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Simple Summary: Prostate cancer (PCa) is the second most incident cancer in men worldwide.
Despite having high cure rates when locally confined, PCa has a high risk of mortality in advanced
stages, owing to the few treatment options for the metastatic disease, which occurs mostly in bones.
Tumor progression seems to be related to deregulation of microRNA (miRNA) expression. These
small noncoding RNA molecules act as posttranscriptional regulators of gene expression in donor
cells or distant sites (by exosome transportation), preparing the future metastatic niche. Identification
of suitable miRNAs may assist in an early and less invasive diagnosis and drug therapy, positively
impacting patient quality of life and improving our understanding of the molecular aspects of
bone metastasis.

Abstract: Bone metastatic prostate cancer (PCa) is associated with a high risk of mortality. Changes
in the expression pattern of miRNAs seem to be related to early aspects of prostate cancer, as well as
its establishment and proliferation, including the necessary steps for metastasis. Here we compiled,
for the first time, the important roles of miRNAs in the development, diagnosis, and treatment of
bone metastasis, focusing on recent in vivo and in vitro studies. PCa exosomes are proven to promote
metastasis-related events, such as osteoblast and osteoclast differentiation and proliferation. Aberrant
miRNA expression in PCa may induce abnormal bone remodeling and support tumor development.
Furthermore, miRNAs are capable of binding to multiple mRNA targets, a dynamic property that
can be harnessed for the development of treatment tools, such as antagomiRs and miRNA mimics,
which have emerged as promising candidates in PCa treatment. Finally, miRNAs may serve as
noninvasive biomarkers, as they can be detected in tissue and bodily fluids, are highly stable, and
show differential expression between nonmetastatic PCa and bone metastatic samples. Taken together,
the findings underscore the importance of miRNA expression profiles and miRNA-based tools as
rational technologies to increase the quality of life and longevity of patients.
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1. Introduction

Prostate cancer (PCa) is the second most incident cancer in men worldwide, with an
estimated 1.4 million new cases and 375,000 deaths in 2020 [1]. Despite recent advances
in PCa treatment, metastasis is a common problem during the course of the disease, and
the leading cause of death. Because PCa is initially silent, many patients diagnosed with
PCa already have metastatic sites [2,3], typically in the lymph nodes, liver, lungs, adrenal
glands, and bones [4,5]. The bones are the most common site of metastasis. Metastatic
PCa cells were shown to exhibit tropism for the bone microenvironment, explained by the
seed and soil hypothesis postulated by Steven Paget in 1889 [6]. PCa bone metastasis is a

Cancers 2023, 15, 4027. https:/ /doi.org/10.3390/ cancers15164027

https://www.mdpi.com/journal/cancers


https://doi.org/10.3390/cancers15164027
https://doi.org/10.3390/cancers15164027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-3803-3230
https://doi.org/10.3390/cancers15164027
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15164027?type=check_update&version=3

Cancers 2023, 15, 4027

2 of 26

critical complication associated with severe bone lesions, pathological fractures, spinal cord
compression, and hyperkalemia, leading to severe pain and untreatable consequences [7,8].
Patients with PCa bone metastasis have a significantly higher mortality risk, with a 5-year
survival rate of only 28% [9].

Interactions between tumor cells and the bone microenvironment are crucial for the es-
tablishment and growth of PCa cells. Osteoclasts and osteoblasts, cells responsible for bone
homeostasis and remodeling [10], modulate the bone microenvironment and thus deter-
mine the metastatic phenotype [8,11]. Research has shown that microRNAs (miRNAs) play
an important role in this process via the regulation of osteoblast and osteoclast activities
and differentiation [12]. miRNAs are small noncoding RNAs that regulate posttranscrip-
tional gene expression through mRNA complementarity, which is fundamental to PCa
progression, metastasis development, and phenotypic expression [12,13]. Moreover, miR-
NAs serve as an important intercellular communication tool via exosomes, a subtype of
extracellular vesicles (EVs) secreted by several cell types, including cancer cells. Exosomes
were found to contribute to bone metastasis by promoting cell migration, invasion, and
remodeling and establishing a premetastatic niche [14,15]. Exosomes derived from PCa
cells carry DNA, mRNA, noncoding RNA (ncRNA), miRNA, lipids, and proteins and
transfer these constituents to the bone microenvironment, creating a fertile site for cancer
cell growth [14,16,17].

In this review, we aimed to describe the role of the bone microenvironment in PCa
metastasis, examine how PCa-derived miRNAs and exosomes can contribute to creating a
cancer-favorable microenvironment in the premetastatic niche and regulating the metastatic
PCa phenotype, and investigate the role of miRNAs in the treatment, prognosis, and
diagnosis of PCa bone metastasis.

2. Bone Metastasis Microenvironment

The bone microenvironment is a dynamic compartment that undergoes remodeling
throughout life. Bone remodeling can be understood as a coordinated process of bone
resorption and formation resulting from the action of two types of bone cells, namely
osteoclasts and osteoblasts [18]. Osteoclasts degrade the bone matrix in response to receptor
activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating
factor (M-CSF) signaling [19]. Osteoblasts are responsible for bone formation [20]. These
cells produce extracellular matrix (ECM) proteins such as type I collagen, osteocalcin, and
alkaline phosphatase. A subset of osteoblasts differentiates into osteocytes. Osteocytes
control bone remodeling by modulating interactions between osteoblasts and osteoclasts in
response to hormonal, morphogenic, and mechanical signals. During the process of bone
remodeling, osteocytes may express RANKL, leading to bone resorption via osteoclast
activation, or may decrease the expression of Dickkopf-related protein 1 (DKK1) and
sclerostin, which promotes increased bone formation through osteoblast activation via
Wingless-related integration site (Wnt) signaling [21-23].

Bone formation and resorption are critical for bone health, and an imbalance in the
control of these processes, such as increased resorption or suppression of bone formation,
is associated with bone metastasis. Bone is the most frequent site of metastasis in prostate
and breast cancers [24,25]. Evidence indicates that PCa cells may exploit certain aspects of
the bone microenvironment for homing by fostering the formation of premetastatic niches,
even from a distance [26].

Tumor cells may home to the bone during the development of the primary tumor,
remaining latent until metastatic relapse occurs. Several factors of the bone microenviron-
ment regulate the reactivation of tumor cells in the bone. In bone metastasis, paracrine
crosstalk between cancer and bone cells constitutes a vicious osteolytic cycle [27-30]. Tumor
cells concurrently suppress osteoblasts and induce massive bone destruction by osteoclasts.
Aberrant expression of RANKL and M-CSF by cancer cells has been shown to induce
osteoclast activation, leading to bone degradation and the release of growth factors (e.g.,
IGF-1 and TGF-f) in the bone matrix, stimulating tumor growth [30-32].
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3. Exosomes and the Future Bone Metastatic Niche

Exosomes are a small lipid bilayer subtype of EVs (30 to 150 nm in diameter). Secreted
by eukaryotic cells after the fusion of multivesicular bodies with the plasma membrane,
exosomes may contain DNA, mRNA, ncRNA, miRNA, lipids, and proteins [17,33]. Initially,
exosomes were believed to be responsible for carrying cellular waste out of cells [34]. It
was only in 1996 [35] that these vesicles began to be seen as important actors in cellu-
lar communication. Exosomes are currently understood to be fundamental components
for communication between tumor cells and the tumor microenvironment. Many cells
secrete miRNAs via exosomes, modulating activities in recipient cells through the hori-
zontal transfer of information [16]. The exact function of exosomes depends on the type
of donor cell.

In the tumor context, cell-derived exosomes have been shown to target and pre-
pare the future metastatic niche by transferring oncogenic proteins and genes to nontu-
mor cells [15,36,37]. In the premetastatic niche, exosomes can upregulate inflammatory
molecules [38], remodel the architecture of the ECM [39], increase angiogenesis, and pro-
mote vascular permeability [40—43]. Moreover, tumor-derived exosomes can determine
metastatic organotropism. The targeting of a specific organ depends primarily on the
uptake of tumor exosomes by organ cells. Local uptake may be mediated by differential
integrin expression, as observed by Hoshino et al. [37], who demonstrated that «634 and
61 exosomal integrins mediate lung metastasis, whereas av[35 is associated with liver
metastasis and «v[36 regulates matrix metalloproteinase-2 (MMP2), promoting osteolytic
processes in PCa bone metastasis [44].

Tumoral exosomes seem to have a strong affinity for the bone microenvironment. Sys-
tematic delivery of murine melanoma B16510 exosomes results in localization to bones and
“educates” bone marrow progenitor cells, increasing metastatic behavior [15]. Exosomes
derived from a highly metastatic breast cancer cell line increased osteoclast activity and
reduced bone density, accelerating bone lesions in order to reconstruct the microenviron-
ment for bone metastasis [45]. Multiple myeloma-derived exosomes were found to contain
large amounts of amphiregulin (AREG) and induce osteoclastogenesis [46]. Osteoclast
differentiation mediated by AREG contained in non-small cell lung cancer exosomes has
also been observed [47].

In the PCa context, exosomes can mediate osteogenic or osteolytic metastasis through
mechanisms not yet fully elucidated [48]. Pyruvate kinase M2 (PKM2) expression is as-
sociated with clinical metastasis and may be an important inducer of premetastatic niche
formation, evidenced by the fact that PKM2 transfer from PCa exosomes to bone marrow
stromal cells regulates stromal cell-derived factor 1 (SDF-1) and directs the bone marrow
to contribute to premetastatic niche formation [49]. Probert et al. [50] reported that os-
teoblasts grown in co-culture with PCa cells benefit from tumor-derived EVs, which increase
osteoblast viability and produce a more supportive growth environment. Conditioned
medium from the PCa androgen-independent PC-3 cell line induces the expression of the
osteoclastogenesis-associated genes insulin-like growth factor-binding protein 5 (IGFBP-5),
interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1), and RANKL, promot-
ing osteoclastogenesis in RAW 264.7 cells [51]. PC-3 EVs also contain Ets1, which is an
osteoblast differentiation-related transcription factor that is transferred to osteoblasts when
they are cultured with tumoral microvesicles, inducing osteoblast differentiation [52]. Exo-
somes from murine PCa cells decrease the fusion and differentiation of monocytic osteoclast
precursors to mature, multinucleated osteoclasts and also decrease osteoclast fusion and
proliferation markers, such as dendritic cell-specific transmembrane protein (DCSTAMP),
trilodothyronine receptor auxiliary protein (TRAP), cathepsin K, and MMP9 [53].

The success of exosomal communication between cells depends on vesicle internaliza-
tion. Inder et al. [54] showed that the presence of caveolae-associated protein 1 (CAVIN-1)
in EVs derived from PC-3 cells reduces vesicle internalization efficiency in the osteoclast
precursor cells RAW 264.7 compared to control PC3 EVs, resulting in failure to induce os-
teoblast proliferation. Interestingly, bioinformatics analysis of the proteome of EVs derived
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from nonmineralizing and mineralizing osteoblasts demonstrated that these vesicles act in
pathways related to cell survival and growth, which was confirmed in vitro by increased
proliferation of PC-3 cells after osteoblast EV uptake [55], suggesting a feedback cycle be-
tween PCa and the tumor bone interface. These findings pave the way for further research
to prevent tumor spread and improve the treatment of bone metastasis.

4. miRNAs and Bone Remodeling

Bone remodeling is a complex process regulated by numerous biological factors and
signals responsible for bone structure renewal, whereby old bone tissue is continually
replaced by new bone tissue. Remodeling results from a balance between bone forma-
tion (stimulated by osteoblasts) and bone resorption (stimulated by osteoclasts) [56,57],
and disruption of this balance can lead to bone disease [10]. Bone formation and bone
resorption are interconnected: cells of the osteoblast lineage activate the bone remodeling
cycle by releasing enzymes and factors on the bone’s surface that modulate osteoclast
activation and differentiation, prompting these cells to begin the resorption process. As
bone resorption occurs, recruited osteoclasts emit signals for osteoblast differentiation
and migration [56,58,59].

Once PCa disseminates to the bone and cancer cells start to proliferate at the metastatic
site, normal bone cell function is altered, and the balance between bone formation and
bone resorption is disturbed. The phenotype of bone metastasis can be determined ac-
cording to the balance between osteoblast and osteoclast activities, classified as osteolytic,
osteoblastic, or mixed lesions [60]. Metastasis of PCa cells is most often osteoblastic, as
it stimulates osteoblast activities by disrupting the bone microenvironment, supporting
bone formation [61]. However, patients characterized by an osteoblastic phenotype of PCa
bone metastasis can also exhibit osteolytic lesions [62]. This is explained by the fact that, for
successful bone colonization, PCa cells need to modulate both osteoblastic and osteolytic
processes. Thus, PCa cells produce a variety of factors that can act directly or indirectly on
osteoblast and osteoclast activity to support bone metastasis development [63—-66]. These
findings suggest that bone colonization by PCa necessitates a general increase in bone
remodeling.

miRNAs are responsible for regulating several pathways related to bone remodeling
by directly or indirectly controlling cell signaling for osteoclast and osteoblast activity and
differentiation [67-69]. Therefore, aberrant miRNA expression in PCa can lead to abnormal
bone remodeling and stimulate tumor development and bone metastasis [12]. The role of
miRNAs in bone remodeling during PCa bone metastasis is not fully understood, and their
molecular targets are still being elucidated. However, some studies have demonstrated
the importance and role of miRNAs in regulating osteoblast and osteoclast differentiation
and activity during PCa bone metastasis, influencing bone remodeling and metastatic
phenotype [12,70]. A summary of the currently known roles of miRNAs in bone remod-
eling during PCa bone metastasis and in the crosstalk between cancer cells and the bone
microenvironment is illustrated in Figure 1.

4.1. miRNAs Related to Osteoblast Activity in PCa

The osteoblast plays a central role in bone formation by producing several constituents
of the bone matrix and differentiating into osteocytes, a crucial cell for bone remodel-
ing [56,71]. Osteoblasts originate from the differentiation of multipotent mesenchymal stem
cells (MSCs), which are able to differentiate into multiple cell lineages, such as adipocytes,
chondrocytes, myocytes, and fibroblasts. This process is regulated by numerous transcrip-
tion factors [72,73].
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Figure 1. miRNAs and their role in prostate cancer (PCa) bone remodeling. Major activities of
miRNAs in bone remodeling during PCa progression. miRNAs can directly or indirectly affect
different molecular mechanisms related to osteoblast and osteoclast differentiation to promote tumor
development and bone metastasis. miRNAs highlighted in red are upregulated in PCa, whereas
those highlighted in green are downregulated. Blunt arrows (") indicate pathway inhibition, and
sharp arrows (—) indicate pathway stimulation.

One of the most important regulators of osteoblast differentiation is runt-related
transcription factor 2 (RUNX2), a protein that regulates the differentiation of MSCs into
immature osteoblasts and modulates bone matrix protein expression during osteoblast
differentiation [74,75]. Deregulation of RUNX2 seems to be important for osteolytic and
osteoblastic metastasis [76], and some miRNAs were found to alter RUNX2 expression in
PCa bone metastasis. miR-466 expression, for instance, is downregulated in PCa tissues.
This miRNA seems to act as a suppressor of PCa proliferation and bone metastasis through
RUNX2 regulation. Overexpression of miR-466 in PCa cells impairs migration and invasive
capacity via RUNX2 inhibition, inducing the downregulation of several RUNX2 target
genes related to migration and bone metastasis [77]. miR-203 has a similar role in PCa
bone metastasis. Saini et al. [78] demonstrated that miR-203 expression is downregulated
in bone metastatic PCa cells and that its upregulation attenuates bone metastasis via
negative regulation of RUNX2. Ectopic expression of miR-203 seems to downregulate
osteocalcin and osteopontin genes (osteoblastic genes related to the maintenance of bone
maturation, mineralization, and bone remodeling [79]) and inhibit the expression of Distal-
less homeobox 5 (DLX5, a protein responsible for RUNX2 activation [80]). Moreover,
miR-203 was demonstrated to inhibit the expression of suppressor of mothers against
decapentaplegic homolog 4 (SMAD4), an important regulator of TGF-f3 signaling. These
observations suggest that miR-203 and miR-466 downregulation enhances the expression
of RUNX2 and its regulatory genes in bone metastatic PCa cells, promoting bone formation
and metastasis in PCa.

In cancer, osteoblasts can secrete chemokines and growth factors that play an impor-
tant role in attracting PCa cells to bone tissues, promoting metastasis [61]. Tai et al. [81]
hypothesized that osteoblast-derived factors can downregulate miR-126 and induce mi-
gration of human PCa cells. Wntl-induced secreted protein 1 (WISP-1), an important
regulator of bone development and repair [82], is highly secreted by osteoblasts and can
regulate av31 integrin, focal adhesion kinase (FAK), and p38 signaling pathways, leading
to inhibition of miR-126 expression in PCa cells. miR-126 negatively regulates vascular cell
adhesion molecule 1 (VCAM-1), an adhesion molecule that modulates the motility of hu-
man PCa cells [81]. With miR-126 downregulation via osteoblast-derived WISP-1, VCAM-1
expression is upregulated, increasing the ability of PCa cells to migrate to the bone.

TGF- was demonstrated to have an important role in the development and pro-
gression of PCa bone metastasis. Siu et al. [83] observed that miR-96 expression was
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enhanced by TGF-f signaling via SMAD-dependent transcription in PCa bone metastasis.
Furthermore, miR-96 directly targeted and downregulated AKT151, leading to increased
mechanistic targeting of rapamycin kinase (MTOR) activity. MTOR is involved in bone
homeostasis and development through MTORC1 and MTORC2, which stimulate osteoblast
differentiation and function [84]. Additionally, as demonstrated by Voss et al. [85], miR-96
enhances PCa cell—cell interactions and their ability to bind to osteoblasts by upregulating
E-cadherin and epithelial cell adhesion molecule (EPCAM) expression. miR-96 is over-
expressed in PCa bone metastasis [83,85] and seems to promote bone metastasis in PCa
tissues by increasing osteoblast activity and differentiation.

The expression of Wnt ligands was found to be upregulated in an osteoblastic metastatic
PCa cell line, inducing the activation of the canonical Wnt pathway and increasing bone
formation [86]. Wnt pathways regulate several processes that modulate osteogenesis and
influence osteoblastic bone metastasis in PCa [61,86,87]. Some miRNAs seem to mod-
ulate Wnt signaling during PCa progression. For instance, Li et al. [88] demonstrated
that miR-218 directly targets leucine-rich repeat-containing G-protein-coupled receptor
4 (LGR4), an IL-6 responsive gene associated with cancer progression, and modulates
phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/ 3-catenin pathways in
LNCaP cells treated with exogenous IL-6 (LNCaP-IL-6"). miR-218 is underexpressed in
PCa and seems to act as a tumor suppressor [88-90]. Therefore, the ability of miR-218 to
prevent the increase in cell proliferation and invasion in LNCaP-IL-6" cells promoted by
IL-6 is believed to stem from inhibition of Wnt/ 3-catenin pathways.

Chen et al. [91] evidenced that miR-34a expression is suppressed by Ras signaling
in PCa cells. Ras signaling is upregulated in metastatic samples and seems to be an
important pathway in PCa metastasis and epithelial-mesenchymal transition (EMT) [92].
Downregulation of miR-34a leads to cell growth and invasion, given that miR-34a inhibits
the expression of transcription factor 7 (TCF7), a Wnt/ 3-catenin pathway activator [93,94].
miR-34a may be related to inhibition of osteoblast differentiation and activity through Wnt
signaling inhibition and TCF7 regulation in PCa cells.

Exosomal miRNAs derived from PCa cells could promote osteogenic differentiation
of human bone mesenchymal stem cells (hBMSC) [95]. One possible mechanism for this
process was proposed by Mo et al. [95], who showed that the expression of long noncoding
RNA nuclear-enriched abundant transcript 1 (IncRNA-NEAT1) is enhanced in hBMSC
by PCa-derived exosomes and contributes to osteogenic differentiation of hBMSC via
miR-205-5p regulation. miR-205-5p negatively regulates RUNX2 expression, suppressing
osteogenic differentiation in hBMSC and inhibiting bone formation [96]. miR-205-5p
expression is downregulated in PCa bone metastasis [95,97] and seems to be related to
IncRNA-NEAT1, which acts as a competing endogenous RNA of this miRNA, promoting
RUNX2 expression and contributing to osteogenic differentiation. Moreover, Hashimoto
etal. [70] reported that miR-940 is highly expressed in exosomes derived from the C4-2B PCa
cell line and promotes osteogenic differentiation of human mesenchymal stem cells (hMSC)
in vitro by targeting Rho GTPase-activating protein 1 (ARHGAP1) and reticulophagy
regulator family member 2 (FAM134A). ARHGAP1 negatively regulates hMSC activity via
suppression of the RhoA /ROCK pathway, which is responsible for stimulating osteogenic
differentiation in hMSC [98] and EMT [99]. FAM134A, also known as MAG-2, is associated
with the promotion of metastatic ability in lung cancer cells [100]. Nevertheless, the
osteogenesis-related functions and mechanisms of FAM134A remain unclear.

Yu et al. [101] demonstrated that exosomes and exosomal miRNAs derived from
osteoblastic, osteoclastic, and mixed PCa cell lines can induce bone lesions and modu-
late PCa bone disease progression. Analysis of exosomes isolated from PCa cell lines
revealed miR-92a-1-5p as the most abundant miRNA. miR-92a-1-5p has several key roles
in bone homeostasis. It induces the degradation of type 1 collagen by negatively regulat-
ing COL1A1, inducing bone ECM degradation, inhibiting osteoblastogenesis, promoting
osteoclast differentiation, and enhancing bone resorption in PCa cells. Conversely, it
was observed that miR-148a-3p and miR-375, also highly expressed in PCa-derived exo-
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somes, enhance osteogenic differentiation and have osteoblastic effects [101]. Therefore,
these results evidence that exosomes derived from PCa cells can carry both osteoblastic
and osteoclastic miRNAs, demonstrating the potential of exosomes in regulating bone
metabolism and homeostasis. Accordingly, Li et al. [102] found that miR-375 is upregulated
in LNCaP-derived exosomes and suggested that these EVs could enter osteoblasts and
enhance miR-375 levels, stimulating osteoblast activity and differentiation. The direct
target of miR-375 in PCa tissues has not yet been identified, but it is known that miR-375
overexpression increases osteoprotegerin, RUNX2, osteopontin, and bone sialoprotein
gene expression in LNCaP cells, modulating genes that are directly related to osteoblast
differentiation and activity [102,103] (Table 1).

Table 1. miRNAs related to osteoblast activity in prostate cancer (PCa).

Expression

miRNA

Target Bone Remodeling Signaling Pathways Reference

Upregulated

miR-96

Inhibits AKT1S1 expression, inducing MTOR kinase

activity and osteoblast differentiation. (831

AKT1S1

miR-96

Enhances PCa cell—cell interactions and their ability
to bind to osteoblasts by upregulating E-cadherin [85]
and EPCAM expression.

E-cadherin
and EPCAM

miR-940

ARHGAP1 Promotes differentiation of mesenchymal stem cells

and FAM134A to osteoblasts. [70]

miR-148a-3p - Induces osteogenic differentiation. [101]

miR-375

Enhances osteoprotegerin, RUNX2, osteopontin, and
- bone sialoprotein expression in LNCaP cells, [102,103]
stimulating osteoblast differentiation and function.

Downregulated

miR-446

Suppresses PCa proliferation and bone metastasis
through regulation of osteogenic factors, such as
RUNX2, osteopontin, osteocalcin, ANGPT1,
ANGPT4, MMP11, Fyn, pAKT, FAK, and vimentin.

RUNX2

miR-203

Negatively regulates RUNX2 expression,

- : ! 78
suppressing bone formation and metastasis. [78]

RUNX2

miR-126

Osteoblast-derived WISP-1 induces miR-126
downregulation via av31 integrin, FAK, and p38
signaling pathways, leading to migration and
VCAM-1 expression in metastatic PCa cells.

VCAM-1 [81]

miR-218

Suppresses IL-6-induced cell proliferation and

invasion via downregulation of LGR4. (8]

LGR4

miR-34a

Inhibits TCF7 expression, downregulating the

Wnt/ 3-catenin pathway. 541

TCL?

miR-205-5p RUNX2

Negatively regulates RUNX2 expression,

suppressing osteogenic differentiation in hBMSC. [95,96]

4.2. miRNAs Related to Osteoclast Activity in PCa

Osteoclasts are responsible for bone resorption. The RANKL/RANK pathway seems
to be the most important mechanism related to osteoclast differentiation, being essen-
tial for bone metabolism under normal and pathological conditions, including PCa bone
metastasis [58,66,104]. RANKL activates RANK, which stimulates osteoclast differentia-
tion, proliferation, and survival through distinct pathways [105]. Nuclear factor-kappa
B (NF-«B) is one of the targets activated by RANK and a critical transcription factor in
osteoclastogenesis [106]. Activation of NF-«B signaling in PCa cells contributes to bone
metastasis via regulation of osteoclastogenic genes by miRNAs [66].

Ren et al. [107] demonstrated that miR-210-3p is overexpressed in bone metastatic
PCa tissues and promotes sustained activation of the NF-«kB signaling pathway by in-
hibiting TNFAIP3 interacting protein 1 (TNIP1) and suppressor of cytokine signaling 1
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(SOCS1) expression, negative regulators of NF-«kB signaling. miR-532-3p is downreg-
ulated in metastatic PCa tissues and was shown to act as a bone metastasis suppres-
sor by inhibiting NF-kB activation through TNF receptor-associated factor 1 (TRAF1),
TRAF2, and TRAF3 [108]. Likewise, miR-204-5p was demonstrated to act as a tumor
suppressor in PCa bone metastasis by inhibiting NF-«B signaling via direct targeting of
TRAF1, TGF-f activated kinase 1 binding protein 3 (TAB3), and mitogen-activated protein
kinase 3 (MAP3K3) [109], which are responsible for maintaining sustained NF-«B acti-
vation [110,111]. Upregulation of miR-204-5p decreases the osteolytic area of metastatic
tumors and bone metastatic score [109]. Duan et al. [112] showed that PC-3-derived exo-
somes can downregulate miR-214 in vitro, causing inhibition of osteoclast differentiation
by suppressing the NF-kB signaling pathway. However, the targets and regulation mecha-
nisms of miR-214 have not yet been clarified. The hypothesis is that PCa cells can promote
bone metastasis by inhibiting osteoclast differentiation and promoting osteoblast differenti-
ation and bone formation. Therefore, miR-210-3p, miR-532-3p, miR-204-5p, and miR-214
might modulate osteoclastogenesis in PCa tissues via NF-kB regulation.

Chen et al. [113] found evidence that thrombospondin-2 (TSP-2) might regulate osteo-
clastogenesis and bone remodeling by downregulating miR-376c. TSP-2 is a glycoprotein
that modulates cell adhesion and migration [114,115] and positively regulates MMP2 ex-
pression through downregulation of miR-376c¢ in PCa cells. MMP2 is a direct target of
miR-376c and enhances matrix degradation and osteolytic bone metastasis in PCa. TSP-2
downregulates miR-376c expression via mitogen-activated protein kinase 1 (MAPK) path-
ways, enhancing MMP2 expression, PCa migration, and osteolytic metastasis in vivo [113].
Additionally, oncostatin M (OSM), a member of the IL-6 subfamily, was shown to be
a potent regulator of bone remodeling [116]. OSM can promote osteoblast and osteo-
clast differentiation and is responsible for inducing IL-6 secretion by osteoblasts [116,117].
Han et al. [118] evidenced that the miR-181b-5p/OSM axis regulates osteoclast differentia-
tion and modulates PCa cell proliferation, migration, and invasion. OSM is a direct target of
miR-181b-5p, and overexpression of miR-181b-5p downregulates OSM expression, decreas-
ing the production of osteoclastogenic factors such as IL-6 and AREG and increasing that of
the anti-osteoclastogenic factor osteoprotegerin, thereby suppressing osteoclast differentia-
tion. OSM overexpression, however, reversed the effects of miR-181b-5p and recovered the
expression of osteoclastogenic factors. Therefore, miR-181b-5p can modulate osteoclastic
differentiation via regulation of osteoclastogenic factors. On the other hand, miR-133a-3p
was demonstrated to reduce osteolytic bone lesions in PCa in vivo via downregulation
of the PI3K/AKT signaling pathway, directly targeting multiple cytokine receptors, such
as epidermal growth factor receptor (EGFR), fibroblast growth factor receptor 1 (FGFR1),
insulin-like growth factorl receptor (IGF1R), and MET receptor tyrosine kinase [119]. The
PI3K/AKT pathway was shown to have an important role in promoting bone metastasis
and osteolytic bone lesions in PCa [120]. Therefore, it is probable that miR-133a-3p acts as a
suppressor of osteolytic bone metastasis in PCa.

In PCa, TGF-$ has a dual function. In the early stages of PCa, TGF-§3 acts as a tumor
suppressor by inhibiting tumor cell proliferation. In advanced stages of PCa, however,
TGF-p signaling is dysfunctional, and the cytokine begins to act as a tumor promoter,
contributing to PCa metastasis [121-123]. TGF is highly expressed in the bone matrix,
and TGEF-f3 receptors are expressed in both osteoclasts and osteoblasts [124]. Osteoblasts
can secrete latent TGF-3 in the bone environment. During osteoclastic bone resorption,
latent TGF-p is activated and released from the bone matrix [125,126]. TGF-f recruits
MSCs to bone resorption sites through the SMAD signaling pathway, in which MSCs
differentiate into osteoblasts [127]. Therefore, TGF-f3 acts as a coupling factor of bone
resorption to bone formation and is an important regulator of osteoblast and osteoclast
differentiation via SMAD signaling [128,129]. In osteoclasts, TGF-f3 activates the SMAD2/3
complex via TGF-f receptors, which bind directly to TRAF6, a downstream mediator of
RANK/RANKL, and induces osteoclast differentiation via activation of nuclear factor
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of activated T-cells (NFATc1) [130]. The SMAD2/3 complex can also bind to SMAD4,
activating the transcription of several genes related to osteoclast differentiation [131].
Some miRNAs were reported to suppress osteolytic lesions in PCa tissues by downregu-
lating TGF-3 activity via direct modulation of SMAD signaling pathways. Huang et al. [132]
demonstrated that overexpression of miR-582-3p and miR-582-5p reduces the bone metastatic
osteolytic area via downregulation of SMAD2, SMAD4, TGF-f type I receptor (TGF3RI),
and TGEF-p type II receptor (TGFBRII) in PCa tissues. miR-505-3p inhibits TGF-f sig-
naling by directly targeting SMAD2 and SMAD3, reducing PCa cell invasion and bone
metastasis [133]. miR-19a-3p inhibits invasion, migration, and osteolytic bone lesions
in PCa tissues by downregulating SMAD2 and SMAD4, reducing TGF-f signaling ac-
tivity [134]. miR-133b reduces the osteolytic area of PCa cells in vivo by suppressing
TGF-p activity via direct targeting of TGF3RI and TGREBRII [135]. It was evidenced by
Dai et al. [49] that miR-33a-5p is repressed by ZEB1 via activation of TGF-f signaling in
PCa. Upregulation of miR-33a-5p in vivo suppressed bone osteolytic lesions and bone
metastatic sites in PCa via inhibition of TGF-f3 signaling, achieved by direct targeting of
TGEFRRI Thus, miR-582, miR-505-3p, miR-19a-3p, miR-133b, and miR-33a-5p can modulate

osteoclastic differentiation by suppressing the TGF-{ signaling pathway (Table 2).

Table 2. miRNAs related to osteoclast activity in prostate cancer (PCa).

Expression miRNA Target Bone Remodeling Signaling Pathways Reference
.01 Induces type I collagen degradation by targeting COL1A1,
miR-92a-1-5p COLIAL stimulating bone ECM degradation and bone resorption. [101]
Upregulated Promotes osteoclast differentiation by sustained activation
miR-210-3p TNIP1 and SOCS1 of the NF-«B signaling pathway through TNIP1 and SOCS1 [107]
inhibition.
. TRAF1, TRAF2,and  Suppresses NF-kB activation via downregulation of TRAF1,
miR-532-3p TRAF3 TRAF2, and TRAF3. [108]
. TRAF1, TAB3,and  Suppresses NF-kB activation via downregulation of TRAF1,
miR-204-5p MAP3K3 TAB3, and MAP3K3. [109]
— Promotes NF-«B activity, leading to
miR-214 osteoclast differentiation. [112]
miR-376¢ MMP2 Negatively regulates.MMPZ expression, suppressing matrix [113]
degradation and osteoclastogenesis.
Inhibits OSM expression, decreases IL-6 and AREG, and
miR-181b-5p OsSM increases osteoprotegerin, suppressing [118]
osteoclast differentiation.
EGFR. EGFR1 Directly inhibits cytokine receptors of the PI3K/AKT
miR-133a-3p IGFIR ,an d ME,T signaling pathway, minimizing stimulation of osteolytic [119]
4 bone lesions.
Downregulated iR58230and | SMAD2, SMADY, Inhibits TGF- signaling activity by downregulating
miR—582F—)5 TGFBRI, and SMAD2, SMAD4, TGEBRI, and TGFBRII, reducing bone [132]
P TGFRRIL osteolytic metastasis.
SMAD? and Inhibits TGF- signaling activity via downregulation of
miR-505-3p SM ADZ SMAD2 and SMAD3, reducing invasion and [133]
bone metastasis.
SMAD2 and Inhibits TGF- signaling activity via downregulation of
miR-19a-3p SMAD4 SMAD?2 and SMADA4, reducing osteolytic [134]
bone lesions.
TGE@RI and Inhibits TGF-p signaling activity via downregulation of
miR-133b TGRFBRII TGFBRI and TGRFBRII, reducing osteolytic [135]
bone lesions.
miR-33a-5p TGF@RI Inhibits TGF- signaling activity via downregulation of [49]

TGFpRI, reducing osteolytic bone lesions.
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4.3. miRNAs Related to Both Types of Bone Metastasis

miRNAs can regulate many target mRNAs, and one mRNA can be regulated by
several miRNAs [136]. In PCa cells, some miRNAs were demonstrated to play a role in
both osteoclastogenesis and osteoblastogenesis.

miR-100 seems to have both types of action during PCa progression. miR-100 expres-
sion is significantly decreased in PCa bone metastasis compared with primary PCa [137-140].
Wang et al. [141] demonstrated that miR-100 is responsible for inhibiting the expression
of Argonaute 2 (AGO2) in PCa tissues, suppressing migration, invasion, and EMT. AGO2
is a key regulator of miRNA biogenesis and is responsible for mediating gene silencing
by binding mature miRNA to RNA-induced silencing complex (RISC) [142]. AGO?2 silenc-
ing impairs miRNA pathways and downregulates RANK expression, reducing osteoclast
differentiation and function [143]. Moreover, miR-100-5p could inhibit the occurrence
and development of osteogenic bone metastasis in PCa via MTOR downregulation [137].
Therefore, miR-100-5p downregulation in PCa tissues can be related to osteoblastic and
osteolytic lesions by enhancing osteoclast and osteoblast differentiation.

Wang et al. [144] found that miR-135b expression is downregulated in PCa tissues
and that miR-135b upregulation inhibits signal transducer and activator of transcription 6
(STAT6) expression and reduces nuclear translocation of STAT6 for IL-4 in metastatic
PCa cells. IL-4 is capable of inhibiting osteoclast differentiation through STAT6 nuclear
translocation and activation, which inhibits RANKL-activated signaling and NF-«B ac-
tivity, disturbing osteoclast activity and bone resorption [145,146]. It is suggested that
miR-135b can modulate osteoclast activity in PCa cells by regulating STAT6 expression.
Olivan et al. [147] suggested that miR-135b is involved in the bone homing of PC3-BM cells,
affecting PCa bone metastasis via regulation of vesicle transport through interaction with
t-SNAREs 1B (VIT1B), Janus kinase and microtubule interacting protein 2 (JAKMIP2), pleo-
morphic adenoma gene 1 (PLAG1), and platelet-derived growth factor subunit A (PDGFA),
which are validated targets of miR-135b. Until now, VIT1b, JAKMIP2, and PLAGI have
not yet been described in PCa, but PDGFA is known to be associated with osteogenesis in
PCa progression [148,149].

EGFR modulates PCa tumor growth, invasion, and bone metastasis [150] and seems
to regulate several oncogenic genes, such as twist family BHLH transcription factor 1
(TWIST1) [151]. TWIST is overexpressed in PCa and promotes osteolytic bone lesions
by modulating the expression of DKK1, an inhibitor of the Wnt pathway, and RUNX2,
supporting osteogenesis induction and enhancing osteomimicry in prostate cells [152].
Chang et al. [151] indicated that EGFR modulates PCa bone metastasis by directly modulat-
ing miR-1 expression, which negatively regulates TWIST1 expression. Therefore, miR-1
downregulation enhances TWIST1 expression, leading to osteoblast mineralization and
reduced stimulation of osteoclast differentiation.

miR-141-3p is downregulated in PCa cell lines (22RV1, PC-3, VCaP, DU145, and
LNCaP) compared with a healthy prostate cell line (RWPE-1) and is known to act as a
bone metastasis suppressor by inhibiting NF-kB activation via targeting of TRAF5 and
TRAF6 [153], which are responsible for mediating NF-«B activation by RANK [106]. There-
fore, miR-141-3p is capable of inhibiting osteoclast differentiation in metastatic PCa cells.
By contrast, it was evidenced that miR-141-3p may support osteoblastic metastasis, and
its expression is upregulated in the serum of patients with PCa bone metastasis [154] as
well as in exosomes derived from MDA PCa 2b cells [155]. Higher levels of miR-141 in the
serum were related to a higher number of bone lesions and serum alkaline phosphatase
levels [154], which is considered an indicator of bone metastasis [156]. Furthermore, it was
observed that MDA PCa 2b-derived exosomes enter osteoblasts and deliver miR-141-3p,
promoting osteoblast activity via osteoprotegerin overexpression, an inhibitory cytokine
of RANKL. miR-141-3p can upregulate osteoprotegerin expression by downregulating
DLC1 Rho GTPase activating protein (DLC1), activating the p38/MAPK pathway and
inducing osteoprotegerin/RANKL expression and osteoblast maturation [155]. Expression
of miR-141-3p in PCa tissues remains controversial, but it is clear that this miRNA has
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an important role in bone metabolism and remodeling via modulation of osteoblast and
osteoclast differentiation.

It is clear that miRNAs from PCa have a fundamental role in modulating the balance
between osteoclast and osteoblast activity to stimulate tumor development and bone
metastasis (Table 3). To date, miRNAs modulating osteoclastic differentiation are known
to be the most suppressive miRNAs. Such regulation may be related to the fact that PCa
primarily has an osteoblast phenotype. Here, miRNAs related to bone remodeling during
PCa progression and metastasis were elucidated to better understand the role of miRNAs
and to support future research on miRNAs as therapeutic targets.

Table 3. miRNAs related to osteoclast and osteoblast activities in prostate cancer (PCa).

Expression Target Bone Remodeling Signaling Pathways Reference
Activates the p38MAPK pathway, increasing
osteoprotegerin/RANKL expression and
Upregulated bLct osteoblast maturation via downregulation [155]
of DLC1.
Suppresses NF-«B activation via downregulation
TRAF5 and TRAF6 of TRAF5 and TRAF. [153]
Suppresses osteoclast differentiation and function
AGO2 by impairing miRNA pathways through [141,143]
AGO?2 inhibition.
. Inhibits osteoblast differentiation and function
miR-100-5p MTOR via MTOR downregulation. [157]
Downregulated Promotes osteoclast activity and bone resorption
miR-135b STAT6 by stimulating RANKL-activated signaling and [144]
NF-«B activity via downregulation of STAT6.
miR-135b VIT1b, JAKMIP2, Implicates osteogenesis in PCa via regulation of [147]
PLAGI, and PDGFA VIT1b, JAKMIP2, PLAGI, and PDGFA genes.
Regulates TWSIT1 expression, which promotes
TWIST1 PCa bone remodeling by regulating DKK1 and [151]
RUNX2 expression.

5. miRNAs as Potential Therapeutic Targets

Since the United States Food and Drug Administration (FDA) approved small in-
terfering RNA (siRNA) therapy for genetic conditions in 2018 [157,158], several investi-
gations have been carried out by pharmaceutical companies using the noncoding RNA
approach [159]. In posttranscriptional gene regulation, a strand of mature miRNA binds to
AGQ2, forming RISC, the same complex that is exploited by synthetic siRNAs to regulate
gene expression, which is loaded on 3'- or 5’-untranslated regions (UTRs) of target mRNA.

siRNA and miRNA have some similarities, in that they are both short noncoding RNA
molecules with 19-25 nucleotides (nt) exhibiting low in vivo stability, delivery challenges,
and off-target effects [160]. However, whereas siRNAs need to bind with 100% complemen-
tarity to cleave the target sequence, miRNAs bind imperfectly to mRNA, with a minimum
binding requirement of 2-8 nt [161]. Therefore, miRNAs may bind to multiple mRNA tar-
gets, being able to act dynamically as therapeutic agents. AntagomiRs and miRNA mimics
are two important exogenous treatment tools based on miRNA technology. AntagomiRs
are single-stranded RNA molecules with a degradation function that bind complementarily
to a mature sequence of an overexpressed miRNA. By contrast, synthetic miRNAs mimic
underexpressed targets with the objective of function restoration. In this case, consistent
with siRNAs, it is suggested that double-stranded miRNAs are 100-1000-fold more potent,
because of the need for maturation by the enzyme Dicer [162-164].

In 2013, Miravirsen, the first miRNA-targeted drug, was tested on 36 patients with
chronic hepatitis C (HCV) infection in a phase 2 clinical trial. Miravirsen is a nucleic
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acid-modified DNA phosphorothioate antisense oligonucleotide that inhibits miR-122
function [165]. In the last miRBase actualization, there were over 2000 identified human
miRNAs but not all their functions were available. Nevertheless, it is recognized that miR-
NAs may regulate up to 50% of genetic expression in humans [166], justifying the interest in
the use of these molecules as antitumoral agents. A liposomal nanoformulation of miR-34a
mimic was the first synthetic miRNA used for this purpose in humans, in a phase 1 study in
adults with solid tumors refractory to standard treatments. Although the study was closed
prematurely due to serious immune-mediated adverse effects, it demonstrated a dose-
dependent modulation of relevant target genes and a proof-of-concept for miRNA-based
cancer therapy [167]. Currently, 16 miRNAs are in the development phase for several hu-
man diseases, including miR-155 in phases 1 and 2 for lymphoma and leukemia conducted
by MiRagen Therapeutics and miR-16 for mesothelioma by ENGenelC [168-171].

miRNAs have not yet reached the clinical trial phase for PCa therapy; however, promis-
ing candidates have been identified, with bone metastasis appearing as one of the major
research focuses. In 2009, Qin et al. [172] identified bone morphogenetic protein receptor 2
(BMPR?2) as a target of miR-21 in PCa cells [172]. Inhibition of miR-154* and miR-379,
DLK1-DIO3 cluster members, after cardiac inoculation of a PCa cell line in mice resulted in
decreased bone metastasis and increased animal survival, stemming from downregulation
of stromal antigen 2 (STAG2), a tumor suppressor gene [173]. Elevated expression of
miR-409-3p/-5p was observed in bone metastatic PCa cell lines, and inhibitor-treated bone
metastatic ARCaPM led to decreased bone metastasis and increased survival in mice [174].
Restoration of miR-133a-3p, -145, -204-5p, -582, and -466 inhibited bone metastasis in PCa
in vivo through mediation of PI3K/AKT signaling, MYC/RAS regulation, and inactivation
of NF-kB, TGF-f3, and RUNX2, respectively [77,109,119,132,175]. Overexpression of miR-
210-3p maintained the sustained activation of NF-«B signaling, resulting in EMT, invasion,
migration, and bone metastasis of PC-3 cells [107]. By combining clinical samples with pub-
lic databases, Liu et al. [176] found that miR-629-5p is increased in PCa metastasis, which
leads to cell proliferation, migration, and invasion in vitro and promotes the growth of PCa
cells in vivo by inhibiting A-kinase anchor protein 13 (AKAP13), a tumor suppressor. EVs
derived from the murine PCa cell line RM1-BM enriched with miR-26a-5p, miR-27a-3p, and
miR-30e-5p increased the metabolic activity, viability, and cell proliferation of osteoblast
precursors, downregulated osteogenic markers, such as BMP2, and upregulated proinflam-
matory factors [177]. Moreover, exosomal miR-940 regulates osteogenic differentiation in
PCa and is a potential therapeutic target in metastatic diseases [70].

Several miRNAs have been shown to induce significant changes in animal models of
PCa apart from bone metastasis. AntagomiR delivery of miR-15a and miR-16 clusters in
normal mouse prostate cells resulted in hyperplasia [178]. In CD44" PCa stem cells, miR-
34a is underexpressed; enforced expression inhibited metastasis and extended the survival
of tumor-bearing mice [176]. One of the first-line drugs for metastatic PCa is docetaxel,
an antimitotic chemotherapeutic. In docetaxel-resistant PCa cells, miR-34a, jointly with
miR-27b, is downregulated, and sensibility returns with miRNA restoration [179]. Overex-
pression of the miR-17-92a cluster also increases docetaxel sensibility, as well as that of the
antiandrogen drug Casodex, the AKT inhibitor MK-2206 2HCI [180]. Moreover, miR-30a
is significantly downregulated in castration-resistant prostate cancer (CRPC) tissues, and
overexpression of this miRNA reduces tumorigenicity in vivo by minimizing the expression
of a distinct cell cycle protein, cyclin E2 (CCNE2) [181]. Lastly, the metastatic potential
of PCa decreased with miR-200b overexpression in an orthotopic model, demonstrating
the antiangiogenic activity of miRNA [182], given that neovascularization is a hallmark of
cancer [183]. Currently, angiogenesis inhibitors are used concomitantly with chemotherapy
in solid tumors, although none have been included in PCa treatment.

Other miRNAs deserve mention for their prostate antitumoral activity in vitro and
in vivo, such as miR-338-5p /421, which abrogates serine peptidase inhibitor Kazal type
1 (SPINK1)-mediated oncogenesis [184], miR-1303, which regulates the Wnt/ 3-catenin
pathway by targeting DKK3 [185], and miR-135a, which targets EGFR [186]. An miR-205-5p
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mimic nanoformulation was shown to have anticancer, antimetastatic, and chemosensitiza-
tion potential together with docetaxel treatment [187].

It is also worth mentioning that natural plant products could modulate the expression
of tumorigenic miRNAs. Metastasis-associated protein 1 (MTA1) is overexpressed in PCa,
especially in bone metastatic lesions, and is related to decreased expression of E-cadherin
through cathepsin B (CTSB), leading cells to EMT [188]. miR-22 was found to be positively
associated with MTA1 and contribute to reducing E-cadherin expression [189]. Dietary
polyphenols such as flavonoids and stilbenes, including resveratrol, are related to inhibi-
tion of miR-22 and the oncogenic MTA1-associated miRNAs miR-17 and miR-34a [190,191].
Pterostilbene, along with resveratrol, downregulates miR-17-5p and miR-106a-5p, miR-
NAs that target tumor suppressor phosphatase and tensin homolog (PTEN) [192,193]. In
fact, animals supplemented with grape powder, with high content of resveratrol and stil-
benes, presented lower circulating levels of oncogenic miR-34a and miR-22 and overall
inflammation; thus, this plant product was suggested as a chemopreventive strategy in
PCa progression [194].

Information about aberrant expressions of miRNAs in PCa and, more specifically,
bone metastasis has increased, demonstrating that direct and indirect alterations made
by mimics and antagomiRs may be an important tool in cancer therapy (Figure 2). In
addition to antitumoral effects, the particularities of oligonucleotides, such as degradation
by nucleases, low tissue permeability, and fast kidney excretion [195], must be taken into
account during drug development.
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Figure 2. miRNA-based therapeutic strategies and their inhibitory effects on prostate cancer bone
metastasis. Schematic representation of prostate cancer bone metastasis and the expected effects
of therapeutic strategies based on synthetic miRNA mimics or inhibitor nanoformulations that
minimize molecule degradation. Synthetic miRNAs potentially act by ) modulating prostate
tumor maintenance, growth, and/or survival; @) regulating epithelial-mesenchymal transition and
reducing the ability of tumor cells to migrate and invade surrounding tissues; and () modulating
bone remodeling by regulating interactions between tumor cells and the bone microenvironment
during bone colonization.
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6. Diagnosis

Early diagnosis of PCa bone metastasis may be one of the limiting factors of treatment
success. Identification of molecular mechanisms associated with advances in radiology
and nuclear medicine has led to the development of diagnostic imaging tools and biomark-
ers to improve PCa detection [196,197]. The most common primary clinical symptom
of bone metastasis is pain [198,199]. According to the American Urological Association
(AUA)/European Society for Medical Oncology (ESMO) guidelines, several routine anal-
yses must be performed to investigate bone metastasis after confirming PCa, even if the
patient does not report the presence of bone pain [200,201]. The standard-of-care imaging
methods to detect bone metastasis include X-ray, bone scintigraphy, computed tomography,
whole-body magnetic resonance imaging, and positron emission tomography-computed
tomography [200,202].

Although imaging methods provide satisfactory results in the case of bone metas-
tasis, alternative methods may achieve faster and more efficient detection. Alternative
methods include bone biopsy [203] and identification of blood markers such as alka-
line phosphatase [204,205] and calcium [206], which together with age-specific refer-
ence ranges, metastasis indicators, hemoglobin, Gleason score, treatment conditions,
prostate-specific antigen (PSA), bone-specific alkaline phosphatase, corrected urinary
N-telopeptide (uNTx), and absence of visceral metastasis, constitute the prognostic factors
of PCa bone metastasis [207-210].

In addition to alternative methods, researchers are focusing on identifying the most
accurate biomarkers that can be detected in body fluids by less invasive and safer proce-
dures. In 2012, prostate cancer antigen 3 (PCA3), a long noncoding RNA, was the first
urinary biomarker to gain FDA approval. It has higher sensitivity and specificity than
serum PSA, helping to decide whether men with high PSA levels but negative prostate
biopsy should undergo repeat biopsy [211]. Other promising urinary markers include
fusion of the transmembrane protease serine 2 (TMPRSS2) and the ERG gene (TMPRSS2-
ERG), homeobox C6 protein (HOXC6), and distal-less homeobox 1 (DLX1) [212-214]. PCA3
expression in the ejaculate, along with serine protease hepsin, is also proven to be a better
predictor of PCa status and risk than serum PSA alone [215]. Seminal plasma is a robust
source of markers such as prostatic acid phosphatase and alpha-methylacyl-CoA racemase
(AMACR), given that 40% of semen is derived from prostatic tissue [216-218]. Although,
to date, only PSA and PCAS3 are approved by the FDA as biofluid markers, identification of
the correct biomarker source is important for miRNA research, with urine, semen, serum,
and plasma as the most cited and promising sources. These samples should be taken into
consideration in study decisions [219].

Numerous papers have identified cancer-associated miRNA profiles exhibiting a
highly abnormal expression that could be involved in metastasis development. Conse-
quently, scientific efforts have been made to identify potential miRNA biomarkers and
comprehend how they contribute to the development of PCa metastasis, aiming to acceler-
ate the diagnostic process [210,220]. Porkka et al. [138], in 2007, identified a detailed PCa
miRNA signature. On the basis of their findings, miRNAs were studied as biomarkers for
PCa diagnosis and prognosis, including cases related to bone metastasis. Table 4 describes
miRNAs with potential diagnostic and prognostic features for PCa bone metastasis, in
addition to the miRNAs mentioned in this review. Many studies do not discriminate the
metastatic site; thus, we discuss below some studies that identified miRNAs as possible
biomarkers for diagnosis/prognosis of PCa bone metastasis.

miR-143 and miR-145 were some of the first miRNAs identified as possible biomarkers
of PCa bone metastasis. In 2011, Peng et al. [221] described the downregulation of miR-
143 and -145 in PCa patients with bone metastasis compared with those without bone
metastasis. Additionally, miR-143 and -145 expression levels in primary PCa patients were
negatively correlated with Gleason score and PSA level, suggesting that high miR-143
and -145 expressions might be associated with a lower risk of bone metastasis and better
clinical state. Downregulation of miR-143 and -145 promotes migration, invasion, and EMT
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by reducing E-cadherin and increasing fibronectin expression in PC-3 cells [221]. In the
following year, Huang et al. [222] observed a significant role of miR-143 and -145 in bone
metastasis progression in PCa through regulation of cancer stem cell (CSC) properties [222].

Also in 2011, Sun et al. [223] identified miR-23b downregulation and miR-221 upregu-
lation in most PCa bone metastasis tissues compared with normal prostate and primary
PCa [223]. A few years later, Rice et al. [224] associated the downregulation of miR-23b with
PC-3 invasion stemming from overexpression of Huntingtin-interacting protein 1-related
(HIP1R) [224]. In 2018, Shao et al. [225] demonstrated that upregulation of miR-221-5p
stimulates PC-3 cell proliferation, migration, and EMT via downregulation of SOCS1 and
E-cadherin expression and activation of the RAS/RAF/MEK/ERK signaling pathway [225].

Zhiping et al. [226], in 2013, identified miR-181a upregulation in PCa metastasis
in human tissues. The authors observed that, when upregulated in PC-3 cells in vitro,
miR-181a stimulates EMT, invasion, and migration by suppressing TGF-f3 induced factor
homeobox 2 (TGIF2) [226]. Additionally, miR-181a-5p upregulation, via suppression
of migration and invasion inhibitory protein (MIIP), was found to inhibit Kruppel-like
factor 17 (KLF17) and promote bone metastasis in vivo by activating EMT [227]. Recently,
scientists have observed upregulation of this miRNA in EVs from the serum of PCa patients
in metastatic bone groups compared with nonmetastatic bone groups [228].

In 2015, Zhang et al. [229] found that miR-188-5p was downregulated in bone metastatic
patient samples compared with primary PCa samples, causing cell proliferation, invasion,
and migration, being therefore associated with a poor prognosis. The authors observed a
relationship between miRNA upregulation and suppression of lysosomal protein transmem-
brane 4 beta (LAPTM4B) [229]. Also in 2015, Fu et al. [230] reported the downregulation
of miR-543 and -335 in PCa bone metastasis compared with the primary tumor in patient
samples, associated with the overexpression of endothelial nitric oxide synthetase (eNOS).
Upregulation of miR-335 and -543 suppressed eNOS expression and reduced PC-3 cell
aggressiveness by decreasing cell migration and invasion [230].

mir-30la was investigated as a potential biomarker of PCa metastasis by
Damodaran et al. [231] in 2016. The authors recorded miR-301a upregulation and con-
sequent invasion and migration of PCa cells. The results revealed that the tumor and
bone metastasis exhibited a significantly higher miR-301a expression (10-fold) than benign
tissues [231]. In the same year, researchers discovered miR-320a downregulation in PCa
patient samples, particularly in metastatic samples, including bone metastasis. Using PCa
cell lines, such as PC-3, the authors observed increased cell migration and invasion associ-
ated with overexpression of lysosomal-associated membrane protein 1 (LAMP1), regulated
negatively by miR-320a [232]. Additionally, Zhang et al. [233] demonstrated the downregu-
lation of miR-194 in PC-3 cells, resulting in increased cell invasion via overexpression of
MMP2 and MMP9 through the targeting of bone morphogenetic protein 1 (BMP1) [233].
Later, researchers found another target for miR-194, namely cadherin 2 (CDH2), confirming
miRNA downregulation in PC-3 cells in vivo. Using an miR-194 mimic, they observed
CDH2 downregulation and the consequent increase in cell death and apoptosis [234].

In 2019, Fan et al. [235] reported miR-127-3p downregulation in PCa tissues with bone
metastasis. In vitro experiments revealed loss of migration and invasion with miRNA
upregulation in PC-3 and C4-2B cells. Suppression of PCa bone metastasis in vivo was
observed after miR-127-3p upregulation. A possible pathway was proposed: transcriptional
downregulation of miR-127-3p by CCCTC-binding factor (CTCF) leads to overexpression
of proteasome 3-subunit 5 (PSMf35), promoting bone metastasis in PCa [235]. miR-146a
and miR-152 were investigated in the serum of 56 PCa and 56 healthy individuals from May
2009 to April 2017 at Jining First People’s Hospital, China. The researchers identified miR-
146a upregulation and miR-152 downregulation in PCa patients versus healthy individuals
and PCa bone metastasis versus PCa patients [236].

miR-199a-5p upregulation seems to decrease the expression of protein inhibitor of acti-
vated STAT3 (PIAS3), which increases AKT serine/threonine kinase 2 (AKT2) expression
and enhances EMT to promote PCa metastasis, according to Tseng et al. [237]. Recently,
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another group showed that miR-199a-5p upregulation is associated with let-7a-5p down-
regulation, resulting in activation of the TGF-f3 pathway and promoting EMT, invasion,
and migration in PC-3 cells and metastatic PCa cell lines [238].

Analysis of EVs from metastatic PCa cell lines revealed miR-425-5p upregulation
in PC-3 cells compared with healthy prostate RWPE-1 and metastatic LNCaP cell lines.
Bioinformatics evaluation identified suppression of the heat shock protein family B small
member 8 (HSPBS), a target related to bone metastasis [239].

Recently, researchers reported miR-125a-3p, miR-330-3p, miR-339-5p, and miR-613 in
EVs derived from the blood of PCa patients as potential biomarkers of bone metastasis. Only
miR-125a-3p was downregulated in metastatic samples compared with nonmetastatic PCa;
the other miRNAs were upregulated. The authors confirmed these findings in vitro using
C4-2B cells. Bioinformatics analysis identified 25 targets of these four EV miRNAs related to
bone metastasis [240]. Likewise, EVs derived from bone metastatic PCa were enriched with
miR-378a-3p in patient serum, PC-3, and C4-2B cell lines, promoting osteolytic progression
through activation of the DYRK1a/NFATC1/ANGPTL2 pathway [241].

Table 4. Potential miRNAs for the diagnosis/prognosis of bone metastasis in prostate cancer (PCa).

Expression miRNA Target Bone Remodeling Signaling Pathways Reference

Stimulates cell proliferation, migration, and EMT
via SOCS1 downregulation, E-cadherin
expression, and activation of the
RAS/RAF/MEK/ERK pathway.

miR-221 SOCS1 [223,225]

Stimulates EMT, invasion, and migration by
suppressing TGIF2, inhibits KLF17 and promotes
bone metastasis by activating EMT.

miR-181a TGIF2 and KLF17 [226,228]

Upregulated
Decreases PIAS3 expression, which increases

PIAS3 and AKT2 expression and enhances EMT to promote
TGF- metastasis; activates TGF-3, promoting EMT,
invasion, and migration.

miR-199a-5p [237,238]

miR-425-5p HSPB8 Suppresses HSPBS, increasing bone metastasis. [239]

Promotes osteolytic progression by activation of

miR-378-3p the DYRK1a/NFATC1/ANGPTL2 pathway.

[241]

Stimulates invasion due to

miR-23b HIP1R overexpression.

HIPIR [223,224]

Promotes cell proliferation, invasion, and

miR-188-5p migration by downregulating LAPTM4B.

LAPTM4B [229]

Increases eNOS expression, promoting cell

miR-543 eNOS S . .
migration and invasion.

[230]

Increases eNOS expression, promoting cell

miR-335 eNOS S . .
migration and invasion.

[230]

Downregulated Increases cell migration and invasion via LAMP1

miR-320a ;
overexpression.

LAMP1 [232]

Increases cell invasion via overexpression of
MMP2 and MMP9 by targeting BMP1, decreases
cell death and apoptosis via
CDH2 overexpression.

miR-194 BMP1 and CDH2 [233,234]

Promotes PSMB5 overexpression, increasing

miR-127-3p

PSMB5

bone metastasis.

[235]

let-7a-5p

TGF-p

Activates the TGF-3 pathway, promoting EMT,
invasion, and migration.

[238]
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7. Conclusions and Future Directions

Many patients are diagnosed with PCa after presenting with bone pain, which is
indicative of advanced stages of the disease. Skeletal commitment is frequent in PCa
and related to pain, hyperkalemia, pathological bone fractures, metastatic epidural spinal
cord compression, and cachexia, which may lead to death. Therefore, the development of
well-defined diagnostic and treatment protocols for the local disease should be the major
focus of research.

To the best of our knowledge, this was the first analysis of the relationship between
miRNA expression profiles and bone metastatic PCa, substantiating the potential of these
molecules to be included in new research protocols for disease diagnosis, prognosis, and
treatment, following the global trend of clinical research on miRNAs.
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