levels
in TNBC, while miR-423 and miR-184 levels were significantly lower in HER2-positive
patients [80]. Besides the aforementioned breast cancer subtypes and their related miRNA
dysregulation, numerous research teams have identified distinct aberrantly expressed
miRNAs associated with various breast cancer subtypes. For instance, the expression of
miRNA-205 is found to be reduced in the luminal A subtype, whereas miR-206 expression
is observed to increase in the luminal B subtype [88]. Furthermore, in the basal-like subtype,
miRNA-205 expression is low, while miR-221 and miR-222 expressions are elevated [89,90].
In HER2-overexpressing breast cancer, the expression levels of miR-125a and miR-125b are
generally downregulated [91].

Furthermore, with the discovery of an increasing number of miRNAs, these biomolecules
have transformed from being merely markers for breast cancer subtyping to being focal
points of detailed studies, including investigations into their origin and function. The
functions of miRNA families, such as miR-200 and let-7, have been investigated in breast
cancer. The miR-200 family is composed of five members, namely miR-200a, miR-200b, miR-
200c, miR-141, and miR-429. A recent study exploring the functions of miR-200 identified
three miRNA clusters—miR-200c-141, miR-200b-200a-429, and miR-183-96-182—that play
key roles in the self-renewal regulation of breast cancer stem cells (CSCs) and the overall
functional regulation of stem cells. These miRNA clusters are downregulated in human
breast CSCs, normal human cells, and mouse breast cells [92]. The let-7 family, recognized
as one of the earliest identified mammalian miRNA families, comprises 12 members: let-
7-a1, let-7-a2, let-7-a3, let-7-b, let-7-c, let-7-d, let-7-e, let-7-f1, let-7-f2, let-7-g, let-7-i, and
miR-98 [93]. Research has demonstrated that the expression levels of the let-7 family are
intimately connected with the behavior of breast cancer cells, showing specific changes
in different breast cancer subtypes. This provides a new perspective for analyzing tumor
heterogeneity in breast cancer based on miRNA sequencing. In poorly differentiated
aggressive breast cancer cells that display a mesenchymal phenotype, let-7 miRNAs are
typically absent. Conversely, in more differentiated cells with an epithelial phenotype,
the levels of let-7 miRNAs are relatively higher [94]. To be more specific, during different
stages of human breast cancer, the let-7 miRNA family is downregulated in DCIS, where
cancer cells are confined to the breast ducts without invading the surrounding tissues,
and invasive ductal carcinoma, where cancer cells invade beyond the breast ducts into
tissues such as the breast parenchyma or lymph nodes. Additionally, a low expression of
the let-7 family in ER-positive breast cancer cells leads to the upregulation of ER-α activity,
promoting cell proliferation and resisting apoptosis [95].

Interestingly, the analysis of cellular gene expression profiles reveals overlapping
areas and zones of ambiguity among the newly identified subtypes of breast cancer, specifi-
cally the claudin-low, normal-like, and TNBC subtypes. The basal-like and claudin-low
subtypes exhibit certain similarities in gene expression patterns. They both demonstrate
low expressions of genes such as HER2, ESR1, and GATA3, as well as luminal and ductal
markers like claudins 8 and 18. Additionally, approximately 15–25% of claudin-low tumors
show hormone receptor positivity (HR+), and a similar trend is observed in around 10% of
basal-like tumors [96,97]. Research proposes a further subdivision of the basal-like subtype
into Basal A and Basal B, informed by distinct gene expression patterns in breast cancer.
The Basal A subtype predominantly corresponds to the basal-like cells identified in primary
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tumors, while the Basal B subtype is more diverse, including not only TNBC, but also cells
characteristic of normal-like breast cancer [97].

Notably, the investigators observed remarkable similarities between the breast cancer
cell lines in Basal B (characterized by a TNBC, normal-like phenotype) and the claudin-low
subtype. Both demonstrated low expressions of luminal and HER2 gene clusters as well as
cell adhesion clusters that include claudins 3, 4, and 7 and E-cadherin [98]. Moreover, the
stem cell marker, aldehyde dehydrogenase 1 (ALDH1), is notably expressed in both normal-
like and claudin-low tumors. Also, there is an increased expression of basal cluster markers
(KRT6A/B, KRT17, KRT14, and KRT5) in TNBC and claudin-low tumors, exhibiting the
defining triple-negative characteristics (ER-/PR-/HER2-) [99]. These findings collectively
suggest a high degree of similarity between the claudin-low subtype and the basal-like
and normal-like subtypes in TNBC, thereby hinting at the potential existence of distinct or
shared novel tumor subtypes.

Further studies have provided additional evidence supporting this viewpoint. In a
classification spectrum of 400 TNBC tumor patients, it was found that 72% were classified
as basal-like, 9% were classified as HER2-enriched, 6% were classified as luminal B, 5%
were classified as luminal A, and 8% were classified as normal breast-like [100]. However,
when considering the claudin-low classification, the distribution changed to 49% basal-like,
30% claudin-low, 9% HER2-enriched, 6% luminal B, 5% luminal A, and 1% normal breast-
like. This implies that when considering the gene expression profiles of the claudin-low
subtype, a portion of basal-like and normal breast-like tumor cells are classified within it.
In essence, the claudin-low subtype intersects with the normal breast-like subtype and the
basal-like subtype in TNBC, leading to a mixed classification of cancer cells. This ambiguity
might arise from the nebulous definition of the basal-like subtype within TNBC, which
also encompasses non-basal-like tumor cells. Alternatively, it might suggest a potential
new subgroup existing between basal-like and claudin-low tumors, or it could reflect the
complexity of the tumor microenvironment, including contamination via normal breast
epithelial cells and the infiltration of immune cells [55,68]. Though the implementation
of precise microarray gene expression profiling and gene expression clustering models
significantly improves the ability to differentiate breast cancer cell subgroups, the intricate
heterogeneity of breast cancer remains a complex challenge yet to be fully tackled.

3.2. Single-Cell Transcriptome Profiling

Single-cell RNA sequencing (scRNA-seq) requires the prior isolation of individual
cells from tumor tissue, in contrast to traditional bulk RNA analysis that involves breaking
down large tissue pieces or cell suspensions. Common methods for single-cell isola-
tion include micromanipulation, laser capture microdissection, microfluidic techniques,
and fluorescence-activated cell sorting (FACS). Micromanipulation allows for the manual
isolation of individual cells while preserving their original states, while laser capture mi-
crodissection provides spatial information of target cells [101,102]. Microfluidic techniques,
including droplet-based methods, offer high-throughput and cost-effective automation
of single-cell isolation, reverse transcription, and pre-amplification, albeit with certain
technical limitations. FACS combines flow cytometry with specific fluorescently labeled an-
tibodies to isolate individual cells of interest from heterogeneous cell populations. A careful
evaluation of the advantages and disadvantages of these single-cell isolation methods is
necessary based on experimental requirements [103,104].

To enhance accuracy and efficiency in scRNA-seq, reverse transcription and amplifica-
tion stages can utilize techniques such as Poly(A) tailing or template switching for cDNA
synthesis, followed by polymerase chain reaction (PCR) or in vitro transcription (IVT) for
cDNA amplification [105,106]. PCR offers non-linear amplification after the second strand
synthesis, while IVT is a linear amplification method incorporating a T7 promoter into
the poly(T) primer [107]. The choice of reverse transcription and amplification strategies
depends on experimental needs and preferences.
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In selecting an appropriate single-cell isolation method, researchers should consider
specific application scenarios and research questions. For studying a large number of
samples like undissociated tissue sections, methods such as inDrop [108,109] and Drop-
seq [110,111] can be considered, although they may have limitations in transcriptome
coverage and detecting lowly expressed genes [112]. For studies involving a small number
of cells like circulating tumor cells (CTCs), flow cytometry or micromanipulation followed
by manual library preparation in microwell plates can be suitable. These protocols often
amplify full-length mRNA using SMART or alternative chemistry, enabling in-depth tran-
scriptome analysis. It is crucial to evaluate the advantages and disadvantages of these
methods to ensure the appropriate choice for single-cell sequencing experiments in breast
cancer research [113–115].

In recent years, single-cell transcriptome analysis techniques have revolutionized
the understanding of tumor heterogeneity in breast cancer. These techniques have been
extensively utilized to investigate differentiation trajectories, resistance programs, and im-
mune infiltration in tumors [116,117]. Metastasis, a major driver of cancer-related fatalities,
underscores the importance of comprehending its initiation and progression to develop
effective therapeutic strategies [53]. To identify subpopulations of cells with metastatic
characteristics in breast cancer tissue, researchers have turned to single-cell gene expression
profiling [53]. They employed FACS combined with the CD298 gene (ATP1B3) as a marker
to discern and enumerate human-derived metastatic tumor cells in mouse peripheral tis-
sues [118]. Additionally, multiplex gene expression profiling was performed on individual
cells, targeting genes associated with stemness, pluripotency, epithelial-to-mesenchymal
transition (EMT), mammary lineage specification, dormancy, cell cycle, and proliferation.
The analysis unveiled that early-stage metastatic cells possess significant tumor-initiating
capacity and have the ability to generate luminal-like tumor cells, supporting the notion
of stem-like metastatic cells giving rise to luminal-like metastatic cells. Moreover, the
examination of genes linked to differentiation features in breast cancer tumor single cells
revealed differential expression patterns. Early-stage metastatic cells exhibited higher
expression levels of basal/stem cell genes (LGR5, BMI1, BCL2, NOTCH4, and JAG1) and
lower levels of luminal genes (MUC1, EMP1, and CD24). Prognostic associations were
also identified among genes associated with stem-like metastatic cells, indicating their
potential for predicting distant metastasis and aiding in prognostic determinations. Insights
derived from single-cell analysis can provide valuable guidance for treatment strategies.
High levels of MYC and CDK2 were observed in later-stage metastatic cells, prompting
the investigation of dinaciclib, a CDK inhibitor known to induce apoptosis in cancer cells
with high MYC expression [119]. Remarkably, the treatment with dinaciclib successfully
inhibited the progression of metastasis in the majority of mouse tumors after four weeks
of administration.

Moreover, in the initial stages of breast cancer metastasis, breast cancer cells undergo
a transformation known as EMT. This transformation allows them to enter the circulatory
system as CTCs. Characterizing the genotype and phenotype of CTCs may provide a
better understanding of tumor evolution and help with the identification of metastatic
initiating cells. However, CTCs are exceedingly scarce in the bloodstream, and often present
in very limited quantities, sometimes as rare as a handful of cells per milliliter of blood,
and studying the transcriptome of CTCs using traditional RNA sequencing techniques is
challenging due to their scarcity and the biases associated with low cell numbers [120].

To overcome these challenges, advancements in single-cell RNA sequencing technolo-
gies, such as FACS and microfluidic chips, have been instrumental in efficiently isolating
and capturing CTCs for analysis [121,122]. Recent studies have successfully applied single-
cell sequencing to CTCs derived from patients with metastatic breast cancer. These studies
have revealed a high concordance between the gene expression profiles of CTCs and the
corresponding metastatic tissue, demonstrating the potential of CTCs as representatives of
the metastatic process [123]. In addition, researchers have developed strategies to extract
functional CTCs from mice implanted with human tumor xenografts. These CTCs retain
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their tumor-initiating and metastatic capabilities, providing valuable models for further
investigation [124]. An analysis of CTCs from breast cancer patients has shown that the
extracted CTCs were predominantly triple-negative breast cancer cells (lacking expression
of ER, PR, or HER2). Significant differences in the ER, PR, and/or HER2 statuses were
observed between the enriched CTCs and the corresponding primary tumors in primary
and metastatic breast cancer patients. The loss of the cell adhesion protein CDH1 in mi-
grating CTCs was consistent with the acquisition of invasive and migratory characteristics,
suggesting that the systematic implementation of single-cell CTC analysis could provide
new insights into the biology of migrating tumor cells during the process of metastatic dis-
semination. Additionally, a multi-marker RNA analysis of CTCs at a single-cell resolution
revealed distinct CTC subpopulations. An important finding was that CTCs did not cluster
based on patients or disease stages (primary cancer vs. metastatic cancer), supporting
the concept that these cells belong to subgroups with phenotypes that are fundamentally
different from mixed tumor tissues. Studying and phenotyping primary tumors separately
may lead to suboptimal treatment choices [45].

In sum, sequencing CTCs offers valuable insights into tumor heterogeneity, the
metastatic process, and the evolution of breast cancer. By understanding the transcriptomic
profiles of CTCs, researchers can gain deeper insights into the underlying mechanisms of
metastasis and potentially identify novel therapeutic targets. Moreover, single-cell RNA
sequencing provides higher resolution and accuracy in addressing questions related to
breast cancer heterogeneity.

In our previous discussions, we noted that conventional gene expression profiling
exposed a considerable overlap between the claudin-low subtype and the normal-like and
basal-like subtypes in TNBC. This overlapping area, which we refer to as the Triple Negative
Gray Area (TNGA), introduces potential ambiguity in the cellular classifications of these
subtypes. The TNGA includes both the claudin-low and normal-like subtypes, as well as
the claudin-low and basal-like subtypes in TNBC, along with any shared cell populations.

Recent studies utilizing single-cell RNA sequencing have provided insights into the
subdivision of TNBC tumors into six distinct subgroups. These subgroups include (i) a
mesenchymal stem cell cluster characterized by a significantly elevated EGFR expression
and an increased expression of genes associated with mesenchymal (VIM, ITGB1, and
LAMC2) and stem cell-like (ITGA6 and ITGB4) characteristics; (ii) a mitochondrial cluster
with an increased expression of genes localized to mitochondria (MRPL genes, MDH2,
and TOMM40); (iii) a proliferative cluster exhibiting a high expression of cell cycle genes
(MKI67, AURKA/B, and PLK1), with a majority of cells in the G2/M phase of the cell
cycle; (iv) an antigen-presenting cluster with an increased expression of genes involved in
antigen presentation (HLA-DRB1, CD74, and HLADRA); (v) a basal cluster characterized
by an elevated expression of basal cell markers (KRT6A/B, KRT17, KRT14, and KRT5); and
(vi) another cluster without unique expression profile features [66,125]. Additionally, an
indeterminate component composed of seven clusters is also observed [66]. By employing
this classification schema, it becomes possible to segregate tumor cells from TNBC patients
into distinct subgroups, effectively highlighting the extensive intra-tumoral heterogeneity.
Notably, a compelling correlation is observed between TNBC tumor cells and the basal-like
subtype, as evidenced by their shared high expression of the epidermal growth factor re-
ceptor (EGFR) and the keratin family members KRT5, KRT17, and KRT14 [8]. Furthermore,
there is an evident association between TNBC cells and the claudin-low subgroup. Both
claudin-low and TNBC subtypes exhibit the expression of various transcription factors, in-
cluding FOXC1 and ZEB1, which play crucial roles in initiating the EMT process, enhancing
their invasive and metastatic abilities [53].

Moreover, studies probing the tumor microenvironment reveal signs of exhaustion
in T cells within the infiltrating immune cell population of TNBC [126,127]. CD8 exhaus-
tion, characterized by immune cell infiltration, has also been observed in the claudin-low
tumor subtype [96]. T cells with high exhaustion features are targets for clinical tumor
immunotherapy, particularly immune checkpoint blockade targeting PD-1 (PDCD1), indi-
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cating sensitivity to PD-1 treatment in these individuals [126–128]. There is also a similarity
between the claudin-low and normal-like subtypes, which suggests a certain degree of
relationship between them. For example, both subtypes show a low expression of lumi-
nal and HER2 gene clusters and a high expression of the stem cell marker ALDH1 [96].
Therefore, within the context of TNBC, there exists a distinct subgroup of cells that exhibits
shared characteristics from the claudin-low, basal-like, and normal-like subtypes, collec-
tively identified as the Triple Negative Gray Area (TNGA). Remarkably, this particular
cell subgroup not only possesses the triple-negative features (ER-/PR-/HER2-), but also
demonstrates a low expression of luminal gene clusters, along with distinct stemness and
migratory properties.

Building upon the insights gleaned from the aforementioned research, TNGA cells,
characterized by their stemness properties, demonstrate shared traits with three distinct
tumor subtypes: basal-like, claudin-low, and normal-like subtypes. Consistent with the
CSC theory, TNGA cells are believed to occupy an intermediate state. This premise aligns
with the established models proposed in previous studies [96]. In model 1, it was observed
that most invasive breast tumors can be arranged along the differentiation hierarchy of
normal breast ductal epithelium, starting from the claudin-low subtype closest to Mammary
Stem Cells (MaSCs), followed by basal-like and HER2-enriched subtypes, and then the two
luminal tumor subtypes, with the luminal subtypes closest to mature luminal cells [129].
In model 2, MaSCs give rise to claudin-low tumors, luminal progenitor cells give rise
to basal-like tumors, and mature luminal cells give rise to luminal subtypes A and B
tumor cells. The speculated origin cells of HER2-enriched tumors could be epithelial
cells in a transitional differentiation state, straddling between luminal progenitor cells
and mature luminal cells [96]. In model 3, transformed MaSCs, imbued with claudin-
low/mesenchymal characteristics, retain capacity for both symmetric and asymmetric
division, the latter of which facilitates cell differentiation and halts at certain differentiation
stages. The majority of tumors will consist of luminal progenitor/basal-like cells or more
differentiated luminal cells, with each molecular subtype having a subset of cells with a
low expression of mesenchymal/tight junction proteins [130].

Initially, model 1 encountered challenges primarily due to the observed association
between the basal-like and claudin-low subtypes [110]. Subsequently, model 2 encountered
skepticism as claudin-low tumors display a minimal expression of luminal genes [96] and
stand far removed from luminal A/B, casting doubt on the prospect of direct differentiation
into mature luminal subtypes. The ambiguous association between the claudin-low and
luminal subtypes may be ascribed to the misclassification of HER2-enriched tumors (bear-
ing similarity to the claudin-low subtype) as luminal subtypes. In specific cases, cancer
cells originating from ER and HER2 double-positive tumors undergo ERBB2/HER2 am-
plification without significant downstream HER2 signaling activation. Instead, these cells
primarily exhibit downstream ER signaling activation, resulting in their classification as
luminal subtype B. Nonetheless, they retain the potential for downstream HER2 activation
and can manifest HER2-enriched characteristics under certain circumstances [8]. However,
we support the paradigm of HER2-enriched and luminal differentiation. This is not solely
due to the marked differences between the HER2-enriched and luminal subtypes, such as
those in the PI3K and NF-kB pathway genes [8], but also within the TNGA context, as lu-
minal subtypes display more extensive differences in gene expression profiles compared to
HER2-enriched tumors. For example, their expression of EMT characteristics is much lower
than that of TNG cells. Nevertheless, in comparison to luminal subtypes, HER2-enriched
tumor cells lie closer to the TNGA continuum and manifest pronounced levels of stemness
and recurrence traits [8].

To address these considerations, we propose a revised model that incorporates the
normal-like classification and introduces the TNG cell subtype, while highlighting the
luminal progenitor cell type as the primary cell type involved in the transformation process
(Figure 4). Under this proposed framework, MaSCs in basal-like cancer undergo restricted
differentiation, giving rise to luminal progenitor cells. These luminal progenitor cells then
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undergo further differentiation into ER-enriched progenitor cells, which subsequently
evolve into mature luminal cells. ER-enriched and mature luminal cells, exhibiting inde-
pendent proliferation, contribute to the formation of various cell subtypes. Importantly,
luminal progenitor cells also differentiate into the TNGA cell subgroup. Under different
inducing factors, such as MET and changes in the immune microenvironment, they further
develop into the basal-like, claudin-low, and normal-like subtypes.
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Undeniably, additional research is imperative to pinpoint the progenitor cells of each
intrinsic subtype. However, single-cell RNA sequencing studies have provided insights
into the complexity and heterogeneity of TNBC. The identification of distinct subgroups
within TNBC, along with their shared characteristics and relationships, contributes to our
understanding of tumor evolution and opens avenues for more targeted and personalized
treatment strategies. Continued advancements in single-cell RNA sequencing technology
will undoubtedly enhance our knowledge of the breast cancer subtypes and refine existing
models, leading to improved diagnostic and therapeutic approaches.

4. Protein Profiling
4.1. Traditional Protein Profiling

Despite the strides made in the molecular classification of breast cancer through gene
expression profiles, its incorporation into routine patient management remains elusive [131].
The primary hurdles are multi-fold. First, successful deployment calls for robust techni-
cal and analytical consistency, which is a feat often impeded by the inherent variability
of patient samples across disparate laboratories [132,133]. Consequently, clinicians ne-
cessitate guidance from a centralized assessment body, such as the American Society of
Clinical Oncology (ASCO) and the College of American Pathologists (CAP), to guarantee
a standardized approach [134,135]. Second, while there is a plethora of novel biomark-
ers, their clinical utility is frequently compromised due to their inability to reveal protein
concentration, localization, post-translational modifications (PTMs), or their interaction
with other proteins [136]. Third, the global accessibility of these biomarkers is inconsis-
tent, with a glaring disconnect with traditional pathological classifications within different
healthcare infrastructures. This disparity exacerbates the difficulty in formulating precise
recommendations [133,137].

The application of traditional pathological examinations, focused on disease mor-
phology, remains a mainstay in clinical practice for discerning the unique attributes and
characteristics of breast cancer [138,139]. To illustrate, during tumor staging and subsequent
clinical management, the TNM staging system frequently takes center stage. This system
categorizes cancer patients according to three key parameters: tumor (T), node (N), and
metastasis (M). The ‘T’ component reflects the size and invasiveness of the primary tumor,
‘N’ denotes the lymph node involvement, and ‘M’ signifies the presence of metastasis. As
the TNM stages progress, they indicate a more advanced cancer stage and a prognosis that
is less favorable. In detail, ‘T’ encompasses Tx (un-assessable primary tumor), T0 (absence
of primary tumor), Tis (carcinoma in situ), and T1-T4 (four stages gauged on tumor size and
invasiveness). ‘N’ includes Nx (un-assessable lymph node status), N0 (absence of lymph
node metastasis), and N1-N3 (three stages based on extent of lymph node involvement).
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The ‘M’ component is subdivided into M0 (no distant metastasis) and M1 (presence of
distant metastasis) [140]. Following this, the Nottingham Prognostic Index (NPI) plays a
crucial role in the treatment and prognostic evaluation. The NPI allocates scores to tumor
size, lymph node metastasis, and tumor grade, and subsequently applies weights to these
scores to compute an overarching score that predicts the patient’s prognosis. The scores for
the tumor size and the lymph node metastasis range from 0 to 3 and from 0 to 2, respectively,
while the tumor grade scores span from 1 to 3. The composite of these three scores gives
the NPI score, where higher scores are indicative of a poorer prognosis [141].

Significantly, markers identified through IHC are routinely utilized to discern the
protein expression levels within tumor cells, thereby playing an integral part in tradi-
tional pathological examinations. The essence of IHC lies in the restoration of the three-
dimensional structure of proteins, potentially disrupted during the processes of fixation and
embedding, facilitated via heat or chemical treatment. This restoration enables antibodies
to interact effectively with target proteins. To amplify specificity and sensitivity, certain
proteins such as bovine serum albumin or serum are employed to inhibit non-specific
antibody binding to non-target proteins in tissues. This step is succeeded by the appli-
cation of a specific antibody to bind the protein of interest in cellular or tissue samples,
eventually leading to a staining reaction through the interaction with a secondary antibody
or enzyme [134]. Within the context of breast cancer diagnosis, standard evaluation in-
volves classification according to the expression levels of key receptors such as estrogen
receptor α (ER), progesterone receptor (PgR), and human epidermal growth factor recep-
tor 2 (HER2). These categories comprise ER-positive, ER-negative/HER2-positive, and
ER-negative/HER2-negative cases (primarily PgR-negative, also known as triple-negative
breast cancer) (Figure 5).
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Estrogen receptor (ER): The estrogen receptor (ER) is a steroid receptor transcription
factor regulated by estrogen in breast tissue [142]. In breast cancer diagnostics, the ER
expression status serves as a pivotal biomarker. More than 75% of breast cancer patients
present ER-positive tumors, leaving the rest as ER-negative [143]. ER-positive tumors
generally manifest with low-grade histology, reduced invasiveness, and improved prog-
nosis, in contrast to ER-negative tumors, which typically exhibit increased invasiveness
and a poorer prognosis [144]. The ER expression status also correlates with breast cancer
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molecular subtypes. ER-positive breast cancers, when compared with HER2-negative and
PgR-positive cancers, have molecular profiles closer to normal breast tissue and hence,
have a more favorable prognosis [134]. Conversely, HER2-positive and triple-negative
breast cancers, which are more prevalent in younger patients, tend to have a higher degree
of invasiveness and a poorer prognosis [145]. The presence or absence of ER expression
also holds significant implications for the treatment of breast cancer. Endocrine therapies
like aromatase inhibitors and tamoxifen are particularly effective in treating ER-positive
breast cancer as they inhibit estrogen action, thus curtailing tumor growth. In contrast,
ER-negative breast cancers do not respond to such treatments due to their lack of ER
targeting [146].

Progesterone receptor (PgR): The progesterone receptor (PgR), regulated by estrogen, is
another significant biomarker in breast cancer molecular diagnosis. In ERα-positive breast
cancer, approximately half of the patients express PgR [147]. The level of PgR expression
plays a vital role in guiding breast cancer treatment and prognosis. Tumors exhibiting
low or absent PgR expression typically manifest heightened proliferative and invasive
characteristics, alongside an increased risk of recurrence and a poorer prognosis [148].
Conversely, the most common type of breast cancer co-expresses ERα and PgR [147].
However, the predictive ability of PgR is subject to controversy. While some studies
propose a predictive role of PgR in treatment response and prognosis, others negate
any such association. In scenarios where ERα detection fails, PgR expression, although
uncommon, may be classified as a minor subtype due to false-negative ERα or false-positive
PgR results. A subset of these cases exhibits low or aberrant PgR expression despite the
absence of apparent ERα expression [145,149].

Human epidermal growth factor receptor 2 (HER2): Human epidermal growth factor
receptor 2 (hER2) is a transmembrane tyrosine kinase receptor. Its overexpression and
amplification in breast cancer are recognized risk factors. HER2-positive breast cancer
constitutes approximately 15–20% of all breast cancer instances [150]. This category of
breast cancer is typically associated with high invasiveness, rapid growth, and a poor
prognosis. The five-year survival rate and overall survival rate for HER2-positive breast
cancer patients trail those of HER2-negative patients [145]. HER2 plays a significant role in
the onset and progression of breast cancer. The overexpression of the HER2 protein, as a
result of HER2 gene amplification, activates a multitude of signaling pathways, including
the RAS-MAPK and PI3K-AKT-mTOR pathways. These pathways promote malignant
behaviors such as cancer cell proliferation, growth, and invasion [151].

Triple-negative breast cancer: IHC biomarker classification clearly delineates triple-
negative breast cancer, identified by the absence of the estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth factor receptor 2 (HER2) proteins [146]. The
absence of these protein markers renders the diagnosis of triple-negative breast cancer
dependent on exclusion criteria. Furthermore, the unavailability of these markers limits
the use of targeted treatment approaches such as estrogen receptor antagonists or HER2-
targeted drugs. These constraints reduce treatment options for triple-negative breast cancer,
making chemotherapy the primary treatment modality [152].

4.2. Single-Cell Proteomic Profiling

Protein biomarker detection is widely accepted in clinical treatment due to the central
role of proteins in cellular behavior and their potential for breast cancer classification [6,136].
However, traditional protein biomarker detection faces challenges in accurately distinguish-
ing patients based on clinical pathological criteria, resulting in suboptimal treatments [100].
By enabling protein analysis at the single-cell level, single-cell proteomic analysis offers a vi-
able approach to distinguish and identify rare single cells within breast cancer tumors. This
granularity in identification aids in the precise characterization of breast cancer subtypes,
thereby informing clinical treatment and prognostic assessment [153]. Pioneering studies in
single-cell proteomics leveraged the protein expression levels within breast cancer cells for
classification. The methodologies that were predominantly employed were the following:
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1. Flow cytometry, which is an approach that quantifies the fluorescence characteristics of
individual cells or particles within a fluid stream when exposed to light sources [154].
Cells labeled with fluorescent antibodies are rapidly channeled through a detection
region within a flow chamber. Subsequently, these stained cells are stimulated by
lasers, and a detector captures the intensity of the emitted fluorescence. Over the
decades, since its inception in the late 1960s, flow cytometry has evolved significantly.
It has progressed from an initial capacity to measure 1–2 fluorescent substances within
cells, to now being capable of analyzing 10–15 fluorescent substances within a single
cell, enabling the assessment of entire cellular pathways.

2. Single-cell mass spectrometry (MS), which is a method that offers the potential for
a label-free quantitative analysis of the full proteome of a single cell, inclusive of
proteins, peptides, and PTMs [155]. One key advantage of MS is that it does not
necessitate molecular labeling, and it can attain sensitivity to the femtomolar level
for pure proteins. Various mass spectrometry techniques, such as electrospray MS,
laser/desorption/ionization MS, and secondary ion MS, are deployed in single-cell re-
search. However, the utilization of MS for single-cell protein analysis faces challenges,
primarily due to an inadequate sensitivity to detect the low-abundance proteins that
are typically present in single cells.

3. Reverse-phase protein array (RPA), which is a miniaturized protein imprinting tech-
nique that facilitates quantitative monitoring of protein expression in hundreds or
even thousands of samples concurrently [156]. This method involves archiving whole-
cell lysates in a microarray format for detecting proteins of interest via immunological
detection. Notably, RPA obviates the need for protein sample separation via elec-
trophoresis, thereby enabling the concurrent analysis of multiple samples. Addition-
ally, RPA requires only a minimal sample volume for multiplex protein detection.

However, these protein detection techniques like flow cytometry, mass spectrometry,
and immunoblotting require large quantities of cells for analysis [157]. Other single-cell
protein detection technologies, such as capillary electrophoresis, have the limitation of
a lower protein capture efficiency, rendering them unable to achieve genuine single-cell
sampling and detection [158]. And a variety of microfluidic methodologies have been
developed in recent years, contributing to remarkable advancements in single-cell protein
expression analysis. These include droplet-based microfluidics [159], microfluidic flow
cytometry [160], microengraving [161], and barcoding microchips [162]. Among these tech-
niques, single-cell Western blotting distinguishes itself through its ability to detect protein
levels in single cells. It also boasts user-friendliness, cost effectiveness, and the delivery
of easily interpreted results. Single-cell Western blotting, which evolved from microfluid
Western blotting, is a protein imprinting technique based on microfluidics. It facilitates
swift quantitative analysis of protein samples within individual glass microchannels. The
procedure incorporates several stages such as sample enrichment, protein sizing, protein
fixation (imprinting), and in situ antibody probing. The accuracy and control provided by
microfluidic integration enable a superior efficiency and resolution in traditional protein
imprinting [163].

In 2014, an enhancement to this technique was introduced by Herr’s team. They
employed a 30 µm thick photosensitive polyacrylamide gel for direct single-cell sampling
on microscope slides. Consequently, individual cells were settled into microwells, followed
by in situ lysis, gel electrophoresis, and photo-induced imprinting for protein fixation.
This allowed for the achievement of thousands of simultaneous protein imprints in a short
duration [164].

The true potential for classifying breast cancer subtypes based on single-cell protein
expression is achieved when proteomic detection techniques can analyze thousands of
individual cells within a short period. For instance, in a 2015 study, Herr’s team uti-
lized single-cell imprinting technology to analyze dissociated single cells derived from
human HER2-positive breast tumor biopsies. They reported a five- to ten-fold variance
in the expression of mTOR, ERK, and eIF4E across 33 tumor cells [165]. The activation of
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downstream proteins in these subpopulations of breast cancer cells was associated with
an increased tumor invasiveness and a resistance to trastuzumab, significantly lowering
patient survival rates [166].

In 2020, a technique devised by Herr’s team enhanced the precision and efficiency of
single-cell electrophoresis gel detection by transforming the array format into detachable gel
blocks. These blocks were then dehydrated and released into an incubation solution [167].
Their approach unveiled a minor cell subtype in a large population of 478 MCF-7 cell lines,
expressing the protein ERα46, which was previously overlooked in conventional single-cell
detection. Significantly, this breast cancer cell subtype demonstrated resistance to estrogen
therapy, thereby providing groundwork for further proteomics-based breast cancer cell
subtype classification [168].

Aside from protein expression level analysis, identifying specific protein isoforms can
contribute to breast cancer classification and provide insights into disease progression. For
instance, ER-α46, an ER isoform with a truncated and activation-deficient C-terminus, has
been studied in this context. Typically, adjuvant hormonal therapies, such as tamoxifen
(TAM), are utilized to inhibit the overexpression of ER-α66 [169]. However, relying solely
on the nuclear overexpression of the full-length ER-α66 as a hormonal therapy indicator
may prove inadequate [170]. Post adjuvant hormonal therapy, ER-positive breast cancer
heterogeneity led to recurrence in 21% of stage I patients over 20 years, with 14% presenting
distant metastases [18]. Given the homology between ER-α46 and ER-α66, isoform-specific
antibodies struggle to differentiate between ER-α46 and ER-α66. Nonetheless, their sep-
aration can be facilitated through the migration pattern detected in single-cell Western
blotting (scWB) [171,172]. In 2021, Herr’s team distinguished between hormone-sensitive
and hormone-insensitive breast cancer cell subtypes by examining the expression levels
and frequency of single-cell protein isoforms (i.e., ER-α46 and ER-α66). Based on ER-α
isoform expression, they categorized traditional MCF cell lines into three subtypes: MCF1
(co-expressing both ER-α isoforms, ~5%), MCF2 (expressing only ER-α66 isoform, ~60%),
and MCF3 (expressing solely ER-α46 isoform, ~30%). ER-α46 served as a subtype-specific
biomarker responsive to TAM, with MCF2 cells demonstrating the highest sensitivity to
E2 and TAM treatment [9]. Additionally, pAKT and pS6 were identified as determinants
for differentiating hormone-sensitive MCF-7 from hormone-insensitive MDA-MB-231 sub-
types. In triple-negative breast cancer cell lines lacking full-length ER-α66 protein, the
majority of cells expressed ER-α46 and exhibited a highly invasive phenotype [173]. A com-
bination therapy involving PIP5K1α/pAKT inhibitors and TAM could potentially increase
the hormonal therapy sensitivity in the pAKT/ER-α46 MDA-MB-231 subtype [174].

Furthermore, by isolating and capturing CTCs from patients’ blood samples, the
need for traditional tissue biopsies is eliminated. Although genomics has uncovered
a considerable amount of information, there is often a weak correlation between ge-
nomics/transcriptomics and protein expression in certain cases [175,176]. It is noteworthy
that disparities have been observed in the protein expression between primary tumors and
CTCs [177], suggesting that detection protein in CTCs and tumors may provide valuable
information. Utilizing a microfluidic single-cell protein imprinting analysis of the nuclei
of individual CTCs from ER+ breast cancer patients, Sinkala et al. found that a subset of
tumor marker-positive cells also expressed CD45+, indicating the presence of up to 35%
of tumor-associated leukocyte subpopulations [178]. Additionally, researchers identified
two subpopulations within CTCs derived from ER+ patients based on glyceraldehyde
3-phosphate dehydrogenase (GAPDH) levels, and this was confirmed through a statistical
analysis [178]. However, the method of individually selecting CTCs using micromanipula-
tors and transferring each cancer cell to individual microwells limits the throughput of the
research. To address this issue, Ding et al. developed a novel SAIF (Selective Adhesion and
Immunofluorescence) chip that relies on the unique fluidic behavior of CTCs to achieve
high-throughput, label-free, and continuous separation of cancer cells (A549, MCF-7, and
HeLa) from leukocytes. This provides a simple and efficient solution for the efficient,
label-free, and high-throughput isolation of CTCs from blood cells [179].
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With the advancement of microfluidic single-cell protein imprinting, Ding et al. pro-
posed several solutions for microfluidic CTC sorting in 2022, including the antibody-
functionalized microfluidic chip (AFM) [180], single-cell immunoblotting microfluidic chip
(ieSCI) [181], and a sickle-like inertial microfluidic chip (Orcs-proteomics) [182]. These
methods minimized the loss of cytoplasmic proteome and markedly enhanced the utiliza-
tion of rare cells. In addition, an efficient proteomic analysis of the collected CTCs is equally
crucial. Johanna et al. conducted an in-depth proteomic profiling of CTCs isolated from
blood samples. In their research, clinical blood samples were collected from two advanced-
stage breast cancer patients. They identified 1135 protein groups from seven isolated CTCs
and 973 protein groups from five CTCs, with the proteins involved in metabolic pathways
being dominant, including 11 tumor markers (PTEN, CD44, BCL2, EPCAM, vimentin,
Ki-67, cyclin B1, PRB, AKT, IgG, and K14) [183]. By adopting single-cell protein detection
technology, they were able to garner more comprehensive protein data from CTCs, thus
uncovering cellular heterogeneity. Furthermore, they could even track individual responses
to treatment in clinical studies through the proteomic information gleaned from CTCs.

5. Conclusions

Breast cancer tumor heterogeneity is a pressing global issue impacting women’s health.
To further decipher and differentiate these tumors, researchers have delved deeply into
using techniques such as genomics, transcriptomics, and proteomics. These methods
facilitate the analysis of genetic information, gene expression, and protein expression levels
in tumor cells, forming the basis of breast cancer classification. Salient achievements in
this field include the discovery of six molecular subtypes of breast cancer and three key
protein signals.

Markers that are intimately linked with cancer cell behavior have proven to be partic-
ularly valuable in breast cancer classification, offering more precise subtype information.
Studying transcriptomic products and protein expression associated with disease progres-
sion and treatment response in breast cancer cells can yield more effective insights than
genomics alone. Owing to the stochastic nature of gene expression, cells with an identical
genotype and copy number display variations in their RNA and protein content, implying
a divergence between proteomics and transcriptomics. This realization underscores the
necessity for proteomic analysis. These aid researchers in better grasping the subtype
characteristics of breast cancer, thereby guiding personalized treatment and prognosis
assessment. Simultaneously, single-cell detection technology has made significant strides
in addressing the issue of breast cancer heterogeneity. By leveraging the groundwork of
prior research, researchers can now conduct comprehensive analyses of individual tumor
cells using single-cell genomic, transcriptomic, and proteomic techniques, unmasking
intra-cellular differences and heterogeneity.

Nonetheless, overcoming breast cancer heterogeneity and actualizing truly personal-
ized treatment necessitates an in-depth understanding of all the molecular characteristics
of both the breast cancer and the patient, which is a task riddled with challenges. From
the perspective of multiplicity in single-cell proteomics analysis, the comprehensive de-
tection of the membrane, intracellular, and secreted proteins is a prevailing trend. This
integrative analysis provides a more comprehensive view of protein information, enabling
us to delve deeper into the composition and functionality of cells. However, within a
single cell, there exists a vast number of proteins (>10,000). Existing multiplexing methods,
though, typically target only one or two specific types of proteins, lacking the ability to
cover a comprehensive understanding of protein–protein interactions, signaling networks,
and regulatory mechanisms within cells. It is only through the comprehensive analysis
of proteins from different types and subcellular locations that we can better elucidate the
intricate protein interaction networks within cells and their significant roles in cellular
function and disease development [16,184]. For instance, Ding et al. made advancements
in flight time cytometry (CyTOF), an emerging powerful proteomics analysis technique
that utilizes metal-chelating polymers (MCPs) as mass tags to simultaneously interrogate
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high-dimensional biomarkers across millions of individual cells. They improved this tech-
nique by designing a novel metal-labeled aptamer nanoprobe (MAP), which exhibits higher
sensitivity compared to antibodies with a lower epitope coverage, making it safer and
more convenient to use [185]. Furthermore, they developed a new metal-labeling strategy
based on metal–organic frameworks, enabling multi-parametric and sensitive single-cell
biomarker studies. This approach holds great promise as the next generation of molecular
probes in mass cytometry. These advancements provide the foundational technological
capabilities for multiplex protein imaging [186]. Additionally, spatial information plays
a pivotal role in characterizing single-cell proteomics by capturing the protein localiza-
tion, cell phenotype, and dynamics. It offers valuable insights into cellular interactions
and tissue organization, enhancing our understanding of disease progression and cellu-
lar functions. However, studying solid tumors poses challenges in handling single-cell
proteomic samples. Common analytical approaches involve generating single-cell suspen-
sions through proteomic methods. Yet, the digestion and dissociation processes involved
in this procedure can result in the loss of spatial information. These processes disrupt
intercellular associations and positional cues, obscuring the true expression programs and
vital information about cellular interactions. As a consequence, we may overlook crucial
interactions and relative positions of cells within the tumor microenvironment, impeding
the accurate localization of distinct cellular subpopulations with varying functions and
expression programs in solid tumors [112,187]. Therefore, the primary consideration is to
preserve cellular spatial information as much as possible. For example, researchers have
been combining tissue sectioning with single-cell proteomics techniques to maintain the
spatial positioning of cells within the tissue. By analyzing the individual cells in tissue
sections, they can uncover the interactions between cells and the influence of the microen-
vironment [188]. The second consideration is the optimization of tumor dissociation to
generate a cell suspension that fully represents the tumor in terms of cell population, fre-
quency, and expression programs. Ding et al. employed a strategy that is different from the
commonly used dimensionality reduction approach. They projected the raw data into a
sparse high-dimensional space and improved the clustering characterization of existing
methods, such as PhenoGraph. These latent variables, which are highly correlated with
only a subset of cells, facilitated the differentiation of cell populations while ensuring the
optimal utilization of label information, revealing novel heterogeneity hidden within cell
clusters [189].

Moreover, it is essential to meticulously scrutinize multiple ‘omics’ strata associ-
ated with the patient and their malignancy, inclusive of genomics, transcriptomics, and
metabolomics. Such integrative ‘omics’ approaches have had a far-reaching impact in the
domain of cancer research. For instance, as early as 2012, by investigating a plethora of lung
cancer patient samples, Peifer and colleagues discovered that the genes CREBBP, EP300,
and MLL, which are involved in the histone modification pathway, were mutated, thereby
adversely affecting histone integrity, primarily in small-cell lung cancer (SCLC) with a
poor prognosis. Hence, besides the TP53 and RB1 gene mutations, their studies hinted
that histone modification is another critical characteristic of SCLC. This implies that the
concurrent exploration of genomic and proteomic changes can corroborate each other in
discerning SCLC [190]. Subsequently, with the advent of single-cell sequencing technology,
researchers were able to generate high-resolution tumor microenvironment maps, charac-
terizing tumor cell heterogeneity and establishing tumor evolution histories, by combining
traditional bulk transcriptomics with single-cell genomics. Moreover, conducting a prospec-
tive analysis of patient tumor samples, by assessing integrative ‘omics’ and functional
readouts, can provide evidence to support clinical decision making, thereby augmenting
patient survival rates [191]. As single-cell technologies matured, multi-omics cancer detec-
tion at the single-cell level has emerged. Nevedomskaya and colleagues utilized various
‘omics’-based platforms, including genomics, epigenomics, cistromics, transcriptomics,
proteomics, and metabolomics, to meticulously scrutinize prostate cancer etiology and
progression, distinguish benign prostatic hyperplasia from malignant prostate cancer, and
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ascertain whether local lesions would metastasize distally. Simultaneously, they confirmed
that gene copy numbers, DNA methylation, or transcript abundance cannot reliably predict
the proteomic changes that occur during prostate cancer progression, highlighting the
necessity of multi-omics [192].

These multi-omics studies in other cancer domains have also illuminated the path
for investigating breast cancer heterogeneity. Initially, researchers integrated traditional
bulk technologies with single-cell technologies to conduct a multi-omics analysis of breast
cancer heterogeneity. For instance, Yu et al. employed traditional bulk techniques to
obtain relevant information on breast cancer metabolomics. Then, by integrating single-
cell transcriptomic information, they analyzed the energy-related metabolic features in
breast cancer, successfully stratifying breast tumors into two prognostic clusters: Cluster
1 displays a malignant, high glycolysis activity, and Cluster 2 is characterized by benign
tumors that are rich in fatty acid oxidation [193]. Furthermore, with the maturation of
single-cell sequencing technology, the use of multi-omics analysis entirely at the single-cell
level has facilitated research on breast cancer heterogeneity. There is growing evidence to
suggest that the integration of multiple genetic datasets is vital for accurately decoding
biological information [194,195]. For instance, Elisabet and colleagues successfully identi-
fied nucleic-acid-level events (like SNPs, alternative splicing, or post-translational protein
modifications) alongside proteomic profiling in CTCs by marrying single-cell proteomics
and single-cell genomics, a method with potential applications in early detection, diagnosis,
and treatment [196]. Even further, with the recent advances in machine learning, high-
throughput, high-dimension multi-omics research can now be more effectively applied
to studies on breast cancer heterogeneity. Stephen and his team developed a multi-omics
machine learning predictor for breast cancer treatment response by associating genomic
and transcriptomic features with clinical treatment, revealing that malignant cell charac-
teristics, immune activation, and evasion features are related to treatment response. The
predictive model’s accuracy was validated in independent external cohorts, suggesting that
such multi-omics machine learning methods can be extrapolated to other cancer research
contexts [197].

As we forge ahead, our increasingly comprehensive understanding of the molecular
characteristics of breast cancer paves the way for the gradual implementation of person-
alized medicine through prospective trials (Table 2). This will allow for the provision of
more individualized treatment plans for patient subgroups and address the challenge of
breast cancer heterogeneity.

Table 2. Comparative evaluation of single-cell and bulk ‘Omics’ approaches.This table systemati-
cally details the advantages and limitations of single-cell and bulk analysis methods across three
major ‘omics’ disciplines: genomics, transcriptomics, and proteomics. The comparison highlights
the unique strengths and challenges of each method, with particular emphasis on their ability to
capture cellular heterogeneity, the depth and breadth of the molecular information provided, and
technical considerations such as cost, data complexity, and analytical robustness in the context of
biomedical research.

Omics Field Analysis Type Advantages Limitations Refs.

Genomics

Bulk
Lower cost; matured analytical

methods; provides comprehensive
sequence information.

Averages over cell populations;
misses information about rare cell
populations; limited prediction of

the ultimate biological effect.

[19,22–25]

Single cell

Detects mutations and structural
variations in individual cells;

highlights cell-to-cell heterogeneity
and rare cell populations; enables

study of intra-tumoral heterogeneity
in cancer.

Requires substantial sequencing
depth for accurate results; higher
costs; greater complexity of data
analysis; limited information on

the ultimate biological effect.

[7,43–45]
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Table 2. Cont.

Omics Field Analysis Type Advantages Limitations Refs.

Transcriptomics

Bulk

Lower cost; matured techniques and
analytical methods; global

expression analysis; detects all splice
variants.

Averages over cell populations;
misses cell-to-cell heterogeneity;
only represents an intermediate

step; correlation with protein
levels is not always linear.

[32,57–
59,82–84]

Single cell

Captures cell-to-cell variability in
gene expression; detects all splice
variants; sensitive, high dynamic
range, and quantitative; parses
cell-specific transcriptomes in

single-cell experiments.

Data can be noisy; more complex
data analysis; only represents an

intermediate step; correlation with
protein levels is not always linear.

[107,110,
116–118]

Proteomics

Bulk
Comprehensive coverage of the
proteome; mature techniques;

resolves the final regulatory level.

Averages over cell populations;
less sensitivity to low-abundance
proteins; certain proteins difficult
to isolate; high dynamic range of

proteome makes detection
difficult.

[137,141,
145,147]

Single cell

Potential to capture protein-level
heterogeneity across individual cells;

proteins are the main effectors of
cellular function.

Technically challenging; limited
coverage of the proteome; less

mature techniques; certain
proteins difficult to isolate; high

dynamic range of proteome makes
detection difficult;

post-translational modifications
may greatly influence activity but

can be challenging to analyze.

[160–
163,170,
175,180]
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