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Simple Summary: Various genomic variants that are statistically associated with breast cancer (BC)
have been discovered and robustly replicated as a result of different genome-wide association studies.
Such findings have led to the development of a different risk classification with the Polygenic Risk
Score (PRS). In this paper, we have calculated the PRS of the Norwegian samples using various PRS
models, compared their performances, and then evaluated the PRS-based lifetime risk of developing
BC. The best performing PRS model includes 3820 SNPs (AUC = 0.625 and OR = 1.567), and the other
studied models also provide closer performances. The results show that the PRS can be a useful
instrument for lifetime risk stratification of developing BC in the Norwegian population, and can
thus be utilized in the BC screening program.

Abstract: Background: Statistical associations of numerous single nucleotide polymorphisms with
breast cancer (BC) have been identified in genome-wide association studies (GWAS). Recent evidence
suggests that a Polygenic Risk Score (PRS) can be a useful risk stratification instrument for a BC
screening strategy, and a PRS test has been developed for clinical use. The performance of the PRS is
yet unknown in the Norwegian population. Aim: To evaluate the performance of PRS models for BC
in a Norwegian dataset. Methods: We investigated a sample of 1053 BC cases and 7094 controls from
different regions of Norway. PRS values were calculated using four PRS models, and their performance
was evaluated by the area under the curve (AUC) and the odds ratio (OR). The effect of the PRS on
the age of onset of BC was determined by a Cox regression model, and the lifetime absolute risk of
developing BC was calculated using the iCare tool. Results: The best performing PRS model included
3820 SNPs, which yielded an AUC = 0.625 and an OR = 1.567 per one standard deviation increase. The
PRS values of the samples correlate with an increased risk of BC, with a hazard ratio of 1.494 per one
standard deviation increase (95% confidence interval of 1.406–1.588). The individuals in the highest
decile of the PRS have at least twice the risk of developing BC compared to the individuals with a
median PRS. The results in this study with Norwegian samples are coherent with the findings in the
study conducted using Estonian and UK Biobank samples. Conclusion: The previously validated PRS
models have a similar observed accuracy in the Norwegian data as in the UK and Estonian populations.
A PRS provides a meaningful association with the age of onset of BC and lifetime risk. Therefore, as
suggested in Estonia, a PRS may also be integrated into the screening strategy for BC in Norway.

Keywords: breast cancer; polygenic risk score; age-dependent risk; Cox regression; iCare

Cancers 2023, 15, 4124. https://doi.org/10.3390/cancers15164124 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15164124
https://doi.org/10.3390/cancers15164124
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-9103-1077
https://doi.org/10.3390/cancers15164124
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15164124?type=check_update&version=1


Cancers 2023, 15, 4124 2 of 14

1. Introduction

Breast cancer (BC) is one of the most common human malignancies, accounting for
25.4% of all cancers in women [1]. It is currently the leading cause of cancer deaths in
women worldwide. Every year, 2 million new diagnoses and more than 600,000 deaths
are reported [2]. In Europe, BC caused nearly 85,000 deaths and accounted for 16% of all
female cancer deaths in 2019 [3].

Around 30% of the total BC risk has been shown to be hereditary in the Nordic
countries [4]. A known genetic predisposition to BC is attributable to germline pathogenic
variants in single genes—i.e., monogenic risk (monogenic pathogenic variants—MPVs)
and the cumulative impact of disease risk-related single nucleotide polymorphisms (SNPs)
in many genes—i.e., polygenic risk (polygenic risk score—PRS). Several of the strongest
genetic risk factors for BC development are known [5–7]. An additional component of
genetic susceptibility is a family history without known MPV and PRS data. The individual
BC risk is approximately two times higher in cases of BC in first-degree relatives [8].

Most hereditary cancer pathogenic variants confer susceptibility to develop cancers
in multiple organs [9]. Up to ~25% of hereditary BC can be explained by the existence of
highly penetrant risk variants in the tumor suppressor genes BReast CAncer gene 1 (BRCA1)
and BReast CAncer gene 2 (BRCA2) [10]. Notably, carriers of pathogenic BRCA1 or BRCA2
variants have an increased risk of developing BC (an average lifetime risk of 35–85%). On
the other hand, these pathogenic variants are rarely observed in the population. Moreover,
a recent gene-level association study presents the effects of many other genes in addition
to BRCA1 and BRCA2 [11]. Therefore, additional genetic evaluations may be beneficial to
determine the patient risk of developing BC in real-world settings. Assessments of genetic
predisposition can be used to estimate individual risk levels, with the potential of applying
precision, or stratified, screening and prevention management.

Several genome-wide association studies (GWAS) have been conducted to identify
SNPs associated with BC. Despite the individually small effects of these common variants,
it has been observed that combining the effects of these variants using a PRS approach may
have a clinical utility [12]. By calculating the PRSs of the samples using summary statistics
obtained from GWAS studies and applying the PRS values to perform BC stratifications,
promising results have been obtained with different PRS models [5,13–15]. Furthermore, a
PRS model associated with modified risk for carriers of moderate-penetrance genes has
also been presented [16]. The clinical use of PRS in BC is an emerging topic, but before
it can move from clinical studies to everyday practice, more real-world evidence across
different populations is required.

A comparative risk analysis of available PRS models conducted while introducing a
new PRS model with 2803 SNPs for BC has been presented, namely the AnteBC (PRS 2803)
(AnteBC (PRS 2803) is developed by Antegenes and is registered as a CE-marked med-
ical device (in vitro diagnostics) in the EUDAMED database (UDI-DI: 04745010362019),
the Estonian Medical Devices Database (EMDDB: 14726), and the UK MHRA Registry
(GMDN: 59918)) [17]. The prediction accuracy of the best-performing model (PRS 2803) was
evaluated on independent data and developed into a clinically usable test. The time-to-event
of the onset of BC was modelled dependent on the PRS values using a Cox regression sur-
vival approach [18], and a significant relation between the onset of BC and PRS values was
observed. Based on individual lifetime risk estimates obtained using the PRS and hazard
ratio estimates [17] with the iCare tool (an R package to model a time-dependent absolute
risk model for developing BC specifically [19]), the PRS was demonstrated to be a useful
stratification approach to obtain a lifetime risk of developing BC.

PRS has been proposed as a promising risk stratification tool to personalize BC screen-
ing programs, with the aim of maximizing early detection while optimizing screening costs
and minimizing adverse side effects, including false positive findings [20,21]. In particular,
the authors of [17] proposed a protocol using the PRS to determine the starting time and
frequency of conventional screening approaches such as mammography and magnetic
resonance imaging (MRI). To date, PRS analyses for risk stratification for the Norwegian
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population have been undertaken on a limited number of traits, including ADHD [22],
schizophrenia [23], and obesity [24]. Despite its effectiveness on those traits, a PRS analysis
of BC on Norwegian samples has, until now, not been presented.

Here, we conducted a comparative PRS analysis using the available PRS models for BC
on Norwegian samples. We calculated the PRS, hazard ratio, and lifetime risk estimation
of developing BC. We obtained a similar performance on the prediction of BC using the
PRS, as obtained in earlier studies [17]. Results also show that women with a higher PRS
have a higher risk of developing BC at an earlier age, such as 35 years of age. Therefore, for
women with a higher PRS, it may be beneficial to start conventional screening prior to the
general recommendation (50 years) [25]. The results of our study parallel the findings in
the Estonian and UK populations [17], and therefore the individual risk-based screening
strategy proposed for the Estonian population may also be applicable to the Norwegian
population.

2. Methods and Materials
2.1. Data

We used genome data obtained from a geographically scattered sample set from Nor-
way [26]. Genomic DNA was isolated from peripheral blood samples using the DNeasy
Blood & Tissue Kit (Qiagen, Germantown, MD, USA), according to the manufacturer’s
protocol, and genotyped using the Illumina OmniExpress 24 v 1.1 chip at deCODE genetics
(Reykjavik, Iceland). The genotyped dataset with N = 15,769 individuals and 713,014 SNPs
was stored and processed at the “Services for sensitive data” (TSD) platform at the Uni-
versity of Oslo (Oslo, Norway). The genotyped data were filtered by removing autosomal
SNPs with a missing rate > 2%, followed by the removal of SNPs with a minor allele
frequency (MAF) < 2%. Finally, samples with more than 2% missing data were excluded.
This resulted in 583,183 autosomal SNPs typed in 14,429 individuals remaining (for more
details about the dataset used, see the Genome Data Section in Supplementary Materials).

For the phenotype data, 16,029 Norwegian individuals were included and 9201 had a
diagnosis of cancer. The most common cancer types included skin, BC, ovary, and colon.
Of these, 3223 had pathogenic germline variants in clinically actionable predisposition
genes. These samples were aggregated in the 1980–1995 period. Clinical, genetic, and
demographic information was available for the included cases and controls.

Some cases were present in families, and we also have family history information.
Approximately 2000 samples have been whole genome sequenced to use as a local refer-
ence panel. These samples belonged to 845 families with a family history of cancer and
498 sporadic cases. For whole genome sequencing (WGS) data we used the DRAGEN-
GATK pipeline [27], and the resultant WGS dataset with 1368 individuals was used as
a Norwegian reference panel named Norgene. More details regarding the genome and
phenome data have been presented in Supplementary Tables S1 and S2, Figures S1 and S2.

2.2. Imputation

The imputation was conducted using three alternative pipelines with different ref-
erence panels. The main aim of applying multiple imputation pipelines was to evaluate
the effects that imputation panels may have on the result of risk stratification of BC. We
performed imputations using (1) the Norwegian reference panel, (2) the MoBa imputa-
tion pipeline [28], which uses the Haplotype Reference Consortium (HRC) as a refer-
ence panel, and (3) the Antegenes imputation pipeline [17], which uses 1000 Genome
phase 3 data as the reference panel. The details of these imputation pipelines are given in
Supplementary Table S4.1.

2.3. PRS Model

We chose the PRS models available in the literature for BC and which were previously
tested in [17]. Those PRS are subsequently referred to by SNP count for clarity, and are
listed as 77 SNPs [13], 313 SNPs [5], 3820 SNPs [5], and 2803 SNPs [17].
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The PRSs were calculated using PRSICE2 software [29] for the imputed Norwegian
data as the target genomic data input, and the PRS models defined above were used as the
base summary statistics input. In particular, the PRS of an individual j was calculated as

PRSj = ∑M
i=1aijβi

where βi is the effect size of the SNP and is obtained from the external studies mentioned
above that propose the corresponding PRS models, and aij corresponds to the number of
effective alleles of SNP i of sample j, and can be 0, 1 or 2. Although PRSICE2 offers different
additional options to calculate a PRS, these options (such as clumping, pruning, etc.) were
omitted, and the PRS is calculated in this manner in order to be coherent with the reference
analysis in [17]. Once the PRS for each study was obtained, in order to simplify the analyses
further, the PRS values of the cohort were standardized to a Gaussian normal distribution
by subtracting the mean of the PRS values of the entire cohort from each sample, and
dividing by the standard deviation of the PRS values of the entire cohort.

We evaluated these standardized PRS values with the BC status of the samples to
obtain a corresponding Receiver Operating Characteristic (ROC) Curve. We calculated
the area under the ROC curve (AUC) to evaluate the performance of the different PRS
models. Furthermore, we estimated the logistic regression-based odds ratio per 1 standard
deviation of PRS (OR).

2.4. Hazard Ratio Calculation

Our next aim was to calculate the hazard ratio (HR) of the PRS related to the onset
of BC, which will also be required for lifetime absolute risk estimation using iCare. For
HR calculations using PRS values as the predictor, a right-censored and left-truncated Cox
regression survival model was used. The Cox regression model is a useful approach to
model time-to-event when the predictor is quantitative, as in our case [18]. In this model,
the hazard score on predictor variable x, which corresponds to the risk of time-to-event at
time t, can be obtained as

h(t,x)= λ0(t)exp(b x)

where λ0(t) corresponds to the baseline hazard function, which is common for all samples
and can be obtained using the population incidence rate, x corresponds to a standardized
PRS in our setting, b is the effect size, and exp(b) corresponds to the hazard ratio per 1 unit
of standardized PRS (HR), and is independent from the baseline hazard function in the
Cox regression model. In other words, for a standardized predictor x, HR was obtained
by calculating the ratio of the hazard score of samples, whose predictor value is 1 unit of
standard deviation away from the mean to the hazard score of the sample whose predictor
value is mean as

HR =
h(t,1)
h(t,0)

=
λ0(t) exp(b 1)
λ0(t) exp(b 0)

= exp(b).

Here, for calculating the HR of BC, the coxph.R function from the survival R package
was used [30]. We chose the follow-up time as the time of diagnosis of BC for cases,
and for controls we chose the time of the last health control. Once the hazard ratio was
calculated, we also calculated the corresponding Herrel’s C-index (concordance index) that
is a goodness-of-fit measure for models of hazard score calculated by the standardized PRS.

2.5. Absolute Risk Estimation

Having obtained hazard ratio estimates, our next aim was to estimate the absolute BC
onset risk of individuals by using the iCare tool based on the developed risk model [19].
According to this model, the individual risk is calculated in the presence of known risk
factors (x), which in our case is the standardized PRS and the corresponding relative log
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HR parameters (b). Given these parameters, the model [19] can predict the next τ-year
absolute risk for a current a year old individual as (R(a, a + τ)),

R(a,a+τ) =
∫ a+τ

a
λ0(t)exp

(
bTx
)

exp
(
−
∫ t

a

[
λ0(u)exp

(
bTx
)

+m(u)
]
du
)

dt

where m(t) corresponds to the age-specific mortality rate function, and which was obtained
from the Norwegian population age-specific mortality rate in 2016 from GHO data [31].
To build the model above and estimate the absolute risk of individuals, the required
parameters are: log relative risks (b), which in our case was obtained from our log hazard
ratio estimates, and the marginal age specific incidence rate λm(t) to estimate λ0(t) as
defined earlier, which was obtained from NORDCAN [32].

3. Results
3.1. Study Population and Genotypes

Initially we had 16,029 Norwegian individuals, of which 9201 had a cancer diagnosis.
We excluded the samples diagnosed with other cancers and those without BC, samples
with missing information, and males, resulting in the dataset containing 1053 cases and
7094 controls. We imputed genotypes for these samples with three different approaches
and then calculated the PRS, HR and absolute lifetime risk.

Note that in this study we focused on examining the PRS as an independent risk
factor for BC, and have not excluded the samples carrying pathogenic variants like BRCA1
and BRCA2 in order to be coherent with the reference study in [17]. The replication of the
studies by excluding samples with these pathogenic variants is presented in Supplementary
Materials in the “Effect of BRCA variants” section.

3.2. PRS Values

First, we calculated the PRS of these samples obtained for different PRS models [5,13,17],
and obtained the corresponding ROC curves by using standardized PRS values. As an
illustrative example, the standardized PRS values obtained from PRSICE2 are presented in
Figure 1A. As can be seen from this figure, there is a substantial shift in the mean of the
distribution of cases compared to controls (0.381 and −0.039, respectively). Therefore, it is
possible to use the standardized PRS values of the samples to predict the BC status of samples,
as given in Figure 1B, with a ROC curve for data from the three different imputation pipelines.
As can be seen in this figure, the ROC curves of all cases are far better than a random classifier
(which corresponds to the purple straight line), while there is little difference between the
imputation pipelines. Furthermore, as can be seen in Figure 1C, the four PRS models show a
good correlation. In other words, a sample with a high PRS in one model is also highly likely
to have a high PRS in another model. Therefore, in order to determine which PRS model and
reference panel performs better, we calculated the AUC of these ROC curves and odds ratios
(OR) with the three imputation pipelines in Table 1. In this table we have also included the
results obtained from the Estonian Biobank (EstBB) and UK Biobank (UKB) data as provided
earlier [17] to make a comparison across different populations.

The PRS model with 3820 SNPs gives the best performance compared to the others
(Table 1). The corresponding AUC values in this model obtained for the samples imputed
with 1000 GP, HRC, and Norgene reference panels were 0.621, 0620, and 0.625, respectively.
These results are coherent with the one obtained from EstBB data (0.615) and UKB (0.632).
Furthermore, we can observe that the Norwegian samples imputed from Norgene data per-
form better than the other reference panels (1000 GP and HRC). Although the improvement
is small, one can observe a general trend of performance increase when a local reference
panel is used (Table 1). A similar pattern can also be observed for the OR values.
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Figure 1. Illustration of (A) the distributions of polygenic risk score (PRS) values of cases and controls,
(B) receiver operating characteristic (ROC) curves obtained using different imputation pipelines
(Table 1) for the 3820 SNPs model in the Norwegian sample. Norgene, HRC, and 1 kgp corresponds
to the reference panels used to impute data. (C) Correlation plots of the PRS values of the samples
across the studied PRS models.
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Table 1. The polygenic risk score (PRS) performance of Norwegian data for breast cancer (BC) with
different imputation pipelines (shaded columns), and their comparison with the Estonian Biobank
(EstBB) and UK Biobank (UKB) data. Note that in these calculations we have excluded samples
that have any other cancers and those without BC, resulting in 1053 samples for cases and 7094 for
controls. OR: odds ratio, AUC: Area under curve.

Metrics SNPSET Antegenes
Pipeline (1 kgp) MoBa (HRC)

Norgene
(Norwegian

Reference Panel)

EstBB
(Estonian

Reference Panel)
UKB

AUC
(number of
SNPs used)

77 SNPs 0.582 (66) 0.584 (66) 0.600 (66) 0.591 (73) 0.607 (73)
313 SNPs 0.605 (232) 0.605 (210) 0.617 (228) 0.604 (257) 0.625 (257)

2803 SNPs 0.616 (2511) 0.617 (2379) 0.618(2474) 0.615(2803) 0.632 (2803)
3820 SNPs 0.621 (2706) 0.620 (2482) 0.625 (2698) 0.611(3081) 0.632 (2803)

OR (SE)

77 SNPs 1.460 (0.034) 1.465 (0.034) 1.503 (0.033) 1.369 (0.061) 1.485 (0.012)
313 SNPs 1.465 (0.034) 1.475 (0.034) 1.534 (0.034) 1.426 (0.060) 1.556 (0.012)

2803 SNPs 1.526 (0.034) 1.538 (0.034) 1.534 (0.034) 1.479 (0.061) 1.616 (0.012)
3820 SNPs 1.546 (0.034) 1.528 (0.034) 1.567 (0.034) 1.474 (0.060) 1.617 (0.012)

3.3. Hazard Ratio Values

For modelling the time-to-event data (onset of BC) we used the standardized PRS values
for all models as a predictor, with a right-censored and left-truncated Cox regression survival
model. As given in Table 2, the hazard ratio (HR) per unit of standardized PRS (HR) was
1.494 (the best-performing case, which is using 3820 SNPs model, and imputing genome
data using the Norgene reference panel), and the corresponding concordance index was also
given as 0.607. Therefore, as observed for EstBB and UKB [17], we can state that the PRS is
positively associated with the time-to-event of developing BC for the Norwegian population.

Table 2. PRS-based Cox regression survival analysis performance of Norwegian data for BC with
different imputation pipelines (shaded columns) and their comparison with EstBB and UKB. Note
that in these calculations we have excluded controls with any other cancer/cancers and those without
BC, resulting in 1053 samples for cases and 7094 for controls.

SNPSET Metrics Antegenes
Pipeline (1 kgp)

MoBa
(HRC)

Norgene
(Norwegian
Reference

Panel)

EstBB
(Estonian
Reference

Panel)

UKB

77 SNPs

HR (%95 confidence
interval)

1.273
(1.211–1.339)

1.276
(1.214–1.342)

1.373
(1.307–1.443)

1.580
(1.428–1.747)

1.440
(1.406–1.476)

c-index 0.563
(se = 0.008)

0.563
(se = 0.008)

0.581
(se = 0.008)

0.638
(se = 0.015)

0.600
(se = 0.004)

313 SNPs

HR (%95 confidence
interval)

1.373
(1.305–1.444)

1.355
(1.288–1.425)

1.439
(1.368–1.513)

1.615
(1.457–1.789)

1.551
(1.515–1.588)

c-index 0.58
(se = 0.010)

0.578
(se = 0.008)

0.593
(se = 0.008)

0.642
(se = 0.015)

0.622
(se = 0.004)

2803
SNPs

HR (%95 confidence
interval)

1.421
(1.351–1.494)

1.442
(1.370–1.517)

1.455
(1.384–1.531)

1.660
(1.500–1.837)

1.562
(1.526–1.588)

c-index 0.593
(se = 0.008)

0.596
(se = 0.008)

0.598
(se = 0.008)

0.656
(se = 0.015)

0.625
(se = 0.003)

3820
SNPs

HR (%95 confidence
interval)

1.462
(1.375–1.554)

1.458
(1.371–1.55)

1.494
(1.406–1.588)

1.654
(1.494–1.830)

1.562
(1.526–1.600)

c-index 0.602
(se = 0.010)

0.601
(se = 0.010)

0.607
(se = 0.010)

0.654
(se = 0.015)

0.625
(se = 0.003)

3.4. Absolute Risk Model

After the HR calculation, we estimated the lifetime individual risk of developing
BC using the iCare tool [19]. In particular, we calculated the individuals’ lifetime risk of
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developing BC using the PRS of the samples as a risk factor, including age-specific incidence
data and mortality rates. The age-specific incidence data for Norway were obtained from
NORDCAN, and the age-specific mortality rates were obtained from the Global Health
Observatory (GHO). Using these data with the calculated PRS values and HR, the absolute
risk was determined for the samples whose PRS values are in the 1st, 25th, 50th, 75th,
90th and 99th percentiles. We used PRS values obtained from the four PRS models given
above (all imputed with Norgene) and with a corresponding log hazard ratio based on the
estimates. The results are presented in Figure 2. The calculated risks for the four different
models show similar trends, while the risks in 3820 SNPs and 2803 SNPs are slightly higher.
For a more detailed numeric evaluation, see Supplementary Table S5.1–S5.4. Here we may
focus on Figure 2A, corresponding to the 3820 SNPs model, which is nearly identical to
that of 2803 SNPs (See Supplementary Figure S4 for the visual comparison). We can also
observe a general trend in the other figures (Figure 2B–D) with slightly lower risks. In
Figure 2A we observe that the cumulative risk of developing BC until the age of 80 is 21%
for the samples in the 99th percentile and 14% in the 90th percentile. This risk reduces to
8% for the median and 3% for the 1st percentile.
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Figure 2. Calculated cumulative BC risks obtained from iCare using four different PRS models. The
disease incidence rate is obtained from Nordcan [32]. Calculated absolute risks are almost the same
for the 3820 SNPs and the AnteBC (2803 SNPs), while there is a slight decrease in the risk when
other models are used. On the other hand, all of the models give similar trends with respect to risk
groups and age. Typically, the life-long cumulative risk of the 99th percentile is almost 2.5 times the
risk of the median samples, and 6 times the risk of the 1st percentile. (A) 3820 SNPS. (B) AnteBC
(2803 SNPs). (C) 313 SNPs. (D) 77 SNPs.
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We also examined the risk of developing BC in the next 10 years using iCare, which
can also be observed by taking derivatives of the cumulative risk curves in Figure 2. As
expected, all models give similar risk values, as shown in Figure 3. If we focus on the
age-based risk for 3820 SNPs model in Figure 3A, the absolute risk of developing BC in
the next 10 years among 50-year-old women in the 1st percentile is 0.81%, while in the
median percentile this risk is 2.23%, and in the 90th and 99th percentiles they are 3.5% and
5.2%, respectively. The same risk at the age of 35 for the samples in the 99th percentile is
equal to the risk at the age of 40 for the 90th percentile, and these are equal to the risk at the
age of 50 for the median percentile.
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Figure 3. The risk of developing breast cancer (BC) in the next 10 years for four different polygenic
risk score (PRS) models. (A) 3820 SNPS. (B) AnteBC (2803 SNPs). (C) 313 SNPs. (D) 77 SNPs.

Observed numbers of cases in various percentiles and deciles with respect to the PRS
values are presented in Figure 4. Despite the number of samples being low for making
strict conclusions, we can still observe that the number of cases increases in the higher
percentiles/deciles. As can be seen in Figure 4A, the number of cases in the 99th percentile
is higher than two times the number of cases for the median percentile, which is in line with
the cumulative risks calculated using iCare. Furthermore, in Figure 4B, we have examined
the number of cases per decile, and the number of cases in the highest decile is two times
higher than the number of cases in the 5th decile. Therefore, samples in the highest deciles
with respect to PRS can be considered as having more risk, both theoretically using the
iCare tool and statistically using the actual information of the case samples.
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Figure 4. The observed number of cases in our dataset per percentiles and deciles with respect to
PRS. (A) Number of cases per percentiles. (B) Number of cases per deciles.

4. Discussion

The main findings of this study are based on the application of existing Polygenic
Risk Score (PRS) models for breast cancer (BC) in a Norwegian cohort. We show that the
metrics of predicting BC using the PRS values of the Norwegian population, such as AUC,
OR, and HR, are similar to findings in the samples from Estonia and UK Biobank [17]. We
then calculated the lifetime PRS-based absolute risk of developing BC using iCare. The
calculated risks are also in parallel with the risks obtained earlier [17]. Together, the current
findings suggest a role for polygenic prediction models in BC screening in Norway.

Based on the AUC and OR values for the corresponding PRS models and reference
panels, the Norwegian reference panel yields slightly better results compared to other
reference panels applied to the Norwegian data. This may suggest that using local reference
panels for imputation before calculating the PRS can be beneficial. On the other hand, if
no local reference panel is available, the HRC and 1 kgp reference panels can be used to
obtain the PRS values to detect BC at a comparable accuracy level. Regarding the PRS
models used, the highest number of SNPs (3820) [5] gives the best performance among
all models tested. The 2803 SNPs model, which has an available clinical implementation,
demonstrates an almost identical performance to this model.

Finally, we evaluated both individual and lifelong cumulative risk of developing BC
in the next ten years using the iCare tool [19]. According to this risk model, samples whose
PRS is in the highest decile have at least 2 times more risk than the samples whose PRS is
around the mean. The risk of developing BC in the highest decile is evident much earlier in
life than for the average patient. Therefore, for the samples with higher PRS values, starting
screening at younger ages than the general recommendation for women (which is usually
50 years) could be beneficial. As suggested in [17], it may be practical to integrate a PRS
into the existing BC screening for the Norwegian population. This can be undertaken by
starting mammography screening at an earlier age, when a woman has a high PRS (hence
high risks) compared to the population average.

Screening with mammography reduces BC mortality risk by 20–40% [33–35]. Current
BC screening programs are based on age only, and mostly do not support regular screening
of women below the age of 50. The relationship between the benefits and potential harms
for screening in the age group under the age of 50 has been controversial, and screening
is not recommended for all women under 50. The application of personalized risks is
necessary to identify those women who could benefit from an earlier start to the screening.

Monogenic pathogenic variants and the PRS are the strongest independent risk factors
for BC development [6,7]. An additional component of genetic susceptibility is also a family
history without known MPV and PRS data. Genetic predisposition evaluations enable the
separation of individual risk levels and open for precision, or stratified, screening and pre-
vention activities. As there are other risk factors for BC besides genetic predisposition, the
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most practical way to use them for personalized screening depends on clinical application
models.

With the help of the PRS, women can be divided into groups with different levels of
risk based on the different recommendations for starting a mammography screening, or to
whom other preventive measures can be given [20,36–38]. The PRS identifies women at
a higher genetic risk who reach the threshold for population screening at a younger age,
equivalent to risk for women aged 50 years who are eligible for population screening. The
PRS also serves as an additional genetic risk evaluation tool for women who are negative
for monogenic pathogenic variant findings in familial and breast cancer clinics. A study
by Wolfson et al. has shown that population-wide programs for BC screening that seek to
stratify women by their genetic risk should focus first on their PRS rather than the more
highly penetrant but rarer variants, or their family history [6]. Considering these findings,
it is expected that the PRS will be an important factor in BC screening in the near future.

Despite the PRS-based analysis in Norwegian data giving promising and similar
results to other studies, we may not claim that the use of the PRS alone is sufficient to
predict the existence or onset of BC. Considering the obtained performance metrics of the
PRS such as AUC, OR, and HR, it is still likely that these can be improved by combining
the PRS with other clinical factors. Therefore, one follow-up study would be to propose
a harmonized prediction/stratification method that uses PRS scores and other possible
factors that can be effective in BC prediction, such as the existence of BRCA1 or BRCA2
variants and/or some other clinical measures to obtain better prediction performances.

One of the possible approaches is to use a Polygenic Hazard Score (PHS) model
whose effectiveness has been proven in different age-related complex diseases, such as
Alzheimer’s Disease (AD) [39], Parkinson’s disease [40], and Prostate Cancer [41,42], and
which is also validated in Nordic samples for AD [43]. This approach integrates association
with disease risk and age at onset into a common concept, under the hypothesis that genetic
variation acts as a modulator of a lifetime risk. Applying this PHS model to our current
dataset, we may obtain a predictive time-to-event model using the subset of predictive
SNPs and other factors. This may attain an improvement in the prediction of the existence
and onset of BC above what is presented here.

Another possible follow-up study would be to examine the relation of the PRS, age of di-
agnosis and life expectancy after diagnosis. As can be observed in Supplementary Figure S3,
there is a distinguishable difference in risks, especially for BRCA1/BRCA2 carriers, when
we include BRCA1/BRCA2 predisposing variants. Furthermore, it would also be also quite
interesting and relevant to include the existence of other pathogenic variants [11]. Despite the
fact that obtaining such comprehensive datasets can be challenging, the combination of these
additional factors not only improves the performance of the prediction of BC, but also makes
it possible to more precisely evaluate the lifetime risk or life expectancy, both with iCare
and with the PHS. We are also planning to replicate the analysis in an independent dataset.
Such a follow-up study is also relevant, since the samples in this study are collected from the
families with known cancer histories. Therefore, the effect of such a biased data collection
could also be evaluated when similar analyses are conducted using an independent dataset.

To summarize, our findings suggest that the PRS-based risk evaluation can be a useful
and complementary method in the screening for BC, especially for younger age groups, to
identity relatively few but nevertheless high-risk individuals in Norway. Our findings may
open a new perspective on a modified screening strategy for BC in Norway by determining
the start time of the actual screening process based on the PRS scores, as suggested [17]. It
is also possible to enhance the presented detection and stratification approaches in different
aspects to obtain a more precise screening strategy.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cancers15164124/s1. This link is to reach Supplemen-
tary Materials mainly includes additional tables and figures regarding the data and results. Figure S1:
MAF comparison of our dataset with the UKB dataset and the Estonian dataset for the 3820 SNPs
model; Table S1: Summary statistics per region; Figure S2: Histogram of the cases, controls and
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all samples with respect to follow-up age; Table S2: Distribution of cancers among 9201 samples;
Figure S3: Cumulative risk differences of the samples when calculated with only PRS (Rprs) and
with PRS and BRCA1/2 status (Rbrprs); Table S3: Performance of dataset for 3820 SNPs when
excluding 1166 samples that are BRCA1/2 carriers; Table S4.1: Different imputation pipelines that are
used to impute Norwegian genome data; Table S4.2: Number of SNPs remaining for each model
using different imputation pipelines; Table S5: Absolute cumulative lifetime risks; Figure S4: Com-
parison of cumulative lifetime risk scores of individuals for 3820 SNPs and the 2803 SNPs models.
(References [44–47] are cited in the Supplementary Materials).
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Blecharz, P.; et al. Risk of Breast Cancer in Women with a CHEK2 Mutation with and without a Family History of Breast Cancer. J.
Clin. Oncol. 2011, 29, 3747–3752. [CrossRef]

10. Kast, K.; Rhiem, K.; Wappenschmidt, B.; Hahnen, E.; Hauke, J.; Bluemcke, B.; Zarghooni, V.; Herold, N.; Ditsch, N.; Kiechle, M.;
et al. Prevalence of BRCA1/2 germline mutations in 21 401 families with breast and ovarian cancer. J. Med. Genet. 2016, 53,
465–471. [CrossRef]

https://doi.org/10.3322/caac.21660
https://www.ncbi.nlm.nih.gov/pubmed/33538338
https://doi.org/10.1002/ijc.31937
https://doi.org/10.1787/507433b0-en
https://doi.org/10.1001/jama.2015.17703
https://www.ncbi.nlm.nih.gov/pubmed/26746459
https://doi.org/10.1016/j.ajhg.2018.11.002
https://www.ncbi.nlm.nih.gov/pubmed/30554720
https://doi.org/10.1038/s41436-021-01258-y
https://doi.org/10.1038/s41436-018-0406-9
https://doi.org/10.1002/(SICI)1097-0215(19970529)71:5&lt;800::AID-IJC18&gt;3.0.CO;2-B
https://doi.org/10.1200/JCO.2010.34.0778
https://doi.org/10.1136/jmedgenet-2015-103672


Cancers 2023, 15, 4124 13 of 14

11. Breast Cancer Association Consortium. Breast cancer risk genes—Association analysis in more than 113,000 women. N. Engl. J.
Med. 2021, 384, 428–439. [CrossRef]

12. Yanes, T.; Young, M.-A.; Meiser, B.; James, P.A. Clinical applications of polygenic breast cancer risk: A critical review and
perspectives of an emerging field. Breast Cancer Res. 2020, 22, 21. [CrossRef]

13. Mavaddat, N.; Pharoah, P.D.P.; Michailidou, K.; Tyrer, J.; Brook, M.N.; Bolla, M.K.; Wang, Q.; Dennis, J.; Dunning, A.M.; Shah, M.;
et al. Prediction of breast cancer risk based on profiling with common genetic variants. JNCI J. Natl. Cancer Inst. 2015, 107, djv036.
[CrossRef] [PubMed]

14. Sieh, W.; Rothstein, J.H.; McGuire, V.; Whittemore, A.S. The Role of Genome Sequencing in Personalized Breast Cancer
PreventionCan Sequence Data Help Prevent Breast Cancer? Cancer Epidemiol. Biomark. Prev. 2014, 23, 2322–2327. [CrossRef]
[PubMed]

15. Läll, K.; Lepamets, M.; Palover, M.; Esko, T.; Metspalu, A.; Tõnisson, N.; Padrik, P.; Mägi, R.; Fischer, K. Polygenic prediction of
breast cancer: Comparison of genetic predictors and implications for risk stratification. BMC Cancer 2019, 19, 557. [CrossRef]
[PubMed]

16. Gallagher, S.; Hughes, E.; Wagner, S.; Tshiaba, P.; Rosenthal, E.; Roa, B.B.; Kurian, A.W.; Domchek, S.M.; Garber, J.; Lancaster, J.;
et al. Association of a Polygenic Risk Score with Breast Cancer Among Women Carriers of High- and Moderate-Risk Breast
Cancer Genes. JAMA Netw. Open 2020, 3, e208501. [CrossRef] [PubMed]

17. Tasa, T.; Puustusmaa, M.; Tõnisson, N.; Kolk, B.; Padrik, P. Precision Breast Cancer Screening with a Polygenic Risk Score. medRxiv
2020. medRxiv:2020.08.17.20176263. [CrossRef]

18. Cox, D.R. Regression models and life tables. J. R. Stat. Soc. B 1972, 34, 187–220. [CrossRef]
19. Choudhury, P.P.; Maas, P.; Wilcox, A.; Wheeler, W.; Brook, M.; Check, D.; Garcia-Closas, M.; Chatterjee, N. iCARE: An R package

to build, validate and apply absolute risk models. PloS ONE 2020, 15, e0228198. [CrossRef]
20. Evans, D.G.R.; van Veen, E.M.; Harkness, E.F.; Brentnall, A.R.; Astley, S.M.; Byers, H.; Woodward, E.R.; Sampson, S.; Southworth, J.;

Howell, S.J.; et al. Breast cancer risk stratification in women of screening age: Incremental effects of adding mammographic
density, polygenic risk, and a gene panel. Genet. Med. 2022, 24, 1485–1494. [CrossRef]

21. Zeinomar, N.; Chung, W.K. Cases in Precision Medicine: The Role of Polygenic Risk Scores in Breast Cancer Risk Assessment.
Ann. Intern. Med. 2021, 174, 408–412. [CrossRef]

22. Havdahl, A.; Hannigan, L.; Askeland, R.B.; Ask, H.; Tesli, M.; Corfield, E.; Øyen, A.S.; Andreassen, O.; Smith, G.D.; Reichborn-
Kjennerud, T. 75 polygenic risk for adhd and exposures during pregnancy in the norwegian mother and child cohort study
(moba). Eur. Neuropsychopharmacol. 2019, 29, S102. [CrossRef]

23. Werner, M.C.F.; Wirgenes, K.V.; Haram, M.; Bettella, F.; Lunding, S.H.; Rødevand, L.; Hjell, G.; Agartz, I.; Djurovic, S.; Melle,
I.; et al. Indicated association between polygenic risk score and treatment-resistance in a naturalistic sample of patients with
schizophrenia spectrum disorders. Schizophr. Res. 2020, 218, 55–62. [CrossRef] [PubMed]

24. Næss, M.; Sund, E.R.; Vie, G.Å.; Bjørngaard, J.H.; Åsvold, B.O.; Holmen, T.L.; Kvaløy, K. Intergenerational polygenic obesity risk
throughout adolescence in a cross-sectional study design: The HUNT study, Norway. Obesity 2021, 29, 1916–1924. [CrossRef]
[PubMed]

25. BreastScreen Norway. Available online: https://www.kreftregisteret.no/en/screening/BreastScreen_Norway/breastscreen-
norway/ (accessed on 10 May 2023).

26. Mattingsdal, M.; Ebenesersdóttir, S.S.; Moore, K.H.; Andreassen, O.A.; Hansen, T.F.; Werge, T.; Kockum, I.; Olsson, T.; Alfreds-
son, L.; Helgason, A.; et al. The genetic structure of Norway. Eur. J. Hum. Genet. 2021, 29, 1710–1718. [CrossRef]

27. DRAGEN-GATK. Available online: https://gatk.broadinstitute.org/hc/en-us/articles/360045944831-DRAGEN-GATK (accessed
on 12 May 2023).

28. Corfield, E.; Shadrin, A.; Frei, O.; Rahman, Z.; Lin, A.; Athanasiu, L.; Akdeniz, B.C.; Hannigan, L.; Wootton, R.; Austerberry, C.;
et al. Genetic profile of the norwegian mother, father, and child cohort study (moba): Results from the mobapsychgen pipeline.
Eur. Neuropsychopharmacol. 2022, 63, e292–e293. [CrossRef]

29. Choi, S.W.; O’Reilly, P.F. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 2019, 8, 7. [CrossRef]
30. Therneau, T.M. A Package for Survival Analysis in R. 2023. Available online: https://CRAN.R-project.org/package=survival

(accessed on 12 May 2023).
31. GHO. Available online: https://apps.who.int/gho/data/view.main.61210 (accessed on 12 May 2023).
32. Nordcan. Available online: https://nordcan.iarc.fr/en/dataviz/tables (accessed on 12 May 2023).
33. Uk, B.; Cancer, I. The benefits and harms of breast cancer screening: An independent review. Lancet 2012, 17. [CrossRef]
34. Myers, E.R.; Moorman, P.; Gierisch, J.M.; Havrilesky, L.J.; Grimm, L.J.; Ghate, S.; Davidson, B.; Mongtomery, R.C.; Crowley, M.J.;

McCrory, D.C.; et al. Benefits and harms of breast cancer screening: A systematic review. JAMA 2015, 314, 1615–1634. [CrossRef]
35. Tabár, L.; Dean, P.B.; Chen, T.H.; Yen, A.M.; Chen, S.L.; Fann, J.C.; Chiu, S.Y.; Ku, M.M.; Wu, W.Y.; Hsu, C.Y.; et al. The incidence

of fatal breast cancer measures the increased effectiveness of therapy in women participating in mammography screening. Cancer
2019, 125, 515–523. [CrossRef]

36. Evans, D.G.R.; Harkness, E.F.; Brentnall, A.R.; van Veen, E.M.; Astley, S.M.; Byers, H.; Sampson, S.; Southworth, J.; Stavrinos, P.;
Howell, S.J.; et al. Breast cancer pathology and stage are better predicted by risk stratification models that include mammographic
density and common genetic variants. Breast Cancer Res. Treat. 2019, 176, 141–148. [CrossRef]

https://doi.org/10.1056/NEJMoa1913948
https://doi.org/10.1186/s13058-020-01260-3
https://doi.org/10.1093/jnci/djv036
https://www.ncbi.nlm.nih.gov/pubmed/25855707
https://doi.org/10.1158/1055-9965.EPI-14-0559
https://www.ncbi.nlm.nih.gov/pubmed/25342391
https://doi.org/10.1186/s12885-019-5783-1
https://www.ncbi.nlm.nih.gov/pubmed/31182048
https://doi.org/10.1001/jamanetworkopen.2020.8501
https://www.ncbi.nlm.nih.gov/pubmed/32609350
https://doi.org/10.1101/2020.08.17.20176263
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1371/journal.pone.0228198
https://doi.org/10.1016/j.gim.2022.03.009
https://doi.org/10.7326/M20-5874
https://doi.org/10.1016/j.euroneuro.2019.07.216
https://doi.org/10.1016/j.schres.2020.03.006
https://www.ncbi.nlm.nih.gov/pubmed/32171635
https://doi.org/10.1002/oby.23284
https://www.ncbi.nlm.nih.gov/pubmed/34651441
https://www.kreftregisteret.no/en/screening/BreastScreen_Norway/breastscreen-norway/
https://www.kreftregisteret.no/en/screening/BreastScreen_Norway/breastscreen-norway/
https://doi.org/10.1038/s41431-021-00899-6
https://gatk.broadinstitute.org/hc/en-us/articles/360045944831-DRAGEN-GATK
https://doi.org/10.1016/j.euroneuro.2022.07.517
https://doi.org/10.1093/gigascience/giz082
https://CRAN.R-project.org/package=survival
https://apps.who.int/gho/data/view.main.61210
https://nordcan.iarc.fr/en/dataviz/tables
https://doi.org/10.1016/S0140-6736(12)61611-0
https://doi.org/10.1001/jama.2015.13183
https://doi.org/10.1002/cncr.31840
https://doi.org/10.1007/s10549-019-05210-2


Cancers 2023, 15, 4124 14 of 14

37. Brentnall, A.R.; Veen, E.M.; Harkness, E.F.; Rafiq, S.; Byers, H.; Astley, S.M.; Sampson, S.; Howell, A.; Newman, W.G.; Cuzick, J.;
et al. A case–control evaluation of 143 single nucleotide polymorphisms for breast cancer risk stratification with classical factors
and mammographic density. Int. J. Cancer 2019, 146, 2122–2129. [CrossRef]

38. Hurson, A.N.; Choudhury, P.P.; Gao, C.; Hüsing, A.; Eriksson, M.; Shi, M.; Jones, M.E.; Evans, D.G.; Milne, R.L.; Gaudet, M.M.;
et al. Prospective evaluation of a breast-cancer risk model integrating classical risk factors and polygenic risk in 15 cohorts from
six countries. Int. J. Epidemiol. 2021, 50, 1897–1911. [CrossRef] [PubMed]

39. Desikan, R.S.; Fan, C.C.; Wang, Y.; Schork, A.J.; Cabral, H.J.; Cupples, L.A.; Thompson, W.K.; Besser, L.; Kukull, W.A.; Holland, D.;
et al. Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score.
PLoS Med. 2017, 14, e1002258. [CrossRef] [PubMed]

40. Pihlstrøm, L.; Fan, C.C.; Frei, O.; Tan, M.; Karunamuni, R.A.; Blauwendraat, C.; Bandres-Ciga, S.; Gan-Or, Z.; Grosset, D.G. Genetic
stratification of age-dependent Parkinson’s disease risk by polygenic hazard score. Mov. Disord. 2022, 37, 62–69. [CrossRef]
[PubMed]

41. Seibert, T.M.; Fan, C.C.; Wang, Y.; Zuber, V.; Karunamuni, R.; Parsons, J.K.; A Eeles, R.; Easton, D.F.; Kote-Jarai, Z.; Al Olama,
A.A.; et al. Polygenic hazard score to guide screening for aggressive prostate cancer: Development and validation in large scale
cohorts. BMJ 2018, 360, j5757. [CrossRef]

42. Karunamuni, R.A.; Huynh-Le, M.-P.; Fan, C.C.; Thompson, W.; Lui, A.; Martinez, M.E.; Rose, B.S.; Mahal, B.; Eeles, R.A.;
Kote-Jarai, Z.; et al. Performance of African-ancestry-specific polygenic hazard score varies according to local ancestry in 8q24.
Prostate Cancer Prostatic Dis. 2022, 25, 229–237. [CrossRef]

43. Motazedi, E.; Cheng, W.; Thomassen, J.Q.; Frei, O.; Rongve, A.; Athanasiu, L.; Bahrami, S.; Shadrin, A.; Ulstein, I.; Stordal, E.; et al.
Using Polygenic Hazard Scores to Predict Age at Onset of Alzheimer’s Disease in Nordic Populations. J. Alzheimer’s Dis. 2022, 88,
1533–1544. [CrossRef]

44. Manichaikul, A.; Mychaleckyj, J.C.; Rich, S.S.; Daly, K.; Sale, M.; Chen, W.-M. Robust relationship inference in genome-wide
association studies. Bioinformatics 2010, 26, 2867–2873. [CrossRef]

45. O’Connell, J.; Gurdasani, D.; Delaneau, O.; Pirastu, N.; Ulivi, S.; Cocca, M.; Traglia, M.; Huang, J.; Huffman, J.E.; Rudan, I.; et al.
A General Approach for Haplotype Phasing across the Full Spectrum of Relatedness. PLoS Genet. 2014, 10, e1004234. [CrossRef]

46. Browning, B.L.; Zhou, Y.; Browning, S.R. A One-Penny Imputed Genome from Next-Generation Reference Panels. Am. J. Hum.
Genet. 2018, 103, 338–348. [CrossRef]

47. Rubinacci, S.; Delaneau, O.; Marchini, J. Genotype imputation using the Positional Burrows Wheeler Transform. PLoS Genet. 2020,
16, e1009049. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/ijc.32541
https://doi.org/10.1093/ije/dyab036
https://www.ncbi.nlm.nih.gov/pubmed/34999890
https://doi.org/10.1371/journal.pmed.1002258
https://www.ncbi.nlm.nih.gov/pubmed/28323831
https://doi.org/10.1002/mds.28808
https://www.ncbi.nlm.nih.gov/pubmed/34612543
https://doi.org/10.1136/bmj.j5757
https://doi.org/10.1038/s41391-021-00403-7
https://doi.org/10.3233/JAD-220174
https://doi.org/10.1093/bioinformatics/btq559
https://doi.org/10.1371/journal.pgen.1004234
https://doi.org/10.1016/j.ajhg.2018.07.015
https://doi.org/10.1371/journal.pgen.1009049
https://www.ncbi.nlm.nih.gov/pubmed/33196638

	Introduction 
	Methods and Materials 
	Data 
	Imputation 
	PRS Model 
	Hazard Ratio Calculation 
	Absolute Risk Estimation 

	Results 
	Study Population and Genotypes 
	PRS Values 
	Hazard Ratio Values 
	Absolute Risk Model 

	Discussion 
	References

