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Simple Summary: In this paper, we introduce a new technique for enhancing medical image diag-
nosis through transfer learning (TL). The approach addresses the issue of limited labelled images
by pre-training deep learning models on similar medical images and then refining them with a
small set of annotated medical images. Our method demonstrated excellent results in classifying
the humerus and wrist, surpassing previous methods, and showing greater robustness in various
experiments. Furthermore, we demonstrate the adaptability of the approach with a CT case, which
showed improvements in the results.

Abstract: Medical image classification poses significant challenges in real-world scenarios. One
major obstacle is the scarcity of labelled training data, which hampers the performance of image-
classification algorithms and generalisation. Gathering sufficient labelled data is often difficult and
time-consuming in the medical domain, but deep learning (DL) has shown remarkable performance,
although it typically requires a large amount of labelled data to achieve optimal results. Transfer
learning (TL) has played a pivotal role in reducing the time, cost, and need for a large number of
labelled images. This paper presents a novel TL approach that aims to overcome the limitations
and disadvantages of TL that are characteristic of an ImageNet dataset, which belongs to a different
domain. Our proposed TL approach involves training DL models on numerous medical images
that are similar to the target dataset. These models were then fine-tuned using a small set of
annotated medical images to leverage the knowledge gained from the pre-training phase. We
specifically focused on medical X-ray imaging scenarios that involve the humerus and wrist from
the musculoskeletal radiographs (MURA) dataset. Both of these tasks face significant challenges
regarding accurate classification. The models trained with the proposed TL were used to extract
features and were subsequently fused to train several machine learning (ML) classifiers. We combined
these diverse features to represent various relevant characteristics in a comprehensive way. Through
extensive evaluation, our proposed TL and feature-fusion approach using ML classifiers achieved
remarkable results. For the classification of the humerus, we achieved an accuracy of 87.85%, an
F1-score of 87.63%, and a Cohen’s Kappa coefficient of 75.69%. For wrist classification, our approach
achieved an accuracy of 85.58%, an F1-score of 82.70%, and a Cohen’s Kappa coefficient of 70.46%.
The results demonstrated that the models trained using our proposed TL approach outperformed
those trained with ImageNet TL. We employed visualisation techniques to further validate these
findings, including a gradient-based class activation heat map (Grad-CAM) and locally interpretable
model-independent explanations (LIME). These visualisation tools provided additional evidence to
support the superior accuracy of models trained with our proposed TL approach compared to those
trained with ImageNet TL. Furthermore, our proposed TL approach exhibited greater robustness
in various experiments compared to ImageNet TL. Importantly, the proposed TL approach and the
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feature-fusion technique are not limited to specific tasks. They can be applied to various medical
image applications, thus extending their utility and potential impact. To demonstrate the concept of
reusability, a computed tomography (CT) case was adopted. The results obtained from the proposed
method showed improvements.

Keywords: musculoskeletal X-ray; deep learning; transfer learning; data scarcity; convolution neural
network (CNN); machine learning; feature fusion; gradient-based class activation heat map

1. Introduction

X-ray medical images are widely recognised as powerful tools for identifying abnor-
malities in bone classification. They provide valuable information on the structure and
condition of bones, helping to diagnose and treat various skeletal disorders. However, one
of the most-significant challenges faced in the use of artificial intelligence (AI) algorithms
for medical image analysis is the scarcity of data available for training and validation [1].

The limited availability of labelled medical images poses a substantial obstacle to the
development of accurate and reliable AI models for bone classification tasks. Obtaining a
large and diverse medical image dataset is crucial to the effective training of AI algorithms
because the performance and generalisation capabilities of AI models can be compromised
without sufficient data.

Addressing the issue of data scarcity in medical imaging is essential to unlocking the
full potential of AI to improve bone classification accuracy and aid clinical decision-making.
Researchers and practitioners continue to explore methods such as active learning (AL),
synthetic data generation [2], generative data augmentation [3], transfer learning (TL) [4],
and collaboration between institutions to overcome the challenges posed by limited medical
image datasets. By expanding the availability and quality of annotated medical images,
the performance and robustness of AI algorithms for bone classification will be enhanced
and ultimately improve patient care in the medical imaging domain [5].

Despite advancements in medical applications and the progress made in computer
vision, detecting abnormalities in the humerus and wrist using X-ray images remains a
challenge [6]. The complexity of bone structures, subtle variations in abnormalities, and
the inherent limitations of X-ray imaging techniques contribute to this challenge. Ongoing
research and development efforts focus on using AI and machine learning (ML) techniques
to improve the accuracy and efficiency of humerus and wrist abnormality detection in
X-ray images. ML models can be trained on large datasets of annotated X-ray images,
which enables them to recognise patterns and detect subtle pathological indicators.

By integrating AI and ML technologies into the field of orthopaedics, medical profes-
sionals can benefit from improved accuracy and efficiency when diagnosing and treating
patients with bone conditions. Deep learning (DL) is a branch of AI techniques that has
demonstrated exceptional abilities in accurately, reliably, and rapidly classifying medical
images into binary and multiclass categories [7,8]. DL has become the gold standard in
medical image analysis and has demonstrated remarkable performance in various areas,
such as radiology [9,10], dermatology [11], pathology [12], and ophthalmology [13,14].
These applications, which span different medical fields, are based on human experience,
thus making DL a valuable tool in a competitive domain.

The requirement for large amounts of labelled data is a significant challenge to the de-
velopment of high-performing DL models. However, the scarcity and imbalance of medical
image datasets pose significant challenges due to the cost effectiveness and time consump-
tion associated with DL approaches. Despite these challenges, DL models have consistently
demonstrated impressive performance in classifying medical images. Krizhevsky et al. [15]
introduced a model based on a convolutional neural network (CNN) architecture that
represented a significant milestone in the history of DL and computer vision. Their devel-
oping work demonstrated the potential of deep CNNs in image-classification tasks, thus
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setting new standards for accuracy and inspiring further research and innovation in the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a critical image classification
competition. Several studies have successfully used TL techniques in DL models to address
data scarcity. TL involves using models that were pre-trained on large-scale datasets and
fine-tuning them on target medical image datasets [16]. This approach has been shown to
be effective in improving the performance of DL models in various studies [1]. For example,
Fang et al. [17] used fine-tuning and feature augmentation methods and an area under the
curve (AUC) of 0.73. However, unbalanced data remain a limitation in certain studies [18].
Musculoskeletal radiographs (MURA) is a dataset designed specifically for musculoskeletal
medical imaging, as it comprises a large collection of radiographs (X-rays). The dataset
covers a diverse set of musculoskeletal abnormalities, as well as normal cases, which makes
it a valuable resource for training and evaluating medical image classifiers [19]. The use of
TL techniques for medical image classification has increased significantly, and this trend
highlights the growing recognition of TL as a valuable strategy for handling data scarcity
and improving the performance of DL models in the medical field.

CNNs have been widely used to classify input data as various states of disease [20].
CNNs’ deep architecture feedforward neural networks serve as the basis for many deep
neural network models (DNN) in the medical field [20]. In addition to CNNs, other
types of neural networks have also been used, such as recurrent neural networks (RNNs)
with variations such as long short-term memory (LSTM), transformers, and generative
adversarial networks (GANs) [21]. CNNs have proven to be particularly effective for
image-processing and -classification tasks. One of their key strengths lies in their ability to
extract meaningful patterns and characteristics from images regardless of scaling, mirroring,
rotation, or translation [22]. This property makes CNNs highly suitable for medical image
analysis, where the accurate identification and classification of image characteristics are
crucial for diagnosis and treatment.

Furthermore, it should be noted that most studies that focus on humerus and wrist
abnormalities do not thoroughly evaluate the “black box” explanation [23]. However,
the lack of model explainability associated with black box methods is considered a sig-
nificant obstacle to clinical adoption and user confidence [24]. To identify biases and
ensure the reliability of DL applications, it is essential to explain the decision-making
processes of the models. The use of TL is specifically recommended to address the is-
sue of data scarcity and inconsistency in the medical field. TL leverages pre-trained DL
models by using source datasets and fine-tuning them for target tasks. TL has had a
positive impact on the medical field, especially in scenarios where limited data are avail-
able. Given the challenges of gathering medical imaging data, TL has become a crucial
tool in medical image analysis. The ImageNet Large Scale Visual Recognition Challenge
(ILSVRC-2012) competition dataset is widely recognised and widely used to improve the
performance of various image-processing tasks, including classification, segmentation,
and detection [25–27]. Although ImageNet has improved model performance, it is essential
to note that medical images differ significantly from the natural images represented in
ImageNet. These differences encompass various aspects, such as shape, colour, resolution,
and dimensionality.

Models pre-trained on ImageNet are limited in terms of performance enhancement
when dealing with medical images due to domain mismatch. Several authors have ex-
plained how TL using the same domain improved the performance of DL models in medical
imaging applications [16,28,29].

Alternatively, the fusion technique could be used as an effective way to merge the
features extracted by various CNN models for further enhancement. However, support-
ing the models’ results using the appropriate tools is necessary in order to trust the DL
outcome [30].

The trade-off lies in the ability of DL models to leverage large amounts of data and
learn complex patterns, whereas traditional techniques may have been more suitable for
cases with limited data availability [31].
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This paper aims to address the problem of data scarcity and the mismatch features
of TL. Furthermore, it also addresses feature generalisation in training ML classifiers.
Therefore, in this paper:

1. We propose a new TL approach to address the issue of data scarcity and the drawbacks
of previous TL methods in medical imaging applications.

2. An improved feature fusion is proposed to increase trust in the final decision.
3. We employed two pre-trained ImageNet models for experimenting with two X-ray

tasks to detect abnormalities in the humerus and wrist.
4. We applied a feature fusion strategy to train multiple ML classifiers in two different

training scenarios.
5. We achieved an accuracy of 87.85%, an F1-score of 87.63%, and a Cohen’s Kappa

coefficient of 75.69% in humerus classification. For wrist classification, our approach
achieved an accuracy of 85.58%, an F1-score of 82.70%, and a Cohen’s Kappa coefficient
of 70.46%.

6. We briefly review the most-recent DL techniques from the MURA dataset.
7. We explain how the decision was made to adopt two visualisation tools, i.e., gradient-

weighted class activation mapping (Grad-CAM) and local printable model-agnostic
explanations (LIME), to verify the robustness of the proposed method.

8. We show that the proposed TL approach and feature-fusion technique can be applied
to various medical image applications, thus expanding their utility and potential
impact, as demonstrated by adopting a computed tomography (CT) case that showed
significant improvements in the results.

2. Related Work

This section provides an overview of the latest techniques used in the field. One
such technique is the use of CNNs, which have demonstrated remarkable success in com-
puter vision tasks and have become crucial for image classification. As mentioned above,
the availability of large datasets and the time-consuming nature of training classifiers pose
significant challenges to achieving optimal training results. Various techniques have been
proposed to increase the size of the datasets, and one such strategy is active learning (AL).
AL involves iteratively selecting the most-informative samples from an unlabelled dataset
for annotation and model training. The primary goal of AL is to maximise the model’s
performance while minimising the amount of labelled data required for training. This is
particularly beneficial in scenarios where obtaining labelled data can be costly or time-
consuming. The AL process relies on initially training the model on a small labelled
dataset and then using a query strategy to determine which unlabelled samples should
be selected for labelling. The query strategy is crucial, as it selects samples based on their
potential impact on the model’s performance. There are several common query strategies
used, including uncertainty sampling, query-by-committee, and information-density-based
methods. After selecting and labelling these informative samples, the samples are incorpo-
rated into the training set to update the model using the newly labelled data. The training
process for AL is often repeated over time until the model reaches a desired performance
level or satisfies other specific criteria relevant to the desired application. This iterative
approach helps the model learn from diverse and informative examples, which gradually
improves its performance with fewer labelled samples. A key limitation of AL algorithms
is that they are based on labelling one sample at a time. This means that, after each sample
is labelled, the model needs to be retrained, which can be computationally expensive and
time-consuming [32]. Researchers have thus been working on optimising this process to
reduce the retraining burden.

For example, Wen et al. [33] conducted a study on using AL for nucleus segmentation
in pathology images in which they investigated how AL performance improves for three
different algorithm families: support vector machines (SVMs), random forest (RF), and
CNNs. By employing AL, the researchers aimed to enhance the efficiency and accuracy of
nucleus segmentation in medical imaging. Moreover, synthetic data generation is a power-
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ful technique used to address data scarcity or privacy concerns by creating additional data
artificially. In various domains, obtaining a sufficient amount of labelled data to train ML
models can be challenging. Synthetic data generation offers a solution by generating new
data points that are similar to the existing data, but are not direct replicas, thus expanding
the dataset [3]. GANs have emerged as highly successful and versatile approaches that can
find applications across various domains, including image generation, text generation, and
video synthesis. GANs possess the remarkable ability to generate high-quality, diverse, and
realistic synthetic data, making them invaluable for a wide range of tasks, including data
augmentation, data synthesis, and creative applications [34]. Adar et al. [35] demonstrated
the successful application of GANs for enhancing the classification performance for liver
lesion classification by employing data augmentation techniques. In their study, conducted
in 2018, the authors used GANs to increase the amount and diversity of training data,
specifically for liver lesion classification. The authors observed a significant improvement
in sensitivity and specificity compared to using traditional data-augmentation methods.
Specifically, the classification performance increased from 78.6% sensitivity and 88.4%
specificity (when using traditional enhancements) to 85.7% sensitivity and 92.4% specificity
(when using GAN-generated data). This improvement can be attributed to the GAN’s
ability to provide a more-diverse and -representative training dataset, allowing the classifier
to better generalise and make more-accurate predictions on real-world liver lesion data.

Furthermore, Yi et al. [36] extensively explored and discussed the application of
GAN image synthesis in various critical medical imaging domains. They highlighted
the significant impact of GANs on improving medical image generation, analysis, and
diagnostics across a range of applications. In the domain of brain magnetic resonance
imaging (MRI), GANs have proven to be particularly valuable. Calimeri et al. [37] and
Bermudez et al. [38] successfully used GAN-based image synthesis to generate realistic
brain MRI scans. This synthetic data augmentation has led to the improved training of brain
image analysis models and better performance in tasks such as segmentation and disease
classification. For lung cancer diagnostics, Chuquicusma et al. [39] demonstrated the
effectiveness of GANs in generating synthetic lung nodules and lesions. This data synthesis
enabled the development and validation of robust and accurate lung-cancer-detection
models, even when dealing with limited real-world data. High-resolution skin imaging is
another domain where GANs have shown promise. Baur et al. [40] used GANs to synthesise
high-resolution melanoma images. This approach enhanced the quality and diversity of
the dataset used for training skin-cancer-detection models, leading to improved diagnostic
accuracy and the early detection of skin cancer. While data augmentation is a powerful tool
for improving model performance, its lack of interpretability can be a concern, especially
in sensitive or critical applications. Ensuring transparency and explainability is essential
for building trust and confidence in AI models, enabling users to comprehend why certain
augmentations lead to improved performance. By incorporating human-understandable
augmentation strategies and leveraging model interpretability techniques, researchers and
practitioners can strike a balance between performance enhancement and interpretability,
thereby making AI systems more trustworthy and responsible [41].

Additionally, Tahmina et al. [42] applied data augmentation in their study to detect
humerus fractures. They used preprocessed images to increase the quality of the dataset,
and the performance of their study was 78%.

Despite the promise of data augmentation, there are challenges that must be con-
sidered. Selecting appropriate augmentation techniques and parameters requires careful
consideration. In addition, achieving the correct balance between augmenting and main-
taining the integrity of the medical data is crucial to ensuring that the synthetic examples
remain consistent with the real-world distribution of medical images. In this context, TL
and pre-training are two alternative strategies for learning the low-level properties in CNNs.
TL has proven to be an effective technique to train CNNs with limited data, thus improving
the performance of DL models. TL enables one to leverage the knowledge and features
learned from pre-existing models and apply them to new tasks or domains, thus reducing
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the need for extensive data collection and training time. By capitalising on pre-trained
models, TL enables the efficient and effective training of CNNs even with smaller datasets.
CNNs have been effectively trained using TL techniques in which the weights of pre-trained
CNNs are used to classify other target images [20]. TL can be broadly categorised into
two types: fine-tuned TL and feature extraction TL. The feature extraction TL approach
employs a well-trained CNN model that was trained on a large dataset. The convolutional
layers of the pre-trained model are frozen, whereas the fully connected layers are discarded.
The frozen convolutional layers act as fixed feature extractors, which capture meaningful
representations from the input images. These extracted features are then fed into a new
classifier, which can be implemented using new fully connected layers or a supervised ML
approach. During this type of TL, only the parameters of the new classifier are trained
using the pre-learned features of the pre-trained CNN model [43].

This approach transfers knowledge from the pre-trained CNN model, which has
learned rich representations from a large dataset, to the new medical task at hand. By using
the extracted features and training only the classifier, feature-extracting TL enables efficient
training with limited data, thus reducing the need for extensive computational resources
and training time.

In contrast, the fine-tuning TL approach involves replacing the classifier layers while
using the pre-trained CNN model that was trained on a large dataset as a base. In this
approach, the convolutional and classifier layers are fine-tuned during the training pro-
cess. The weights of the convolutional layers are initialised with the pre-trained weights
from the CNN model, while the classifier layers start with random weights. The entire
network is trained through this training process, allowing it to adapt and learn task-specific
representations [44].

The fine-tuning TL approach is beneficial when the target task requires more-specialised
knowledge and the available target dataset is more extensive. The model can learn task-
specific features and improve its performance by updating the weights of the convolutional
and classifier layers.

Both feature-extracting TL and fine-tuning TL have their advantages and are, thus,
used based on the specific requirements of the task at hand. Feature-extracting TL is
particularly useful when limited training data are available, as it leverages the pre-trained
model’s learned features. Fine-tuning TL, however, can enhance performance by allowing
the model to learn task-specific representations by updating both the convolutional and
classifier layers. For this reason, this study used the fine-tuning TL type.

Various studies applied DL models to detect abnormalities in X-ray images, such
as Ortiz et al. [45], who investigated three AI models to detect pneumonia in chest X-ray
images; the authors used the feature-extraction technique with three different ML classifiers,
and the accuracy of this study was 83.00% and with an 89% sensitivityfor radiomics,
an accuracy of 89.9% with a 93.6% sensitivity for fractal dimension, and 91.3% accuracy with
a 90.5% sensitivity for superpixel-based histon. Moreover, Canayaz et al. [46] implemented
feature fusion by combining AlexNet and VGG19 models to classify COVID-19, pneumonia,
and normal X-ray images; the authors’ approach achieved 99.38% accuracy. In addition,
Rajinikanth et al. [47] used InceptionV3, which was pre-trained, to detect pneumonia in
chest X-ray images. The authors used deep feature extraction and feature reduction with
the Firefly Algorithm and multi-class classification using five-fold cross-validation; the
results of the K-nearest neighbour (KNN) classifier demonstrated an accuracy of 85.18%.
Furthermore, Rajinikanth et al. [48] also applied one-fold and two-fold training by using
UNet lung section segmentation.

Indeed, DL models have been implemented in various studies to improve the detec-
tion of abnormalities in musculoskeletal images. Rajpurkar et al. [19] conducted a study
using a dataset called MURA, consisting of 40,005 musculoskeletal images. Their research
employed a DenseNet169 CNN architecture, as described in Huang et al. [49], whereby
each layer was linked to all other layers in a feedforward fashion, thus achieving a deep
network design. The model classified the images as abnormal if the prediction probability
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was greater than 0.5. The performance of the model was evaluated using two metrics: sen-
sitivity and specificity. The sensitivity, which measures the ability of the model to identify
true positives correctly, was 81.5%. The specificity, which measures the model’s ability to
identify true negatives correctly, was 88.7%. These metrics indicate the model’s ability to
detect normal and abnormal cases accurately. The model’s overall performance was also
assessed using the area under the receiver operator characteristic (AUROC) metric, which
considers the trade-off between sensitivity and specificity. The model achieved an AUROC
of 92.9%, indicating its solid discriminative power. When diagnosing abnormalities in
fingers and wrists, the model’s performance was roughly equivalent to that of the best
radiologists. Despite the model’s agreement with the gold standard being similar to that of
other radiologists, it was still relatively low. However, when diagnosing abnormalities in
elbows, forearms, hands, humerus, and shoulders, the model’s performance was worse
than that of the best radiologists [19].

To investigate this, Chada [50] conducted a study to evaluate the performance of three
state-of-the-art CNN architectures, namely DenseNet169, DenseNet201, and InceptionRes-
NetV2, on the MURA dataset. The researchers fine-tuned these CNN models using the
Adam optimiser with a learning rate of 0.001. The evaluation was performed separately for
humerus and finger images.

For the humerus task, the best performance was observed with the DenseNet201
model, which achieved a Cohen’s Kappa score of 76.4%. This indicated a substantial
agreement between the predictions of the model and the ground-truth labels. For the images
of fingers, however, the InceptionResNetV2 model demonstrated the best performance,
obtaining a Cohen’s Kappa score (which assesses the agreement between the model’s
predictions and the ground-truth beyond chance) of 55.5%. These results highlight the
effectiveness of these CNN architectures in detecting abnormalities in musculoskeletal
images, with performance variations depending on the specific anatomical areas. However,
the performance of finger X-rays was less promising, undoubtedly due to the limitations of
high inter-radiologist variation.

Another study focused on classifying proximal humerus fractures using the Neer
classification system [51]. The researchers used a pre-trained ResNet-152 classifier that
was fine-tuned for the specific task of classifying fractures. This approach leveraged the
pre-trained weights of the ResNet-152 model and trained the classifier layers on the target
dataset. Using this TL technique, the model accurately classified 86% of the proximal
humerus fractures according to the Neer classification system. Despite the fact that the
Neer classification is the most-regularly used technique for proximal humerus fracture
classification, the reliability of this study needs to improve. The author in [51] assessed
the diagnostic performance of CNNs with a cropped single-shoulder X-ray image, but this
might not be applicable to the relative clinical scenario.

Furthermore, Lindsey et al. [52] investigated the detection of wrist fractures, com-
paring the performance of radiologists with and without the assistance of CNN models.
The study aimed to assess how the use of CNN models affected radiologists’ diagnostic
capabilities. The results indicated a marked increase in radiological performance when
aided by CNN models, highlighting the potential of DL models as supportive tools in the
field of fracture detection. However, the study had a number of drawbacks, such as the
fact that the experiment was a review of the data performed through the web interface
that simulated an image archiving and communication system (PACS) used by medical
professionals for medical imaging. Furthermore, the accuracy of the physicians’ and the
model’s diagnoses in this study was restricted to the determination of what is visible
inside a radiograph. Finally, the diagnosed condition’s improvement or deterioration was
influenced by factors other than DL accuracy in diagnosis.

Saif et al. [53] proposed a capsule-network-based approach to classify abnormalities
in the musculoskeletal system. They conducted experiments by training their network
on images of different sizes, specifically images of 64 × 64, 128 × 128, and 224 × 224 px.
The goal was to determine the optimal image size to achieve an accurate classification,
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and the results indicated that, when using 224 × 224 px images, the network achieved
the highest training accuracy (96%) for wrist radiography images. However, it is possible
that the network’s performance in some studies was influenced by overfitting, a situation
where the model becomes excessively tailored to the training data, which leads to the poor
generalisation for unseen data.

However, in 2019, Varma et al. [54] introduced the MURA dataset, which included
a private dataset of 93,455 lower-extremity radiographs with images of the foot, ankle,
knee, and hip. This dataset was explicitly curated for abnormality detection using less-
adequate extremity radiographs. To evaluate the performance of different CNN architec-
tures, Varma et al. trained ResNet-50, DenseNet-161, and ResNet-101 on a subset of their
private dataset. Despite the structural differences between these architectures, the authors
found that performance did not vary significantly. However, the authors then proposed
a comparison explicitly focused on the DenseNet-161 architecture, which was trained on
both the ImageNet and MURA datasets, to assess the impact of TL on model performance.
This comparison aimed to investigate the effect of TL, where a CNN model is initially
pre-trained on a large-scale dataset (such as ImageNet) and then fine-tuned on a specific
task or domain (in this case, the MURA dataset). Using pre-trained weights and pre-learned
representations from the large-scale dataset, TL can potentially improve the performance
of CNN models for the target task. However, the limitation of this study comes from the
fact that it reviewed data with datasets from a single institution; thus, the performance of
the authors’ models may differ in the real world when different images are used.

Furthermore, Kandel et al. [55] conducted a study using the MURA dataset to examine
the performance of six CNN architectures, namely, VGG, Xception, ResNet, GoogLeNet,
InceptionResNet, and DenseNet, to detect bone abnormalities. They compared models
trained from scratch with pre-trained models using ImageNet and then fine-tuned them on
the MURA dataset. The study’s results highlighted that TL has the potential to enhance
model performance while reducing the susceptibility to overfitting. Among the five state-of-
the-art CNNs evaluated for the MURA dataset, the humerus datasets achieved the highest
precision (81.66%). Although the authors used the TL approach, the training-from-scratch
approach’s poor performance could have been due to the number of images in the dataset,
as well as the hyperparameter selection. The CNNs considered are distinguished by their
incorporation of a significant number of trainable parameters (such as weights), and the
number of images used to train these networks is insufficient to develop an effective model.
Hyperparameters indicate the significance of the learning rate. Although the authors
used a lower value of the learning rate in the fine-tuning technique to avoid significantly
modifying the original weights of the designs, the training-from-scratch strategy may
demand a higher value of the learning rate.

Feature fusion of DL techniques also was implemented by Bhan et al. [56] to classify
fracture or non-fracture in the MURA dataset; the five pre-trained models were DenseNet-
169, MobileNetV2 ResNet-50, ResNeXt-50 and VGG16, and then, these pre-trained models
were combined in this study. The results of the feature-fusion approach were that the
humerus achieved an 87.85% accuracy and a 75.72% Cohen’s Kappa, while the accuracy was
83.13% and a 66.25% Cohen’s Kappa for the shoulder. In the same study, the performance
of the wrist classification was 86.65% accuracy and a 72.59% Cohen’s Kappa.

This literature review focused on the significant challenge caused by the limited
availability of annotated data in the medical domain. The scarcity of annotated medical
datasets prevents the full potential and effectiveness of DL algorithms. This challenge has
motivated the main objective of this article, which was to explore strategies that can achieve
greater performance with minimal data in the field of medical DL.

3. Materials and Methods
3.1. Dataset

The dataset used in this study is called MURA. It consists of X-ray images that rep-
resent seven different skeletal bones, namely the elbow, finger, forearm, hand, humerus,
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shoulder, and wrist. Each bone category is divided into two subclasses: positive (abnormal)
and negative (standard). In total, the dataset contains 40,561 images. The dataset was
partitioned into separate training and test sets, the details of which are presented in Table 1
below [19].

Table 1. Number of images in the MURA dataset.

Class Training Testing

- Negative Positive Negative Positive

Elbow 2925 2006 234 230

Finger 3138 1968 214 247

Hand 4059 1484 271 189

Humerus 673 599 148 140

Forearm 1164 661 150 151

Shoulder 4211 4168 285 278

Wrist 5765 3987 364 295

Two main categories were created from the dataset:

1. Target dataset: As shown in Figure 1, the categories of the humerus and wrist were
specifically chosen as the target datasets for analysis and classification. These cat-
egories represent anatomical regions within the musculoskeletal system that are
particularly interesting for medical image processing.

2. Source of TL: The source of TL is an important consideration in DL applications. In the
context of TL, the source refers to the pre-trained models or datasets that are used as
a starting point for training a new model on a target dataset. The rest of the MURA
dataset was used as a source of TL, including the elbow, finger, forearm, hand and
shoulder.

3.2. Proposed TL Technique

A large dataset was used in the TL stage to leverage the knowledge gained from
this dataset and apply it to a smaller target dataset. One commonly used source for TL
is pre-trained models that were trained on the ImageNet dataset. The ImageNet dataset
comprises a vast collection of images categorised into 1000 classes, including various
natural objects, people, plants, and animals. The pre-trained models derived from the
ImageNet dataset have been widely used in multiple applications to address the challenge
of limited data availability [57]. These models have demonstrated remarkable performance
in object-detection and agriculture tasks, where the dataset encompasses diverse visual
characteristics and requires robust feature-extraction capabilities. When the target task
dataset shares relevant features with the ImageNet dataset, TL that uses pre-trained models
becomes particularly valuable. However, it is essential to note that the ImageNet dataset
consists primarily of colour images, which may not directly enhance the functionality of
grayscale medical imaging. This distinction between colour and grayscale images highlights
the need for careful consideration and customisation when applying TL techniques to
medical imaging tasks, which often involve specific imaging modalities and grayscale
representations [16].
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Figure 1. Four samples of the two tasks: the humerus and the wrist.

This work presents a new approach to TL and is called TL domain adaptation. This
approach aims to address the challenge of limited annotated data and improve the perfor-
mance of pre-trained ImageNet models in specific domains. The proposed method involves
updating the features of the pre-trained models by incorporating in-domain images (source
of TL) before fine-tuning the models on the target dataset (see Figure 2). This approach
aims to leverage the knowledge and features learned from a wide range of musculoskeletal
images to enhance the performance of the models. By incorporating various classes from
the MURA dataset, the models can capture a greater understanding of musculoskeletal
abnormalities and potentially generalise better to the target tasks of humerus and wrist ab-
normalities. One notable advantage of using the same image modality (X-ray) and having a
common goal of detecting abnormalities across the MURA dataset and the humerus/wrist
tasks is the similarities in the image characteristics and diagnostic objectives. These similar-
ities enable a more-effective transfer of knowledge and features from TL source classes to
the target humerus and wrist tasks. They also allow the models to capture relevant patterns,
structures, and consistent abnormalities in different musculoskeletal areas. This approach
improves the ability of the models to extract meaningful features and make predictions for
abnormalities of the humerus and wrist, thereby improving performance and diagnostic
precision. Figure 2 shows the workflow of the proposed method, which is as follows:

1. Step 1: Train the models on the source of TL (all MURA classes, except the tar-
get dataset).

2. Step 2: Load the pre-trained models.
3. Step 3: Replace the final layers (fully connected layer and classification layer).
4. Step 4: Train the model on the target (humerus or wrist) by freezing 70% of the layer

of the model, and then, train the rest.
5. Step 5: Predict and assess the performance of the trained model in the target’s test

images (humerus or wrist).
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6. Step 6: Deploy the results.

This proposed TL eliminates the need for a large number of annotated images specific
to the target task. This is beneficial when labelled data are scarce for the target task because
valuable time and resources are saved. This study used two pre-trained models, both
with and without the proposed TL approach. These models were chosen based on their
strong performance on the ImageNet dataset, a benchmark for various computer vision
tasks. The selection of diverse models allows for a comprehensive investigation of the
effectiveness of the proposed TL technique. Table 2 presents the key characteristics of
the selected models, including their sizes, depths, and image input sizes. By considering
models with different architectures and specifications, this study aimed to assess the impact
of TL in a variety of model configurations. This diversity allows a thorough evaluation
of the effectiveness of the proposed TL technique and its potential application in various
CNN models.

The limitation of this proposed TL is its need for a source of training, which requires
time and computational resources. However, the ImageNet (S1) models have already
been trained.

Figure 2. The proposed TL solution.
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Table 2. Selected models of pre-trained deep neural networks.

Model Input Size Parameters 106 Depth

InceptionResNetV2 299 × 299 × 3 55.9 164

Xception 299 × 299 × 3 22.9 71

3.3. Training Scenarios

Three groups were created from the dataset: training, validation, and testing. The train-
ing scenarios used in this study were calculated and conducted in the following ways (see
Figure 3):

Figure 3. The two training scenarios.

1. Scenario 1 (S1): TL from the ImageNet dataset was used to train the target dataset in
the DL models.

2. Scenario 2 (S2): ImageNet (S1) models were trained with the TL source collection
(in-domain images), and then, the models were trained on the target dataset. The
training parameters included Adam optimisation, a minibatch size of 15, a maximum
of 100 epochs, a shuffle for each epoch, and a starting learning rate of 0.001. An Intel
(R) Core i7/32 GB/1 TB/Nvidia RTX A3000 12 GB were the GPU specifications used
in the experiment. Matlab 2022a was used for the tests.

3.4. Deep Feature Fusion

The feature-fusion approach is used to improve overall performance by combining fea-
tures from different DL models. It aims to capture and combine complementary information
from multiple models to improve the representation of the features.

The first layers of each model learn basic features, such as colours, edges, and shapes,
while the last layers learn all the features of the object. Therefore, we extracted the features
from the last layers. Moreover, each DL model has its own structure and different filter
sizes to learn the features, and combining them provides a better representation of the
features. The two deep CNNs were trained and evaluated, and once trained, the models
extracted the relevant features from the input data. These extracted features were then
used to train the ML classifiers. In this process, the features extracted from both CNN
models were combined into a single feature space. ML classifiers were trained to categorise
and classify the abnormalities of the humerus or effectively classify the abnormalities
of the humerus. The combination of the features of the two models allows for a more-
comprehensive representation of the underlying patterns and characteristics present in
the data.

The combination of the features of multiple models offers several advantages in ML
classifiers. Combining the features extracted from various models makes a more-diverse
and -comprehensive set of information available for classifiers to learn from. This approach
allows ML classifiers to take advantage of the strengths and unique characteristics of each
CNN model, resulting in a more-holistic understanding of the target tasks. The combina-
tion of trained models and the pooling of their features provides the final ML classifiers
with the collective knowledge and discriminative power acquired from each model. This
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integration of features from multiple sources aims to improve the accuracy and robustness
of the classification process. By considering a wider range of characteristics and capturing
different aspects of the input data, classifiers can better capture the underlying patterns
and nuances of abnormalities of the humerus and wrist.

This study adopted various ML classifiers to use fused features. These classifiers
included linear discriminant analysis, neural networks, coarse KNN, cubic SVM, the
boosted tree, and the coarse tree. By applying multiple classifiers, each with its own
strengths and characteristics, this study explored different approaches and identified the
most-effective classifier for the given task, as shown in Figure 4.

Figure 4. The feature-fusion process.

3.5. Visualisation Techniques for Explainable Deep Learning Models

DL models are often referred to as “black boxes” due to the challenge of understanding
why a model makes specific decisions. Gaining insight into their decision-making processes
is essential to ensure confidence in DL models throughout the research and implementation
stages. The methodologies used in this study have a wide range of applications, including
model selection, debugging, learning, and bias assessment. One technique used to shed
light on the predictions made by a network trained on image data is the use of test images,
as depicted in Figure 5. These test images are used to clarify and understand the model
predictions, and they also ensure that the models focus on the relevant regions of interest
(ROIs) when making decisions. The gradient-weighted class activation mapping (Grad-
CAM) visualisation technique, as well as local interpretable model-agnostic explanations
(LIME) are interpretability techniques that explain the predictions of any ML model in an
interpretable and understandable manner. Unlike Grad-CAM, however, which focuses on
visualising important image regions, LIME can be applied to any input data type, including
text and tabular data.

These techniques take advantage of the gradient by highlighting areas of the image
that contribute significantly to the decision-making process of the model. The heat map is
generated by computing the gradients of the target class score with respect to the feature
maps in the final layer of the CNN.

Gradients involve taking partial derivatives of the loss function with respect to each
parameter in the network. By iteratively computing and applying the gradients to update
the parameters, the model learns to adjust its predictions and improve its performance on
the given task. Gradients are then globally averaged together to obtain the importance
weights for each feature map. A heat map is created by linearly combining the feature maps
with their corresponding weights, which indicate the regions of the image that strongly
influence the classification decision [58].
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The visualisation techniques such as Grad-CAM and LIME aim to address the “black
box” nature of DL models and enhance their interpretability and transparency. These
techniques provide valuable information on the features of the image that the model con-
siders crucial for decision-making. By analysing and understanding these critical regions,
researchers can gain a deeper understanding of the model’s reasoning process and validate
that the regions of influence align with the expectations. This helps to build confidence in
the prediction of the model, especially in medical-image-analysis and diagnostic tasks.

Figure 5. Workflow of visualisation techniques.
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4. Experimental Evaluation

This section focuses on the experimental assessment of the proposed TL method (S2)
to detect any abnormalities in the humerus and wrist.

4.1. Evaluation Metrics

All models were evaluated based on various training scenarios, which used a compre-
hensive set of evaluation metrics, including accuracy, specificity, recall, precision, the F1-
score, and Cohen’s Kappa. These metrics provide a comprehensive assessment of the
model’s performance and ability to classify instances accurately. The evaluation metrics
were calculated based on the values of the true negatives (TNs), true positives (TPs), false
negatives (FNs), and false positives (FPs). The TN and TP values represent the correct
classification of negative and positive examples, respectively, while the FP and FN values
represent the incorrect classification of positive and negative examples, respectively.

These evaluation metrics collectively provide a comprehensive understanding of the
performance of the model, thereby allowing an in-depth analysis of its strengths and
weaknesses. By examining these metrics, researchers can assess the model’s capability to
classify instances accurately and make informed decisions about its effectiveness in solving
the target tasks. Each evaluation metric is presented as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Recall =
∑ TP

TP+FP
num − classes

(2)

Specificity =
TN

FP + TN
(3)

Precision =
TP

TP + FP
(4)

F1 − score = 2 × Precision ∗ Recall
Precision + Recall

(5)

Cohen’s Kappa equation:

Ko =
TP + TN

TP + TN + FP + FN
(6)

Kpositive =
(TP + FP)(TP + FN)

(TP + TN + FP + FN)2 (7)

Knegative =
(FN + TN)(FP + TN)

(TP + TN + FP + FN)2 (8)

Ke = Kpositive + Knegative (9)

Cohen’s Kappa score=
Ko − Ke
1 − Ke

(10)

4.2. Experimental Evaluation of End-to-End DL Models

Two DL models were tested with the help of two training scenarios, as shown in
Tables 3 and 4.
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Table 3. The results of the DL models on the test set of the MURA dataset for the humerus task on
Xception and InceptionResNetV2.

Evaluation Metric (%) Xception

- S1 S2

Accuracy 69.10 84.72

Recall 64.29 89.29

Precision 69.77 81.17

Specificity 73.65 80.41

F1-score 66.91 85.03

Cohen’s Kappa 38.02 69.83

InceptionResNetV2

Accuracy 80.21 86.11

Recall 74.29 85.00

Precision 83.81 86.23

Specificity 85.81 87.16

F1-score 78.49 85.61

Cohen’s Kappa 60.27 72.20

Table 4. The results of the DL models on the test set of the MURA dataset for the wrist task on
Xception and InceptionResNetV2.

Evaluation Metric (%) Xception

- S1 S2

Accuracy 69.10 84.07

Recall 64.29 73.56

Precision 69.77 88.93

Specificity 73.65 92.58

F1-score 66.91 80.52

Cohen’s Kappa 38.02 68.11

InceptionResNetV2

Accuracy 80.21 82.85

Recall 74.29 67.80

Precision 83.81 91.74

Specificity 85.81 95.05

F1-score 78.49 77.97

Cohen’s Kappa 60.27 64.45

1. Humerus task: As shown in Figures 6 and 7, the confusion matrix was initially calcu-
lated for all training cases. The assessment metrics were derived from the confusion
matrix values, which provided a detailed breakdown of the model classifications.
The data demonstrated the performance of the different scenarios, with S2 achieving
the best overall results. S2 obtained an accuracy of 84.72%, and the recall, also known
as the true positive rate, was 89.29%. The precision, which measures the accuracy of
positive predictions, was 81.17%, while the specificity, which represents the true nega-
tive rate, was 80.41%. The F1-score, which balances precision and recall, was 85.03%,
providing an overall measure of the performance of the model, and Cohen’s Kappa,
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which assesses the agreement between the model predictions and the ground-truth be-
yond chance, was 69.83% with the Xception DL model. S2 with the InceptionresNetV2
model had an accuracy of 86.11%, a recall of 85.00%, a precision of 86.23%, a specificity
of 87.16%, an F1-score of 85.61%, and a Cohen’s Kappa of 72.20%. In comparison, S1
with the Xception model achieved a precision of 69.10%, indicating a lower general
accuracy of the predictions. The recall, precision, specificity, and F1-score for S1 were
64.29%, 69.77%, 73.65%, and 66.91%, respectively. Cohen’s Kappa for S1 was 38.02%.
In contrast, S1 with the InceptioiresNetV2 model achieved an accuracy of 80.21%.
Meanwhile, the recall, precision, specificity, F1-score, and Cohen’s Kappa for S1 were
74.29%, 83.81%, 85.81%, 78.49%, and 60.27%, respectively.

Figure 6. Confusion matrix of the Xception model on the test set with two different training scenarios
of the humerus task.

Figure 7. Confusion matrix of the InceptionResNetV2 model on the test set with two different training
scenarios of the humerus task.

The Grad-CAM visualisation technique was used to explain the black box nature
of the DL models for the two training scenarios. In this section, we used trained
models with the test images to calculate the confidence value for Grad-CAM, and two
examples are presented to illustrate the performance of the models. The first example
is shown in Figure 8, which includes three situations with positive samples. The heat
maps reveal the behaviour of the S1 and S2 models when identifying the test samples
and focussing on the region of interest (ROI). For S1, the misusing model, the heat map
indicates that the model identified the test sample, but concentrated on areas outside
the ROI. This suggests that S1 may not accurately capture the essential features within
the ROI. However, the proposed TL (S2) method accurately identified the sample
with a high confidence value, and the associated heat map focuses on the ROI. This
demonstrates the effectiveness of S2 in capturing the relevant information within the
ROI. The second example shown in Figure 9 presents negative samples and exhibits
the same comparison of S1 and S2. In this case, S2 successfully identifies the samples
with a high confidence value, and the heat map targets the ROI. Although it has a low
confidence value, S2 still correctly identifies the samples, indicating its robustness.
In contrast, the heat map produced by S1 reveals that it focuses on regions outside
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the ROI, which suggests that it is unable to capture important features within the
intended area. These two examples highlight how the proposed TL (S2) method
significantly improves the results compared to the misusing model. Although S1
may demonstrate accurate predictions, its low confidence level and lack of an ROI-
focused approach make it unreliable. On the contrary, S2 achieves accurate predictions
with high confidence values and effectively focuses on the ROI, thus showcasing the
enhancement provided by the proposed method (S2).

Figure 8. Grad-CAM and score Grad-CAM for the humerus X-ray images. The correct classification
is positive.
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Figure 9. Grad-CAM and score Grad-CAM for the humerus X-ray images. The correct classification
is negative.

2. Wrist task: The confusion matrix was calculated for all training cases in both models of
DL, and the results are shown in Figures 10 and 11. Using the values of the confusion
matrix, various assessment measures were derived. The results demonstrate that
S2 outperforms the other model with the Xception DL model, and S2 achieves the
highest performance. Specifically, S2 achieves an accuracy of 84.07%, a recall of 73.56%,
a precision of 88.93%, a specificity of 92.58%, an F1-score of 80.52%, and a Cohen’s
Kappa of 68.11%. In contrast, S1 achieves an accuracy of 69.10%, a recall of 64.29%,
a precision of 69.77%, a specificity of 73.65%, an F1-score of 66.91%, and a Cohen’s
Kappa of 38.02%.
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As in the InceptionresNetV2 DL model, the results demonstrate that S2 achieves an
accuracy of 82.85%, a recall of 67.80%, a precision of 91.74%, a specificity of 95.05%,
an F1-score of 77.97%, and a Cohen’s Kappa of 64.45%. S1 achieves an accuracy, recall,
and precision of 80.21%, 74.29%, and 83.81%, respectively. Meanwhile, the different
performance metrics obtain a specificity of 85.81%, an F1-score of 78.49%, and a
Cohen’s Kappa of 60.27%.
These results highlight the superior performance of S2 compared to S1. S2 shows
superior precision, recall, specificity, and F1-score, highlighting its classification ability.
The higher Cohen’s Kappa value suggests better agreement between the predicted
and true labels. On the contrary, S1 exhibits lower performance in all assessment
measures, indicating its limitations in accurately classifying data.

Figure 10. Confusion matrix of the Xception model on the test set with two different training scenarios
of the wrist task.

Figure 11. Confusion matrix of the InceptionResNetV2 model on the test set with two different
training scenarios of the wrist task.

Figure 12 illustrates how S2 confirms the proposed method (S2) for the wrist task, as
well as with Grade-CAM.
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Figure 12. Grad-CAM and score Grad-CAM for the wrist X-ray images. The correct classification
is positive.

In terms of LIME and score LIME, Figure 13 provides a comparison between S1 and
S2. For S1, the figure illustrates that the model mispredicts the test sample, where
the high-intensity area is outside the ROI. This misprediction is evident from the
LIME visualisation, highlighting the incorrect area as having maximum intensity.
The confidence level of the model in this prediction is not specified. In contrast, S2
shows a significant improvement in accuracy. The model predicts the input sample
confidently with a confidence level of 100%. The LIME visualisation confirms that
the model correctly identifies the ROI, as the maximum intensity value is assigned
to the relevant area. This example serves as a demonstration of the effectiveness of
the proposed TL (S2) method. By incorporating the proposed approach, the model
prediction is transformed from an incorrect prediction (as observed in S1) to an
accurate prediction (as demonstrated in S2). The visualisation provided by LIME
further supports this improvement by highlighting the crucial regions that contribute
to the correct prediction. In general, the comparison of S1 and S2 using LIME and
score LIME emphasises the efficacy of the proposed TL (S2) method in improving the
accuracy and reliability of the prediction of the model, particularly by ensuring that
the ROI is correctly identified and considered during the decision-making process.
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Figure 13. LIME and score LIME for the humerus and wrist X-ray images. The correct classification
is negative for the humerus and positive for the wrist.

4.3. Experimental Evaluation of Deep Feature Fusion for the Humerus Task

Several ML classifiers were trained using features extracted from two models, such as
the decision tree, linear discriminant analysis, naive Bayes, support vector machine (SVM),
coarse KNN, K-nearest neighbour, logistic regression, and neural networks.

Interestingly, the coarse KNN classifier exhibited excellent performance in both scenar-
ios. Figure 14 illustrates the confusion matrix using the cotoNN classifier for each scenario.
However, the results presented in Table 5 show that both S1 and S2 significantly improved
the results compared to the baseline. Specifically, S2 achieved an accuracy rate of 87.85%,
a recall of 88.57%, a precision of 86.71%, a specificity of 87.16%, an F1-score of 87.63%, and
a Cohen’s Kappa of 75.69%. These metrics indicate a high level of performance and reliabil-
ity for S2. On the contrary, S1, which was trained using the same coarse KNN classifier,
achieved an accuracy of 84.03%, a recall of 80.71%, a precision of 85.61%, a specificity of
87.16%, an F1-score of 83.09%, and a Cohen’s Kappa of 67.98%. Although slightly lower
than S2, these results nevertheless demonstrated the effectiveness of S1 in improving overall
performance compared to the baseline. The comparison between S1 and S2 using the coarse
KNN classifier emphasised the superior performance of the proposed method (S2). Both
scenarios significantly improved the accuracy, recall, precision, specificity, F1-score and
Cohen’s Kappa. These results highlighted the effectiveness of the proposed TL (S2) method
in enhancing the overall performance of classifiers.

In comparison with another ML classifier, Table 6 displays the result for the humerus
task with the Gaussian naive Bayes ML classifier, and Figure 15 confirms the result with
the confusion matrix.
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Figure 14. Confusion matrix of the two models and the coarse KNN classifier on the test set with two
different training scenarios of the humerus task.

Table 5. The results of feature fusion with the coarse KNN classifier on a test set of the MURA dataset
for the humerus task.

Evaluation Metric (%) Two Models and the Coarse KNN Classifier

- S1 S2

Accuracy 84.03 87.85

Recall 80.71 88.57

Precision 85.61 86.71

Specificity 87.16 87.16

F1-score 83.09 87.63

Cohen’s Kappa 67.98 75.69

Table 6. The results of feature fusion with the Gaussian naive Bayes classifier on a test set of the
MURA dataset for the humerus task.

Evaluation Metric (%) Two Models and the Gaussian Naive Bayes Classifier

- S1 S2

Accuracy 80.60 86.80

Recall 80.50 86.90

Precision 80.60 86.90

Specificity 80.50 86.90

F1-score 80.50 86.90

Cohen’s Kappa 61.05 73.64

Figure 15. Confusion matrix of the two models and Gaussian naive Bayes classifier on the test set
with two different training scenarios of the humerus task.
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4.4. Experimental Evaluation of Deep Feature Fusion for Wrist Task

The features extracted from the two models for the wrist task were used to train various
ML classifiers, including the decision trees, linear discriminants, naive Bayes, support
vector machine (SVM), coarse KNN, K-nearest neighbour, logistic regression, and neural
networks. The features were obtained from the two training scenarios, and the outcomes of
the classifiers showed a similar pattern. In particular, the coarse KNN classifier exhibited
exceptional performance in both scenarios. The confusion matrix was initially constructed
using the coarse KNN classifier for each situation, as shown in Figure 16. However,
the results presented in Table 7 reveal that both S1 and S2 significantly outperformed the
baseline in terms of improving the overall results.

Figure 16. Confusion matrix of the two models and coarse KNN classifier on the test set with two
different training scenarios of the wrist task.

Table 7. The results of feature fusion with the coarse KNN Classifier on a test set of the MURA dataset
for the wrist task.

Evaluation Metric (%) Two Models and the Coarse KNN Classifier

- S1 S2

Accuracy 81.64 85.58

Recall 76.27 76.95

Precision 81.52 89.37

Specificity 85.99 92.58

F1-score 78.81 82.70

Cohen’s Kappa 62.64 70.46

Specifically, S2 achieved an accuracy of 85.58%, a recall of 76.95%, a precision of 89.37%,
a specificity of 92.58%, an F1-score of 82.70%, and a Cohen’s Kappa of 70.46%. These metrics
indicated high precision and performance for S2 on the wrist task. In comparison, S1, which
was trained using the same coarse KNN classifier, achieved an accuracy of 81.64%, a recall
of 76.27%, a precision of 81.52%, a specificity of 85.99%, an F1-score of 78.81%, and a
Cohen’s Kappa of 62.64%. Although slightly lower than S2, these results demonstrated the
effectiveness of S1 in improving the overall performance compared to the baseline.

The comparison between S1 and S2 using the coarse KNN classifier emphasised
the superior performance of the proposed TL (S2) method. Both scenarios significantly
improved the accuracy, recall, precision, specificity, F1-score, and Cohen’s Kappa. These
results highlighted the effectiveness of the proposed approach in improving the overall
performance of ML classifiers in the wrist task.

Table 8 shows the result for the feature fusion for the wrist task with the linearSVM
ML classifier on the test MURA dataset for the wrist task, and Figure 17 confirms the result
with the confusion matrix.
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Table 8. The results of feature fusion with the linearSVM classifier on a test set of the MURA dataset
for the wrist task.

Evaluation Metric (%) Two Models and the LinearSVM Classifier

- S1 S2

Accuracy 81.20 85.00

Recall 80.40 84.20

Precision 80.40 85.50

Specificity 80.40 84.20

F1-score 81.00 84.90

Cohen’s Kappa 61.48 69.26

Figure 17. Confusion matrix of the two models and the linearSVM classifier on the test set with two
different training scenarios of the wrist task.

Tables 5 and 7 provide some key conclusions:

1. The results obtained from both the humerus and wrist tasks demonstrated that, in Sce-
nario 1 (S1), the performance was inferior compared to Scenario 2 (S2), despite the
employment of feature-fusion techniques in both cases. However, it is worth noting
that the application of feature fusion without addressing the underlying problem
of data scarcity might have weakened the fusion process due to inadequate feature
representation.

2. Significantly, it should be noted that, in Scenario 2 (S2), the fusion process exhibited
remarkable improvement once the data scarcity problem was addressed. This en-
hancement can be attributed to the use of the high-quality features extracted by the
models. The introduction of sufficient and diverse data allowed for a more-robust and
-comprehensive representation of the underlying information, resulting in improved
fusion performance.

3. By integrating features from different models or sources, feature fusion plays a crucial
role in diversifying the representation of a model, thus reducing the risk of overfitting.
This process involves incorporating diverse information, which allows the model to
learn from multiple perspectives and reduces its dependence on specific features or
patterns in the training data. Consequently, the model becomes more flexible and
capable of effectively generalising its knowledge to unseen data instances. Moreover,
feature fusion contributes significantly to the achievement of high generalisation
performance. Generalisation refers to the model’s ability to perform well on data
samples that lie beyond the training set.
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4.5. Comparison Against the State-of-the-Art Methods

Our proposed method (S2) obtained good results compared to many studies, as shown
in Tables 9 and 10.

Table 9. Comparison against the state-of-the-art methods considering the test set of the MURA
dataset for the humerus detection task.

Authors Accuracy Recall Precision Specificity F1-Score Cohen’s
Kappa

Ibrahem et al. [59] 82.08% 81.01% 80.60% 83.21% 80.80% 64.17%

Huynh et al. [60] 68.40% 64.00% 68.70% 72.20% 70.40% -

Olczak et al. [61] 83.00% - - - - -

Luong et al. [62] 84.00% - - - - -

This Study 87.85% 88.57% 86.71% 87.16% 87.63% 75.69%

Table 10. Comparison against the state-of-the-art methods considering the test set of the MURA
dataset for the wrist detection task.

Authors Accuracy Recall Precision Specificity F1 Score Cohen’s
Kappa

Ibrahem et al. [59] 82.79% 89.89% 87.38% 71.80% 88.60% 64.60%

Mall et al. [63] 62.00% 35.40% 60.50% 82.30% 44.70% -

Karam et al. [64] 74.91% 61.98% 72.11% - 66.66% -

Saadawy et al. [65] 73.42% - - - - -

Nazim et al. [66] 78.10% - - - - -

Dang et al. [67] 79.00% - - - -

This Study 85.58% 76.95% 89.37% 92.58% 82.70% 70.46%

4.6. Robustness of Our Proposal

This section demonstrates the robustness of our methodology in the following ways:

1. Improvement of results:
Figures 18 and 19 demonstrate the comparison between S1 and S2 and visually depict
the significant contrast in the prediction outcomes, highlighting the remarkable im-
provement achieved by S2 over S1. S2 successfully transformed incorrect predictions
into correct predictions and did so with a high confidence value.
The two figures provide concrete evidence of how the proposed TL (S2) method
substantially improved the performance of the model by accurately identifying the
ROI. In the visualisations, it is evident that S2 precisely identified the crucial areas
within the image that influenced the correct prediction. This focus on the ROI was
instrumental in achieving the improved accuracy and reliability in the model predic-
tions. The comparison between S1 and S2 is compelling proof of the effectiveness
of the proposed TL (S2) method. It demonstrated the significant impact that the
consideration of the ROI and the implementation of appropriate techniques can have
on enhancing prediction outcomes. The improved performance of S2, along with the
high confidence value associated with the correct predictions, highlighted the success
of the proposed TL (S2) method in improving both the accuracy and the reliability of
the model.
In particular, Grad-CAM and score Grad-CAM in Figure 18 display a negative case of
the humerus as an input image. It is obvious in the S1 of ImageNet that the model
incorrectly classified. However, the TL approach (S2) correctly classified with a
confidence of 98.00%. On the other hand, Figure 19 displays how our approach TL
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(S2) correctly classified the input images in both cases (humerus and wrist), while
ImageNet (S1) misclassified them.

Figure 18. Grad-CAM and score Grad-CAM for the humerus X-ray images. The correct classification
is negative.

Figure 19. Comparison of S1 and S2, where S1 misclassified the samples and S2 correctly classi-
fied them.

2. Changes to sensitivity:
To demonstrate the robustness of our technique (S2), S2 was tested against various
alterations. Figures 20 and 21 show how a small adjustment, such as removing the
printed letters from the red circle, can affect the performance of S1. The estimate
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was made outside of the ROI and went from being accurate to erroneous before and
after being adjusted. However, S2 demonstrated consistent performance by correctly
predicting the samples with a high prediction and correctly identifying the ROI.
Figures 20 and 21 illustrate that, despite removing the letter from both tasks (humerus
and wrist), TL (S2) was not affected by these changes. However, ImageNet (S1) was
affected by these changes and changed the classification from positive (0.86) to nega-
tive (0.99) in the humerus task when the input image was positive and from negative
(0.75) to positive (0.89) in the wrist task, despite the input image being negative.

Figure 20. The effect of certain modifications made by eliminating the letters in the red circle. Positive
is the correct classification in the humerus task.

Figure 21. The effect of certain modifications made by eliminating the letters in the red circle.
Negative is the correct classification in the wrist task.
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3. Assessment of confidence:
- S1 had a high score with high confidence and correctly recognised the sample in
Figure 22 despite not being focused on the ROI, which is interesting. Although the
confidence level was high, S1 cannot be relied upon because the Grad-CAM visualisa-
tion suggested the opposite to be true. The sample was incorrectly classified with a
high confidence value by eliminating the background.
To approve our approach of TL (S2) by removing the background in Figure 22, TL
(S2) still had more confidence with 100% accuracy with the background and without
rather than ImageNet (S1), which failed when the background was removed and
directly changed from (0.87) positive to (0.77) negative with the positive input image.

Figure 22. Comparison of S1 and S2. The right classification is positive.

- Low score: Several test samples are shown in Figure 23, where S1 and S2 successfully
identified them. S1 anticipated the samples with low confidence values, but these
samples were unreliable because the model did not guarantee them, particularly the
samples with confidence values in the 0.50 range. However, S2 displayed a high
confidence score that corresponded to the confidence expectation.
In Figure 23, we can see the obvious difference in the score of classification between
ImageNet (S1) and TL (S2); TL (S2) correctly classified with 100% confidence. Mean-
while, ImageNet (S1) correctly classified some images with a low score of confidence.

4. Better feature representation:
- Fusing two or three DL models enhances the feature representation for ML classifiers
and improves the overall performance. Figure 24 shows that one model missed the
classification and made incorrect feature selections, while the other model correctly
classified the sample. Employing the feature-fusion technique can significantly reduce
the chances of misclassification.
Figure 24 confirms the feature-fusion technique, with the positive humerus and
positive wrist that InceptionResNetV2 correctly classified in the TL (S2). However,
the same model (InceptionResNetV2) incorrectly classified them (humerus and wrist)
with ImageNet (S1).
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Figure 23. Comparison of S1 and S2, where S1 and S2 correctly predicted the samples, but had
varying confidence scores.

Figure 24. Comparison of InceptionResNetV2 and Xception. The correct classification is positive.

5. Reusability of the Proposed Solution

To approve our TL (S2) approach, we applied our proposed method (S2) to another
dataset (chest CT scan), which includes two classes (normal and squamous.cell.carcinoma-
left). First, we trained the dataset with Xception and InceptionResNetV2 from scratch
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to generate S1. Next, we used our source of X-rays without any images of new data
(chest CT scan). Table 11 demonstrates the performance for both scenarios in the two
models. Figures 25 and 26 display the confusion matrix for both DL models (Xception and
InceptionResNetV2) on a test of the chest CT scan dataset.

Table 11. The results of the DL models on the test dataset of chest CT scan on Xception and Incep-
tionResNetV2 .

Evaluation Metric (%) Xception

- S1 S2

Accuracy 96.65 99.30

Recall 95.30 99.40

Precision 97.40 99.20

Specificity 95.30 99.40

F1-score 96.30 99.30

Cohen’s Kappa 92.34 98.57

Evaluation Metric (%) InceptionResNetV2

- S1 S2

Accuracy 96.65 98.50

Recall 95.30 98.20

Precision 97.40 98.60

Specificity 95.30 98.20

F1-score 96.30 98.40

Cohen’s Kappa 92.34 96.77

Figure 25 displays that the Xception model with ImageNet (S1) misclassified (21)
images of a normal class, when with the TL (S2), only (1) of the normal class and (3) of the
squamous.cell.carcinoma-left were misclassified. Meanwhile, Figure 26 clarifies that the
InceptionResNetV2 model misclassified (21) images of the normal class in the ImageNet
(S1), and our approach with TL (S2) misclassified (7) images of the normal class and (2)
images of the squamous.cell.carcinoma-left.

Figure 25. Confusion matrix of the Xception model on the test set with two different chests CT scan
task training scenarios.

Furthermore, the Grad-CAM and LIME tools were applied to the CT scan dataset to
confirm our proposed method of TL (S2), as shown in Figure 27.

Specifically, the model in Figure 27 demonstrates that ImageNet (S1) incorrectly classi-
fied the squamous.cell.carcinoma-left as the input image. Meanwhile, our approach of TL
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(S2) confirmed the squamous.cell.carcinoma-left images with a confidence of 100% using
the Grad-CAM and LIME tools of the visualisation technique.

Figure 26. Confusion matrix of the InceptionResNetV2 model on the test set with two different chest
CT scan task training scenarios.

Figure 27. Grad-CAM in the first row and LIME in the second row for chest CT scan images.
The correct classification is squamous.cell.carcinoma-left.

6. Conclusions and Future Work

In this paper, a robust technique was introduced for identifying abnormalities in
X-ray images of the humerus and wrist. The technique addresses the challenge of domain
mismatch between coloured natural images and grayscale X-ray images by training two
pre-trained models from ImageNet (S1) on in-domain X-ray images specifically related to
the elbow, finger, forearm, hand, humerus, and wrist. These models were then fine-tuned
using a dataset specific to the tasks of the humerus and wrist.

The proposed method (S2) was compared with two other training conditions. The first
condition (S1) involved using ImageNet (S1) directly on the intended dataset without
addressing the domain mismatch. The second condition consisted of training multiple ML
classifiers using the fused features extracted from the two models obtained in each scenario.

By overcoming the domain mismatch and training the models on in-domain X-ray
images, the proposed method (S2) aimed to improve the accuracy and effectiveness of
anomaly detection in humerus and wrist X-ray images. A comparison against other training
conditions provided information on the benefits of the proposed approach (S2) in capturing
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relevant features and improving anomaly detection performance. From this research, we
concluded the following:

1. The test dataset consisted of pure MURA images without any preprocessing applied.
It is worth noting that many state-of-the-art studies use various preprocessing tech-
niques to enhance image quality and improve their results. However, our approach
outperformed these state-of-the-art methods despite not employing preprocessing
techniques on the test dataset. By demonstrating superior performance without pre-
processing, our approach highlights the effectiveness of the proposed methodology
(S2) in accurately detecting anomalies in MURA images. It suggests that our mod-
els’ robust feature extraction and classification capabilities can capture the relevant
information directly from the raw MURA dataset.

2. The results obtained from S2 demonstrate the effectiveness of the proposed TL ap-
proach (S2) in reducing the mismatch between the two domains. By training the
models on in-domain X-ray images and then fine-tuning them on the humerus and
wrist tasks datasets, the TL method effectively bridged the gap between the coloured
natural images and the grayscale X-ray images. The reduced mismatch in the domain
is reflected in the improved performance of S2 compared to S1 and other training
conditions. The models trained using S2 exhibited enhanced prediction accuracy
and demonstrated the ability to correctly identify the ROIs in the X-ray images. This
reduction in domain mismatch can be attributed to the transfer of knowledge and
features from the pre-trained ImageNet (S1) models to the specific tasks of humerus
and wrist anomaly detection.

3. For some models of ImageNet (S1), despite specific models showing comparable
or higher performance in the evaluation metrics, the visual confirmations provided
by Grad-CAM and LIME emphasised the superiority of S2 in accurately detecting
and focusing on the relevant ROI. These visualisation techniques added a layer of
confidence to the outcomes obtained by S2.

4. The proposed approach (S2) is not limited to the specific dataset used in this study; it
has the potential to be applied to a wide range of tasks and applications. The flexibility
and adaptability of the proposed TL (S2) method allow exploration and investigation
of various domains, as validated through the significant improvements observed in
the CT case.

The next step is to include most grayscale medical modalities (MRI, CT, and ultra-
sound) in the source of TL to cover most grayscale medical applications. Thus, this type of
TL will offer a better generalisation of features and will be able to be used for any grayscale
medical modalities.
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and data-efficient generalization of self-supervised machine learning for diagnostic imaging. Nat. Biomed. Eng. 2023, 7, 756–779.
[CrossRef] [PubMed]

30. Albahri, A.; Duhaim, A.M.; Fadhel, M.A.; Alnoor, A.; Baqer, N.S.; Alzubaidi, L.; Albahri, O.; Alamoodi, A.; Bai, J.; Salhi, A.; et al.
A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data
fusion. Inf. Fusion 2023, 96, 156–191. [CrossRef]

31. Alammar, Z.; Alzubaidi, L.; Zhang, J.; Santamaréa, J.; Li, Y. A concise review on deep learning for musculoskeletal X-ray images.
In Proceedings of the 2022 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Sydney,
Australia, 30 November–2 December 2022; pp. 1–8.

32. Hoi, S.C.; Jin, R.; Zhu, J.; Lyu, M.R. Batch mode active learning and its application to medical image classification. In Proceedings
of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 417–424.

33. Wen, S.; Kurc, T.M.; Hou, L.; Saltz, J.H.; Gupta, R.R.; Batiste, R.; Zhao, T.; Nguyen, V.; Samaras, D.; Zhu, W. Comparison of
different classifiers with active learning to support quality control in nucleus segmentation in pathology images. AMIA Summits
Transl. Sci. Proc. 2018, 2018, 227.

34. Zhao, A.; Balakrishnan, G.; Durand, F.; Guttag, J.V.; Dalca, A.V. Data augmentation using learned transformations for one-shot
medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long
Beach, CA, USA, 15–20 June 2019; pp. 8543–8553.

35. Frid-Adar, M.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. Synthetic data augmentation using GAN for improved
liver lesion classification. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018),
Washington, DC, USA, 4–7 April 2018; pp. 289–293.

36. Yi, X.; Walia, E.; Babyn, P. Generative adversarial network in medical imaging: A review. Med. Image Anal. 2019, 58, 101552.
[CrossRef]

37. Calimeri, F.; Marzullo, A.; Stamile, C.; Terracina, G. Biomedical data augmentation using generative adversarial neural networks.
In Proceedings of the International Conference on Artificial Neural Networks, Alghero, Italy, 11–14 September 2017; pp. 626–634.

38. Bermudez, C.; Plassard, A.J.; Davis, L.T.; Newton, A.T.; Resnick, S.M.; Landman, B.A. Learning implicit brain MRI manifolds
with deep learning. In Medical Imaging 2018: Image Processing; SPIE: Washington, DC, USA, 2018; Volume 10574, pp. 408–414.

39. Chuquicusma, M.J.; Hussein, S.; Burt, J.; Bagci, U. How to fool radiologists with generative adversarial networks? A visual turing
test for lung cancer diagnosis. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018),
Washington, DC, USA, 4–7 April 2018; pp. 240–244.

40. Baur, C.; Albarqouni, S.; Navab, N. MelanoGANs: High resolution skin lesion synthesis with GANs. arXiv 2018, arXiv:1804.04338.
41. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [CrossRef]
42. Sumi, T.A.; Basnin, N.; Hossain, M.S.; Andersson, K.; Hoassain, M.S. Classifying Humerus Fracture Using X-ray Images. In The

Fourth Industrial Revolution and Beyond: Select Proceedings of IC4IR+; Springer: Berlin/Heidelberg, Germany, 2023; pp. 527–538.
43. Cheplygina, V.; de Bruijne, M.; Pluim, J. Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in

medical image analysis. arXiv 2018, arXiv:1804.06353.
44. Kensert, A.; Harrison, P.J.; Spjuth, O. Transfer learning with deep convolutional neural networks for classifying cellular

morphological changes. SLAS Discov. Adv. Life Sci. R&D 2019, 24, 466–475. [CrossRef] [PubMed]
45. Ortiz-Toro, C.; Garcia-Pedrero, A.; Lillo-Saavedra, M.; Gonzalo-Martin, C. Automatic detection of pneumonia in chest X-ray

images using textural features. Comput. Biol. Med. 2022, 145, 105466. [CrossRef] [PubMed]
46. Canayaz, M. MH-COVIDNet: Diagnosis of COVID-19 using deep neural networks and meta-heuristic-based feature selection on

X-ray images. Biomed. Signal Process. Control 2021, 64, 102257. [CrossRef]
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