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Simple Summary: Early detection and personalized treatment for breast cancer are vital for breast
cancer patients survival. Computational pathology approaches can be employed by pathologists
and cytologists to improve the efficiency and accuracy of breast cancer diagnosis and target therapy.
With the recent development of machine learning and deep learning, there is an immense amount
of optimism that this technology will eventually be able to handle difficulties that were previously
unsolvable. Here, we developed an efficient deep learning method with a low computational cost
to assist pathologists or cytologists with the task of detecting breast cancer metastases on H&E-
stained WSIs and calculating HER2 and CEN17 signals for breast cancer anti-HER2 targeted therapy
practically while minimizing individual judgment errors.

Abstract: Breast cancer is the leading cause of cancer-related deaths among women worldwide,
and early detection and treatment has been shown to significantly reduce fatality rates from severe
illness. Moreover, determination of the human epidermal growth factor receptor-2 (HER2) gene
amplification by Fluorescence in situ hybridization (FISH) and Dual in situ hybridization (DISH) is
critical for the selection of appropriate breast cancer patients for HER2-targeted therapy. However,
visual examination of microscopy is time-consuming, subjective and poorly reproducible due to
high inter-observer variability among pathologists and cytopathologists. The lack of consistency in
identifying carcinoma-like nuclei has led to divergences in the calculation of sensitivity and specificity.
This manuscript introduces a highly efficient deep learning method with low computing cost. The
experimental results demonstrate that the proposed framework achieves high precision and recall
on three essential clinical applications, including breast cancer diagnosis and human epidermal
receptor factor 2 (HER2) amplification detection on FISH and DISH slides for HER2 target therapy.
Furthermore, the proposed method outperforms the majority of the benchmark methods in terms
of IoU by a significant margin (p < 0.001) on three essential clinical applications. Importantly, run
time analysis shows that the proposed method obtains excellent segmentation results with notably
reduced time for Artificial intelligence (AI) training (16.93%), AI inference (17.25%) and memory
usage (18.52%), making the proposed framework feasible for practical clinical usage.

Keywords: breast cancer metastases; histopathology; breast cancer target therapy; dilated soft label
deep learning

1. Introduction

In clinical pathology, pathologists manually determine the occurrence, form and sever-
ity of cancer and study the nuclear phenotype, tissue architecture and cytology among other
parameters by examining tissue slides in order to assess the cancer staging and grading [1].
In clinical practice, examining tissue slides under a microscope is difficult, tiresome and
prone to inter- and intra-observer variability [1,2]. Due to the recent developments in the
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scanning technologies that convert glass tissue slides to digital slides, digital pathology
(DP) has fundamentally revolutionized the everyday work of pathologists [2]. DP can help
in disease diagnosis by allowing for easy viewing and navigation of tissue slide images [1].
Furthermore, DP fosters cutting-edge research possibilities in image processing and com-
putation to help automate cancer detection [3]. Recent advances in the field of computer
vision and deep learning have it possible to detect sub-visual image information which
may not be easily detected by the naked human eye. When applied for pathological images,
deep learning methods extract useful characteristics from pathological images, resulting in
better diagnosis and patient outcomes. Although, our previous efforts using deep learning
have yielded promising results in applications to segmentation of cervical cancer [4], breast
cancer [5], ovarian cancer [6,7] and HER2 status evaluation in breast cancer [8], some
challenges limit its utility in practice. Firstly and most importantly, large computational
cost of deep learning is the primary barrier in deploying these models in routine clinical
practice. Secondly, when dealing with tissue or cell regions of interest, containing blurry
or unclear boundaries, the performance of deep learning model deteriorates. To deal with
the abovementioned issues, we propose an improved fully convolution network with
low computing cost as an extended work of our previous studies [4–9], with three main
improvements. Firstly, a dilated convolution is integrated into the proposed network to
enlarge receptive fields for extracting multi-scale contextual information without losing
resolution and greatly speeding up the model efficiently, hence reducing processing time
and memory usage. Secondly, the FCN-32s architecture is replaced with the FCN-2s archi-
tecture to improve image segmentation results on data with blurry and unclear boundaries.
Thirdly, we devise a soft weight softmax loss function to improve image segmentation per-
formance of the model (see Section 3.2 for further details). In this study, we demonstrated
the robustness and effectiveness of the proposed framework on three essential clinical
applications, including breast cancer diagnosis and human epidermal receptor factor 2
(HER2) amplification detection on FISH and DISH slides for HER2 target therapy. The three
clinical applications are explained as follows.

Breast cancer is the most frequent and lethal tumors in women across the world [10].
Even though the prognosis of patients with breast cancer is normally good but it worsens
dramatically when the disease metastasizes [11]. Therefore, it is crucial to determine the
presence of metastases in order to provide proper therapy and increase the chance of
survival. Tumor, node and metastasis (TNM) staging criteria is formally used to determine
the amount and spread of breast in the body of a patient. In routine clinical practice,
the pathologists manually examine the glass slide containing a H&E-stained tissue section
of the lymph node. Metastases are classified into three types depending upon the number
of individual tumor cells or the diameter of clustered tumor cells: macro-metastases, micro-
metastases or isolated tumor cells (ITC). The huge amount of tissue that must be inspected
to find metastases is challenging for manual visual inspection in assessing lymph node
status, and pathologists may overlook minor metastases.

The copy number of the HER2 gene is increased in approximately 20–30% of breast
cancer patients, and determining the level of the HER2 receptor is important in current
breast cancer diagnosis and treatment [12]. HER2-amplified tumors have an inferior
prognosis in the absence of anti-HER2 treatment, but when administered HER2-targeting
medicines such as trastuzumab, pertuzumab, and TDM-1, they are shown to significantly
improve survival [13–16]. Every patient who has an IHC equivocal positive result (2+)
must undergo FISH analysis to assess the HER2/CEN17 ratio and average HER2 copy
number per nucleus in a minimum of 20 nuclei for anti-HER2 target treatments [17].
HER2 analysis by DISH has emerged as a viable alternative to FISH and has been FDA-
approved [18]. Over the past 5+ years, DISH has replaced fluorescent methods in some
laboratories [19]. Directly evaluating HER2 amplification status is tedious, laborious,
and error-prone. Computerized clinical image diagnosis techniques are possibly the most
effective sector of healthcare applications, as they can dramatically improve pathologists
time efficiency and counting accuracy [20–22].
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In this research, we built an efficient deep learning algorithm with low computing
cost intended to assist cytologists or pathologists with the task of detecting breast cancer
metastases on H&E-stained WSIs and calculating HER2 and CEN17 signals for breast
cancer anti-HER2 targeted therapy practically. After that, we discuss related works in
Section 2. In Section 3, the materials and method are reported in details. In Section 4, we
conduct a comparison study of the proposed method with thirteen recently published deep
learning models, including FCN [23], Modified FCN [4–7,9], SL-FCN [8], U-Net [24] + In-
ceptionV4 [25], Ensemble of U-net with Inception-v4 [25], Inception-Resnet-v2 encoder [25],
and ResNet-34 encoder [26], U-Net [24], SegNet [27], BCNet [28], CPN [29], SOLOv2 [30]
and DeepLabv3+ [31] with three different backbones, including MobileNet [32], ResNet [26]
and Xception [33]. In Section 5, we further conducted run time analysis. Lastly, discussions
and conclusions are described in Sections 6 and 7.

2. Related Works
2.1. Dilated Convolution

In recent years, a fully convolutional network (FCN) and its modified versions
have been widely utilized for medical image segmentation tasks [4–7,9]. However, Mi-
naee et al. [34] demonstrate that the FCN model is computationally expensive for real-time
inference. Yu et al. [35] first introduced the concept of a dilated convolution for combining
multiple levels contextual data effectively without sacrificing resolution and showed that
for dense prediction simplifying the adapted network with dilated convolution can increase
accuracy. DeepLabv3+ [31], a popular deep learning model, is also devised with dilated
convolution in Atrous Spatial Pyramid Pooling (ASPP). To boost the model efficiency and
accuracy, we integrated a dilated (a.k.a “atrous”) convolution into the proposed method,
which accommodates an extra parameter called the dilation rate that affects the receptive
fields of a convolution filter.

2.2. Segmentation Approaches

In recent years, due to the success of deep learning models in medical image analysis,
there has been a significant amount of effort directed toward creating medical image seg-
mentation algorithms utilizing deep learning models [9,23,30,31]. U-Net is introduced by
Ronneberger et al. [24] and is commonly used for medical image segmentation. The U-Net
architecture design comprises a contracting pathway to capture information and an expand-
ing symmetrical path for accurate localization. Furthermore, a fully convolutional network
(FCN) developed by Shelhamer et al. [23] is also used for medical image segmentation.
To further improve the segmentation performance of FCN, researchers have developed
a modified FCN-32s method and demonstrated the superior performance of modified
FCN-32s in tumor segmentation of cervical cancer [4], breast cancer [5] and ovarian can-
cer [6,7]. Nishimura et al. [36] developed a weakly supervised cell instance segmentation
approach that can separate individual cell areas under diverse scenarios using just approxi-
mate cell centroid locations as training data to decrease annotation costs. Rad et al. [37]
proposed a fully convolutional deep learning models based on U-Net for trophectoderm
segmentation in human embryo images. Raza et al. [38] proposed Micro-Net which is a
fully convolutional deep learning framework for segmentation of cells, nuclei and glands
in microscopic images. In this study, we present an improved and extended DSL-FCN2s
deep learning model that achieves almost similar results as the previous effort [8] but takes
less time and memory usage for training and inference for practical clinical usage. Here, we
develop a proposed method and compare it with thirteen baseline deep learning methods,
including FCN [23], Modified FCN [4–7,9], SL-FCN [8], U-Net [24] + InceptionV4 [25],
Ensemble of U-net with Inception-v4 [25], Inception-Resnet-v2 encoder [25], and ResNet-34
encoder [26], U-Net [24], SegNet [27], YOLOv5 [39], BCNet [28], CPN [29], SOLOv2 [30]
and DeepLabv3+ [31] with three different backbones, including MobileNet [32], ResNet [26]
and Xception [33].
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3. Materials and Methods
3.1. Materials

In this study, we collected three datasets, including one gigapixel WSI dataset and
two microscopy datasets, from three institutions, including Tri-Service General Hospital,
National Defense Medical Center and National Taiwan University Hospital, Taipei, Taiwan.
The data distribution for training and testing is consistent with the associated studies [5,8,9]
to ensure a fair comparison with the benchmark methods. The detailed information of
three experimental datasets (see Table 1) is presented in the following sections.

Table 1. Detailed information of experimental datasets.

Dataset Hospital
Cancer Scanner/ Overall Size Slides
Type Imaging System Magnification (pixels) Total Training Validation Testing

H&E-stained WSI dataset [5] National Taiwan University Hospital Breast 3DHISTECH 200× 113,501 × 228,816 94 60(63.8%) 8(8.5%) 26(27.7%)
cancer Pannoramic

FISH fluorescent microscopy dataset [8]
Tri-Service General Hospital Breast

Olympus 600× 1360 × 1024 200 120(60%) 14(7%) 66(33%)National Defense Medical Center cancer

DISH light microscopy dataset [8]
Tri-Service General Hospital Breast

Olympus 600× 1360 × 1024 60 37(61.7%) 5(8.3%) 18(30%)National Defense Medical Center cancer

3.1.1. Breast Cancer Metastases WSI Dataset

The breast cancer metastases dataset [5] was acquired from The National Taiwan Uni-
versity Hospital and has been approved on 8 March 2019 by the research ethics committee
B of the National Taiwan University Hospital (NTUH-REC 201810082RINB), containing 188
H&E and IHC CK(AE1/AE3)-stained lymph slides. The breast cancer dataset consists of 94
H&E-stained slides and 94 IHC CK(AE1/AE3)-stained WSIs. Breast cancer slide specimens
containing lymphatic metastases were imaged utilizing a 3DHISTECH Pannoramic (3DHIS-
TECH Kft., Budapest, Hungary) scanner with 20× objective magnification. The average
size of the breast cancer WSI is 113,501 × 228,816 pixels. Qualified pathologists performed
all of the annotations with the use of IHC biomarkers. The entire dataset was divided into
three different subsets for training (60 slides or 63.8% from the entire dataset), validation
(8 slides or 8.5% from the entire dataset) and testing (26 slides or 27.7% from the entire
dataset).

3.1.2. FISH Fluorescent Microscopy Dataset of Invasive Breast Cancer

The tissue bank of the Department of Pathology, Tri-Service General Hospital, National
Defense Medical Center, Taipei, Taiwan, has provided the FISH fluorescent microscopy
dataset [8] with ethical approvals acquired from the research ethics committee of the Tri-
Service General Hospital (TSGHIRB No.1-107-05-171 and No.B202005070). The data was
de-identified and utilized in retrospective research without affecting patient treatment.
Digitized and de-identified slides of Dual-color FISH in breast infiltrating ductal carcinoma
patients with HER2 IHC scores 2+ equivocal positive were obtained from January 2014 to
December 2021 (a total of 200 FISH microscopy images). The FISH specimens were captured
utilizing an Olympus microscope (Olympus, Japan) with 600× overall magnification.
The average size of the FISH images is 1360 × 1024 pixels. The entire FISH dataset was
split into three separate subsets for training, validation and testing, including 124 slides for
training (60%), 14 slides for validation (7%) and 66 slides for testing (33%).

3.1.3. DISH Light Microscopy Dataset of Invasive Breast Cancer

The DISH light microscopy dataset [8] was acquired from the tissue bank of the
Department of Pathology, Tri-Service General Hospital, National Defense Medical Center,
Taipei, Taiwan, and have been approved by the research ethics committee of the Tri-Service
General Hospital (TSGHIRB No.1-107-05-171 and No.B202005070). De-identified, digitized
images of dual-color DISH in ERBB2 IHC scores 2+ equivocal cases were obtained from
January 2014 to December 2021. The DISH specimen slides were acquired by employing
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an Olympus microscope (Olympus, Japan) with 600× overall magnification. The average
dimension of the DISH slides is 1360 × 1024 pixels. The entire set of DISH images was
divided into three subsets for training (containing 37 slides, or 61.7% of the whole dataset),
validation (containing 5 slides, or 8.3% of the whole dataset), and testing (containing
18 slides, or 30% of the whole dataset).

3.2. Proposed Method: Dilated Soft Label FCN2s

In this study, we propose an improved dilated soft-label fully convolution network
with low computing cost as an extended work of our previous studies(Modified FCN) in
applications to segmentation of cervical cancer [4], breast cancer [5], ovarian cancer [6,7]
and HER2 status evaluation in breast cancer [8], with three main improvements. Firstly, to
effectively combine multi-scale contextual information without compromising resolution,
a dilated convolution is implemented into the proposed network. This is achieved by
replacing the sixth convolution layer with a dilated convolution layer to greatly speed
up the model efficiently and hence reduce processing time and memory usage. Secondly,
the FCN-32s architecture is replaced with the FCN-2s architecture to enhance image seg-
mentation outcomes on data with hazy or blurred cell borders. Thirdly, we devise a soft
weight softmax loss function to improve the segmentation performance of the model.
Figure 1 presents the overview of the proposed dilated soft-label FCN2s (DSL-FCN2s)
architecture. For histopathology images, we propose dilated FCN2s (D-FCN2s) that gener-
ate precise segmentation results with much less time and memory usage for training and
inference time.

3.2.1. Proposed Dilate Soft-Label FCN Architecture

Firstly, to deal with the issue of large training time and GPU memory usage in training,
the Modified FCN convolutional architecture is replaced with a dilation rate in the sixth
convolutional layer, which has expensive parameters. Different from conventional convo-
lution, dilated convolution has a distance (dilation rate ε) between each kernel element,
allowing it to cover a larger area for extracting multi-scale contextual information. Figure 2
shows a comparison between (a) conventional convolution, (b) dilated convolution kernels
with a dilation rate of 2 and (c) dilated convolution kernels with a dilation rate of 4.

Given the dilation rate ε = 3, the objective is to compute the kernel size of the dilation
convolution (denoted as γ) when the output kernel size γ′ has the same receptive field as
the kernel size of the original sixth convolutional layer g in Modified FCN. The specific
formula for obtaining the kernel size of the dilation convolution is formulated as:

γ =
g + ε− 1

ε
(1)

γ′ = (γ + (γ− 1)(ε− 1)) (2)

However, magnifying the receptive field with no increase in computational cost can
reduce about one-eighth of the parameters for training. For example, a γ× γ kernel with a
dilation rate of ε will have the same size as γ′ × γ′ kernel while using only γ2 parameters.

The output dimensions of the dilated convolution layer is expressed as follows:

(ζ f h, ζ f w, ζ f r) = (d
δ f h + 2Pdconv6 − γ′

ξ
+ 1e, d

δ f w + 2Pdconv6 − γ′

ξ
+ 1e, δ f c) (3)

where δ f h and δ f w are height and width of the input feature, respectively; Pdconv6 is the
padding size of the Dilated Conv6 layer; ξ is the stride size; δ f c is the number of input
channels; ζ f h, ζ f w and ζ f r are height, width and number of output channels in the dilation
convolution layer.

Secondly, to improve the medical image tumor segmentation results, FCN-32s is
replaced with FCN-2s to obtain a large number of features that would be lost by using
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FCN-32s. Although, FCN-2s have a more complex architecture than FCN-32s which will
result in more training and inference time. To deal with this issue, we have utilized the dila-
tion rate in the sixth convolutional layer. Figure 1a and Table 2 present the comprehensive
architecture of the proposed DSL-FCN2s.

Thirdly, we devise a soft-weight softmax loss function to enhance the segmentation
performance of the model. We introduce additional weights, which are typically learned
during training and help the model focus on more challenging regions or classes where
accurate segmentation is crucial.

In this study, after applying dilation and erosion operations to the label, two values,
namely Ro = {ro

b}b=1,2,...,B and Rc = {rc
b}b=1,2,...,B will be produced, the erosion area

Re = {re
b}b=1,2,...,B and the dilation area Rd = {rd

b}b=1,2,...,B are described as follows.

re
b = ra

b ∩ (∼ rc
b) (4)

rd
b = ro

b ∩ (∼ ra
b) (5)

where b denotes the number of annotations per image and ra
b is the original region in the

b-th annotation.
However, the soft label regions Rs = {rs

b}b=1,2,...,B defined as the union of erosion
areas re

b and dilation areas rd
b which can be expressed as the following Equation:

rs
b = re

b ∪ rd
b (6)

After generating the core regions of annotations Rc, cell boundary regions as Rs and
background regions, the soft weight ω(n) for each pixel at position n is modeled using the
following formulation:

ω(n) =


Π , n ∈ Rc

Ω , n ∈ Rs

φ , otherwise
(7)

where Π, Ω and φ is empirically determined (we use Π = 2, Ω = 1.5, and φ = 1 in
this study).

As shown in Equation (7), the loss weight formula is critical to guide the model’s
attention during the training process. It assigns higher importance to the core regions of
annotations, lowers the emphasis on boundary regions, and minimizes the effect of the
background on the learning process. This way, the model is encouraged to concentrate on
the most informative regions, leading to better segmentation performance.

In the training process, we employed the soft weight softmax loss function Lsws in our
proposed DSLFCN2s (see Figure 1d2). The soft weight softmax loss function is a variation
of the cross-entropy loss function, where additional soft weights ωn are introduced to
modify the standard cross-entropy formulation. The soft weight softmax loss function can
be formulated as follows:

Lsws = −
1
N

N

∑
n=1

ωn log(pnm) (8)

where N represents the total number of pixels of training data, pnm is the predicted prob-
ability of pixel n belonging to the target class m and ωn denotes the soft weight value
assigned to the pixel n.

pnm =
eznm

∑M
t=1 eznt

(9)

where M, znm and zmt represent the total number of classes, the predicted score z for pixel
n belongs to the target class m and the predicted score for pixel n belongs to the t-th class
(where t ∈ [1, M]).
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Figure 1. The overview of the proposed DSL-FCN2s architecture. (a) Modified FCN (red line) and
Dilate Soft FCN2s (blue line) network architecture. (b1) original convolution of Conv6 convolution
(b2) dilation Conv6 convolution. (c1) Hard label as the input for softmax loss function (c2) build
the soft label and then obtain the soft-weight softmax loss input (the pixel weight ωm). (d1) The
original loss function equation in the Modified FCN method, (d2) Our soft-weight softmax loss
function equation used in our proposed method. (e1) Segmentation output result of the Modified
FCN method, (e2) Segmentation output result of the proposed dilated soft label FCN2s method.

Figure 2. Visualization of conventional and dilated convolution. (a) Conventional convolution.
(b) Dilated convolution kernels with dilation rate 2. (c) Dilated convolution kernels with dilation
rate 4.
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Table 2. The comprehensive architecture of the proposed DSL-FCN2s.

Layer Features (Train) Features (Inference) Kernel Size Stride Dilation

Input 512 × 512 × 3 512 × 512 × 3 - - -
Conv1_1 710 × 710 × 64 710 × 710 × 64 3 × 3 1 -
relu1_1 710 × 710 × 64 710 × 710 × 64 - - -

Conv1_2 710 × 710 × 64 710 × 710 × 64 3 × 3 1 -
relu1_2 710 × 710 × 64 710 × 710 × 64 - - -
Pool1 355 × 355 × 64 355 × 355 × 64 2 × 2 2 -
Scale 355 × 355 × 3 355 × 355 × 3 - - -

Convolution 355 × 355 × 64 355 × 355 × 64 1 × 1 - -
Conv2_1 355 × 355 × 128 355 × 355 × 128 3 × 3 1 -
relu2_1 355 × 355 × 128 355 × 355 × 128 - - -

Conv2_2 355 × 355 × 128 355 × 355 × 128 3 × 3 1 -
relu2_2 355 × 355 × 128 355 × 355 × 128 - - -
Pool2 178 × 178 × 128 178 × 178 × 128 2 × 2 2 -
Scale 178 × 178 × 128 178 × 178 × 128 - - -

Convolution 178 × 178 × 3 178 × 178 × 3 1 × 1 - -
Conv3_1 178 × 178 × 256 178 × 178 × 256 3 × 3 1 -
relu3_1 178 × 178 × 256 178 × 178 × 256 - - -

Conv3_2 178 × 178 × 256 178 × 178 × 256 3 × 3 1 -
relu3_2 178 × 178 × 256 178 × 178 × 256 - - -

Conv3_3 178 × 178 × 256 178 × 178 × 256 3 × 3 1 -
relu3_3 178 × 178 × 256 178 × 178 × 256 - - -
Pool3 89 × 89 × 256 89 × 89 × 256 2 × 2 2 -
Scale 89 × 89 × 256 89 × 89 × 256 - - -

Convolution 89 × 89 × 3 89 × 89 × 3 1 × 1 - -
Conv4_1 89 × 89 × 512 89 × 89 × 512 3 × 3 1 -
relu4_1 89 × 89 × 512 89 × 89 × 512 - - -

Conv4_2 89 × 89 × 512 89 × 89 × 512 3 × 3 1 -
relu4_2 89 × 89 × 512 89 × 89 × 512 - - -

Conv4_3 89 × 89 × 512 89 × 89 × 512 3 × 3 1 -
relu4_3 89 × 89 × 512 89 × 89 × 512 - - -
Pool4 45 × 45 × 512 45 × 45 × 512 2 × 2 2 -
Scale 45 × 45 × 512 45 × 45 × 512 - - -

Convolution 45 × 45 × 3 45 × 45 × 3 1 × 1 - -
Conv5_1 45 × 45 × 512 45 × 45 × 512 3 × 3 1 -
relu5_1 45 × 45 × 512 45 × 45 × 512 - - -

Conv5_2 45 × 45 × 512 45 × 45 × 512 3 × 3 1 -
relu5_2 45 × 45 × 512 45 × 45 × 512 - - -

Conv5_3 45 × 45 × 512 45 × 45 × 512 3 × 3 1 -
relu5_3 45 × 45 × 512 45 × 45 × 512 - - -
Pool5 23 × 23 × 512 23 × 23 × 512 2 × 2 2 -

Dilation Conv6 17 × 17 × 4096 17 × 17 × 4096 γ′ × γ′ 1 ε
relu6 + Drop6 17 × 17 × 4096 17 × 17 × 4096 - - -

Conv7 17 × 17 × 4096 17 × 17 × 4096 1 × 1 1 -
relu7 + Drop7 17 × 17 × 4096 17 × 17 × 4096 - - -

Conv8 17 × 17 × N 17 × 17 × N 1 × 1 1 -
Deconv1 36 × 36 × N 36 × 36 × N 4 × 4 2 -

Crop1 36 × 36 × N 36 × 36 × N - - -
Eltwise 36 × 36 × N 36 × 36 × N - - -

Deconv2 74 × 74 × N 74 × 74 × N 4 × 4 2 -
Crop2 74 × 74 × N 74 × 74 × N - - -

Eltwise 74 × 74 × N 74 × 74 × N - - -
Deconv3 150 × 150 × N 150 × 150 × N 4 × 4 2 -

Crop3 150 × 150 × N 150 × 150 × N - - -
Eltwise 150 × 150 × N 150 × 150 × N - - -

Deconv4 302 × 302 × N 320 × 320 × N 4 × 4 2 -
Crop4 302 × 302 × N 302 × 302 × N - - -

Eltwise 302 × 302 × N 302 × 302 × N - - -
Deconv5 606 × 606 × N 606 × 606 × N 4 × 4 2 -

Crop5 512 × 512 × N 512 × 512 × N - - -
Soft weight softmax loss 512 × 512 × N 512 × 512 × N - - -

Output Class Map 512 × 512 × 1 512 × 512 × 1 - - -
dilation kernel size γ = 3; the dilation rate ε = 3.
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3.2.2. Model Selection

Model selection approaches for deep learning algorithms have a strong connection
to the mathematical optimization of a proper model selection parameter typically, such as
k-fold cross-validation or leave-one-out cross-validation. It is the process of selecting an
optimal model from a set of candidate models, derived by the training data. For model
selection, we take a proportion ε of the training set Utrain = {uv

train}
ϕ
v=0 as the validation

set Uval (we use ε = 1
9 in this study), which could be formulated as follows.

Uts = {uα
pos}ϑ

α=0 ∪ {u
β
neg}

η
β=0 (10)

Uval = {uα
pos}

$
α=ϑ ∪ {u

β
neg}

ϕ−$
β=η (11)

Utrain = Uts ∪Uval = Upos ∪Uneg (12)

where Uts is a subset for training from Utrain. Upos, Uneg and $ denote the positive samples
of Utrain, negative samples of Utrain and the number of the positive samples in the whole
training set Utrain, respectively. ϑ = b(1− ε)$c represents the number of the positive
samples in Uts and η = b(1− ε)(ϕ− $)c is the number of the negative samples in Uts.

Given a specified maximum number of training iterations and the number of y models
to generate. For model selection, we tune the hyper-parameters, including learning rate,
batch size, optimizer and training iteration to maximize the Dice Coefficient Qχl = {qχl}

y
l=1

with model χl on the validation set Uval and then select the best model χ∗l with the highest
Dice Coefficient q∗χl

.
q∗χl

= argmax
l

(qχl ) (13)

In summary, the hyper-parameters associated with the best model represent the
optimal hyper-parameter configuration for that specific model architecture. This approach
selects the best model and its corresponding hyper-parameter settings for the given task.

3.2.3. WSI Processing Framework

To effectively deal with the huge dimension of WSIs, individual WSI W(a, b) was

restructured as a patch-wise image data D =
{

Dl
w,ψ(i, j)

}N

l=1
∈ W(a, b), where w is the

patch column index, ψ denotes patch row index, i represents patch horizontal subindex,
j is patch vertical subindex and l denotes the image level. When l=N, α, β, i, and j were
formulated as shown in Equation (14):

w = ba/αc, ψ = bb/βc,
i = a− w× α, j = b− ψ× β

(14)

where α and β are the patch width and the patch height, respectively. The values w, ψ, i
and j are in the range {0, · · · , ζ − 1}, {0, · · · , η − 1}, {0, · · · , α − 1} and {0, · · · , β− 1},
respectively; We utilized (α, β) = (512,512) in this study.

Initially, individual WSIs wr
w,ψ(i, j) were processed by Otsu’s method at the image

level closest to the size of a unit tile (α, β). After that, each filtered tile is mapped back to the
highest magnification level to effectively remove the background patches (tiles that have
≤70% tissue foreground), dramatically reducing the computational cost per WSI. The value
of tissue foreground fraction r was calculated as follows:

r = argminl(ζ × η ≥ 1∧ card(wl) ≥ α× β) (15)
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Subsequently, each filtered tile wN
w,ψ(i, j) was processed by the proposed DSL-FCN

H to produce the tumor cells probability as demonstrated in Equation (16). The detailed
architecture of the proposed DSL-FCN is presented in Section 3.2.1.

pN
w,ψ(i, j)c = H(wN

w,ψ(i, j)) (16)

where c = {0, . . . , C} represents the number of classes corresponding to the background,
foreground, and target class, encoded in the entries c ∈ {0, 1, 2}, respectively.

A two-dimensional pixel-wise class map was generated as the index of the cell type
that had the maximum probability of the pixel described as follows.

sN
w,ψ(i, j) = argmaxc((pN

w,ψ(i, j)c)) (17)

Finally, the output segmentation results of target class T = {tN
w,ψ(i, j)} were generated

using Equation (18) based on class map sN
w,ψ(i, j). Equation (18) suppressed the foreground

information, generating the target information as the output.

tN
w,ψ(i, j) =

{
Iw,ψ(i, j) , sN

w,ψ(i, j) > 1
φ , otherwise

(18)

where φ is a null set.

3.2.4. Implementation Details

In the training process, we used VGG16 model as a baseline model and utilized the
stochastic gradient descent (SGD) optimizer. During training, the patches are selected in a
randomized manner from the training set using a batch size of one. Next, the proposed
model is optimized with a base learning rate, weight decay and momentum of 1× 10−10,
5× 10−4 and 0.99, respectively. Furthermore, the benchmark methods were developed and
trained based on the standard parameters provided in the literature.

4. Results

This section compares the proposed method with thirteen state-of-the-art benchmark
methods on the task of detecting breast cancer metastases on H&E-stained WSIs and
calculating HER2 and CEN17 signals on FISH and DISH slides for HER2 target therapy. In
addition, this section also provided statistical evaluation to compare the proposed method
with the baseline approaches based on Fisher’s Least Significant Difference (LSD) tests
utilizing SPSS software [40].

4.1. Quantitative Evaluation with Statistical Analysis in Breast Cancer Metastases Dataset

The quantitative evaluation results show that the proposed D-FCN2s achieves a preci-
sion of 87.56 ± 16.67%, recall of 88.95 ± 15.85%, dice coefficient of 86.40 ± 13.36% and IoU of
78.13 ± 19.56% while the proposed DSL-FCN2s obtains a precision of 82.37 ± 17.78%, recall
of 87.20 ± 13.90%, dice coefficient of 82.80 ± 12.23% and IoU of 72.35 ± 17.84% for segmen-
tation of breast metastases on H&E stained WSIs (see Table 3a). Even for a larger number
of patch samples from gigantic WSI, our proposed D-FCN2s and DSL-FCN2s methods
still obtain highly remarkable performance in terms of precision, recall, dice coefficient
and IoU. In comparison with the state-of-the-art deep learning methods, the proposed
D-FCN2s performs significantly better than the majority of baseline approaches (i.e., six
out of nine) in terms of IoU (p < 0.001); in terms of recall and dice coefficient, the proposed
method outperformed the six out of nine benchmark methods with statistical significance
(p < 0.01); in terms of the precision, the proposed method significantly outperformed the
five out of nine benchmark methods (p < 0.01) (see Figure 3a and Supplementary Table S1).
In addition, Figure 4 presents the qualitative segmentation results for the segmentation of
breast cancer metastases comparing the proposed D-FCN2s with the baseline approaches.
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We can see that the proposed approach produces segmentation results consistent with the
reference standard generated by expert pathologists.

Table 3. Quantitative segmentation results of the proposed method and the benchmark methods
on three breast cancer datasets, including (a) breast metastases dataset, (b) FISH breast dataset and
(c) DISH breast dataset. The top-ranked quantitative segmentation results based on dice coefficient
value are represented in bold format.

(a) Breast Metastases WSI Dataset (Histopathology)

Method Precision Recall Dice Coefficient IoU Rank Dice
Coefficient

Proposed D-FCN2s 87.56 ± 16.67 88.95 ± 15.85 86.40 ± 13.36 78.13 ± 19.56 1
Proposed DSL-FCN2s 82.37 ± 17.78 87.20 ± 13.90 82.80 ± 12.23 72.35 ± 17.84 4
SL-FCN [8] 88.83 ± 16.13 85.48 ± 15.39 85.23 ± 11.94 75.89 ± 17.25 2
Modified FCN [4–7,9] 89.17 ± 16.21 83.67 ± 16.85 84.42 ± 12.78 74.92 ± 18.83 3
DeepLabv3+ [31] with Mobilenet [32] 64.33 ± 26.22 68.25 ± 27.77 64.08 ± 24.11 50.42 ± 22.96 5
DeepLabv3+ [31] with Resnet [26] 75.33 ± 28.64 58.42 ± 29.00 62.17 ± 25.95 48.75 ± 25.11 6
DeepLabv3+ [31] with Xception [33] 61.33 ± 35.45 44.00 ± 26.12 48.00 ± 26.24 34.42 ± 21.39 8
U-Net [24] 48.58 ± 11.65 64.25 ± 2.26 56.42 ± 9.50 47.33 ± 11.48 7
SegNet [27] 54.75 ± 9.10 58.83 ± 2.82 46.25 ± 12.48 38.00 ± 12.91 9
FCN [23] 55.17 ± 6.18 50.00 ± 8.15 45.08 ± 7.89 36.33 ± 8.67 10

(b) FISH Breast Dataset

Method Accuracy Precision Recall Dice Coefficient IoU Rank Dice
Coefficient

Proposed DSL-FCN2s 95.46 ± 5.61% 89.30 ± 12.80% 94.76 ± 5.54% 91.55 ± 9.26% 85.56 ± 13.83% 1
SL-FCN [8] 93.54 ± 5.24% 91.75 ± 8.27% 83.52 ± 13.15% 86.98 ± 9.85% 78.22 ± 14.73% 2
Modified FCN [4–7,9] 93.38 ± 4.46% 91.90 ± 7.87% 82.13 ± 10.99% 86.41 ± 8.38% 76.97 ± 12.50% 3
DeepLabv3+ [31] with Mobilenet [32] 85.17 ± 5.18% 75.53 ± 6.14% 64.94 ± 9.99% 69.36 ± 7.27% 53.55 ± 8.08% 7
DeepLabv3+ [31] with Resnet [26] 85.06 ± 5.23% 69.79 ± 7.30% 76.44 ± 9.28% 72.52 ± 6.62% 57.29 ± 7.65% 5
DeepLabv3+ [31] with Xception [33] 76.83 ± 11.67% 66.35 ± 19.82% 45.27 ± 24.82% 47.55 ± 20.44% 33.73 ± 15.58% 9
CPN [29] 77.67 ± 8.38% 57.55 ± 8.46% 76.95 ± 8.03% 65.35 ± 6.72% 48.46 ± 7.37% 8
SOLOv2 [30] 88.11 ± 4.48% 79.55 ± 8.01% 75.86 ± 6.60% 77.308 ± 5.82% 62.94 ± 7.45% 4
BCNet [28] 85.98 ± 5.58% 83.27 ± 8.11% 62.36 ± 12.08% 70.55 ± 9.77% 54.80 ± 10.79% 6

(c) DISH Breast Dataset

Method Accuracy Precision Recall Dice Coefficient IoU Rank Dice
Coefficient

Proposed DSL-FCN2s 95.33 ± 1.89% 90.81 ± 6.04% 83.84 ± 7.26% 87.08 ± 6.08% 77.60 ± 9.31% 1
SL-FCN [8] 94.64 ± 2.23% 86.78 ± 8.16% 83.78 ± 6.42% 85.14 ± 6.61% 74.67 ± 10.05% 2
U-Net [24]+InceptionV4 [25] 85.41 ± 5.25% 74.65 ± 9.90% 64.46 ± 9.57% 68.94 ± 8.92% 53.35 ± 12.17% 5
Ensemble of U-Net variants ι 84.82 ± 4.38% 74.39 ± 9.56% 61.28 ± 5.82% 66.89 ± 5.85% 51.69 ± 6.96% 7
U-Net [24] 86.89 ± 4.25% 70.40 ± 10.90% 69.09 ± 7.45% 69.13 ± 6.93% 52.97 ± 7.78% 4
SegNet [27] 86.17 ± 3.92% 65.71 ± 10.84% 79.00 ± 8.46% 70.74 ± 5.68% 55.00 ± 6.59% 3
FCN [23] 83.75 ± 5.89% 72.55 ± 10.05% 45.71 ± 12.25% 54.23 ± 9.77% 37.75 ± 8.71% 14
Modified FCN [4–7,9] 89.05 ± 5.26% 82.12 ± 9.48% 59.42 ± 11.96% 68.30 ± 9.99% 52.68 ± 11.51% 6
DeepLabv3+ [31] with Mobilenet [32] 77.33 ± 8.51% 55.06 ± 9.59% 69.50 ± 16.74% 59.78 ± 10.57% 44.00 ± 12.18% 12
DeepLabv3+ [31] with Resnet [26] 80.89 ± 4.56% 59.00 ± 9.16% 73.28 ± 11.80% 64.17 ± 9.19% 48.56 ± 12.00% 9
DeepLabv3+ [31] with Xception [33] 78.72 ± 5.15% 56.00 ± 9.34% 63.61 ± 14.77% 57.89 ± 7.68% 40.67 ± 7.65% 13
CPN [29] 83.61 ± 5.23% 67.39 ± 8.02% 67.22 ± 13.21% 66.33 ± 10.09% 50.33 ± 10.06% 8
SOLOv2 [30] 84.78 ± 6.47% 79.11 ± 10.24% 52.44 ± 7.21% 62.22 ± 5.35% 45.34 ± 5.45% 11
BCNet [28] 83.72 ± 5.74% 73.61 ± 11.42% 57.06 ± 7.18% 63.50 ± 6.40% 48.50 ± 10.85% 10

ι An ensemble hybrid model consisting of U-Net with Inception-v4 [25], U-Net with Inception-ResNet-v2
encoder [25] and, (c) U-Net with ResNet-34 encoder [26].
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Figure 3. Boxplots of segmentation performance three breast cancer datasets, including (a) breast
cancer metastases dataset, (b) FISH breast dataset and (c) DISH breast dataset, using the proposed
method and the state-of-the-art deep learning methods.
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Figure 4. Qualitative segmentation results of the proposed DSL-FCN2s and the state-of-the-art deep
learning models for segmentation of breast cancer metastases in H&E-stained WSIs.

4.2. Quantitative Evaluation with Statistical Analysis in FISH Breast Dataset

The quantitative evaluation results show that the proposed DSL-FCN2s achieves an
accuracy of 95.46 ± 5.61%, precision of 89.30 ± 12.80%, recall of 94.76 ± 5.54%, dice coeffi-
cient of 91.55 ± 9.26% and IoU of 85.56 ± 13.83% for segmentation of HER2 amplification in
FISH dataset (see Table 3b). In comparison with the state-of-the-art deep learning methods,
the proposed DSL-FCN2s performs significantly better than all the benchmark methods
in terms of recall and IoU with statistical significance (p < 0.001); in terms of dice coeffi-
cient, the proposed method is significantly better than the seven out of eight benchmark
methods (p < 0.01); in terms of the accuracy, the proposed method outperformed six out of
eight baseline methods with statistical significance (p < 0.001); in terms of the precision,
the proposed method outperformed the six out of eight benchmark methods with statistical
significance (p ≤ 0.001) (see Figure 3b and Supplementary Table S2). Figure 5a presents
the qualitative segmentation results for segmentation of HER2 overexpression comparing
the proposed DSL-FCN2s with the baseline approaches. It can be shown that the proposed
method generates segmentation results that are appropriate with the reference standard
determined by competent pathologists.

4.3. Quantitative Evaluation with Statistical Analysis in DISH Breast Dataset

The quantitative evaluation results show that the proposed DSL-FCN2s achieves an
accuracy of 95.33 ± 1.89%, precision of 90.81 ± 6.04%, recall of 83.84 ± 7.26%, dice coefficient
of 87.08 ± 6.08% and IoU of 77.60 ± 9.31% for segmentation of HER2 amplification in DISH
dataset (see Table 3c). For DISH dataset, in terms of the accuracy, precision, dice coefficient
and IoU, the proposed method is shown to be significantly better than 12 out of 13 state-of-
the-art deep learning models (p < 0.001); for the recall, the proposed method outperformed
the 11 out of 13 benchmark baselines with statistical significance (p < 0.05). (see Figure 3c
and Supplementary Table S3). Figure 5b presents the qualitative segmentation results
for segmentation of HER2 overexpression comparing the proposed DSL-FCN2s with the
baseline approaches. Based on the segmentation results, the proposed method is shown to
be identical with the reference standard produced by experienced pathologists.
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Figure 5. Qualitative segmentation results of the proposed DSL-FCN2s method and the bench-
mark approaches for segmentation of HER2 amplification in (a) DISH breast dataset and (b) FISH
breast dataset. The red boxes indicate the zoomed-in part of the FISH and DISH original images; the
yellow and blue boxes represent the prediction results of the proposed method in DISH and FISH
datasets, respectively.
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5. Run Time Analysis and Ablation Study

In this section, we conduct two experiments to further compare the effectiveness
and the efficiency of the baseline modified FCN model [4–7,9], the proposed DSL-FCN
model using FISH breast cancer dataset with image resolution 1360×1024. For the first
experiment, in the evaluation of the effectiveness, the results show that the proposed DSL-
FCN2s consistently achieve the best performance in accuracy, precision, recall, and Dice
Coefficient as shown in Table 4. To further investigate the contributions made by the
proposed method in computational efficiency, we examine the run time analysis, including
training time, memory usage and inference time, the number of parameters used in a single
layer and the total number of parameters used for each model.

For the FISH and DISH datasets, the proposed method and the baseline methods
are trained and tested on an NVIDIA GeForce GTX 1080 Ti GPU with 32 GB memory,
respectively. As shown in Table 5, the results show that the computing cost in the training
time, memory usage (1 MiB = 1.048576 MB), inference time, conv6 parameter, and total
parameters of the proposed method are greatly reduced by 16.93%, 18.52%, 17.25%, 81.60%,
and 62.48%, respectively.

Overall, our proposed method has demonstrated higher effectiveness and better effi-
ciency with the improvement of considerably reducing training and inference time, memory
usage and the number of parameters used in the FISH and DISH datasets applications.

Table 4. Quantitative results for the ablation study. Quantitative results for the ablation study when
using different network structure with FISH breast dataset. The top-ranked quantitative segmentation
result based on dice coefficient rank is represented in bold format.

FISH Breast Dataset

Method Accuracy Precision Recall Dice Coefficient IoU Rank Dice
Coefficient

Proposed DSL-FCN2s 95.46 ± 5.61% 89.30 ± 12.80% 94.76 ± 5.54% 91.55 ± 9.26% 85.56 ± 13.83% 1
Propoesd DSL-FCN2s w/o model selection 93.67 ± 4.92% 91.89 ± 7.53% 83.32 ± 11.19% 87.13 ± 8.83% 78.20 ± 13.15% 2
SL-FCN [8] 93.54 ± 5.24% 91.75 ± 8.27% 83.52 ± 13.15% 86.98 ± 9.85% 78.22 ± 14.73% 3
Modified FCN + Dilated convolution + soft label weight loss 89.98 ± 8.04% 92.70 ± 6.71% 69.09 ± 20.63% 77.49 ± 17.09% 66.00 ± 20.26% 6
Modified FCN + Dilated convolution 92.93 ± 5.05% 91.59 ± 7.93% 80.57 ± 14.18% 85.14 ± 10.67% 75.46 ± 14.68% 5
Modified FCN [4–7,9] 93.38 ± 4.46% 91.90 ± 7.87% 82.13 ± 10.99% 86.41 ± 8.38% 76.97 ± 12.50% 4

Table 5. Run time analysis for computational efficiency. Runtime analysis for the ablation study
when using different network structure with FISH breast dataset.

FISH Breast Dataset

Method Training Time Memory Usage Inference Time Conv6 Parameter Total Parameter

Proposed DSL−FCN2s 4 h 15 min(−16.93%) 2846 MiB(− 18.52%) 0.489 s(−17.25%) 18,878,464(−81.6%) 50.39 M(−62.48%)
Proposed DSL−FCN2s w/o model selection 4 h 9 min(−18.89%) 2846 MiB(−18.52%) 0.495 s(−16.24%) 18,878,464(−81.6%) 50.39 M(−62.48%)
SL−FCN [8] 5 h 10 min(+0.97%) 3493 MiB 0.563 s(−4.73%) 102,764,544 134.31 M
Modified FCN + Dilated convolution + soft label weight loss 4 h 9 min(−18.89%) 2535 MiB(−27.42%) 0.505 s(−14.55%) 18,878,464(−81.6%) 50.42 M(−62.45%)
Modified FCN + Dilated convolution 4 h 7 min(−19.54%) 2535 MiB(−27.42%) 0.515 s(−12.85%) 18,878,464(−81.6%) 50.42 M(−62.45%)
Modified FCN Ψ [4–7,9] 5 h 7 min 3493 MiB 0.591 s 102,764,544 134.31 M

Ψ Modified FCN is the baseline for the runtime analysis.

6. Discussion

The application of computerized image processing in pathology could rapidly and
precisely determine and quantify particular cell types, as well as quantitatively assess
histological characteristics and morphological abnormalities [22]. Quantitative image
assessment methods also allow for the data collecting from slide specimens that would
otherwise be inaccessible during the routine microscopic inspection [41]. In this study, we
developed an efficient deep learning algorithm with low computing cost intended to assist
cytologists or pathologists in three essential clinical applications, including breast cancer
diagnosis and detection of HER2 amplification on FISH and DISH slides for HER2 target
therapy. Adequate diagnosis of breast cancer metastases and HER2 status is necessary for
determining the appropriate treatment strategy. Anti-HER2 therapy has been demonstrated
to be an effective strategy for the treatment of HER2-positive breast cancer [42]. HER2
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overexpression has also been associated with ovary, endometrium, fallopian tube, gastric
and prostate cancers [43–45]. Anti-HER2 therapies are now part of the care standard for
HER2-amplified gastric cancer [46,47]. HER2 may also be a potential therapeutic target
for quiescent prostate cancer [48]. Despite the fact that HER2 status in cancers of the
female reproductive system has been explored for more than 20 years, the determination of
HER2 gene status has not been widely recognized as a prognostic biomarker for response
to anti-HER2 treatment in gynecologic cancers, unlike in the breast and the digestive
system [49].

Artificial intelligence (AI) has recently shown significant benefits in medical image
analysis considering of the rapid growth of deep learning methods, decreased testing
turnaround along with the development of accurate and highly reproducible tissue-derived
readouts lowering inter-pathologist variation [50–53]. In recent years, the advent of deep
learning has emerged as a promising solution for the automatic analysis of medical images
to improve diagnosis and precision oncology [20]. Thus, precise HER2 status determination
is crucial for guiding therapy solutions. The HER2/CEN17 ratio and the average number
of HER2 copies per nucleus (at least 20 nuclei) serve as the primary determinants of
positive and negative amplification status. However, visual counting alone is easily prone
to errors and difficult to reproduce in existing algorithms. Automated medical image
diagnostic methods are arguably the most successful field in medical applications, which
can greatly improve the time efficiency for the pathologist’s analysis and the accuracy of
counting in a large number of clinical samples [20–22]. Therefore, an automated diagnostic
method based on AI has the potential to overcome the limitations of manual assessment
procedures [54–57]. Deep learning takes less than one second to analyze FISH or DISH
images, the time for automatic report generation is significantly shorter than manual visual
assessment. The main problem of this study is the difficulty in predicting the HER2 gene
amplification status in part of FISH or DISH images of relatively low quality characterized
by weak signals or overlapping nuclei with masking some signals. To overcome these
limitations, we would need to improve the image resolution quality and increase the
number of pathologists that provide annotations. The application of deep learning may
provide a new method of FISH or DISH image and warrant further validation in a larger
population-based study for practical use in clinical specimens in future work. In this study,
we develop a highly efficient fully convolution network with low computing cost to aid in
breast cancer target therapy and breast cancer diagnosis.

7. Conclusions

The experimental results demonstrate that the proposed DSL-FCN2s achieves a preci-
sion of 87.56%, recall of 88.95% and Dice Coefficient of 86.40% for segmentation of breast
cancer metastases on H&E-stained WSIs. For FISH and DISH datasets, the proposed DSL-
FCN2s achieves an accuracy of 95.46%, precision of 89.30%, recall of 94.76% and Dice
Coefficient of 91.55% and accuracy of 95.33%, precision of 90.81%, recall of 83.84% and
Dice Coefficient of 87.08% for segmentation of HER2 amplification on FISH and DISH
breast datasets, respectively. We recommend using D-FCN2s for histopathology images
and DSL-FCN2s for cytology, FISH and DISH images as DSL-FCN2s generates precise
segmentation results on datasets containing cells with unclear boundaries. The proposed
fully convolution network proves to be more objective, accurate, and independent than
the present manual interpretation results for the detection of breast cancer metastases
and anti-HER2 target therapy. Furthermore, in statistical analysis, the proposed method
outperforms the majority of the benchmark methods in terms of IoU by a significant margin
(p < 0.001) on three different clinical applications. Importantly, run time analysis shows
that the proposed method obtains excellent segmentation results with notably reduced time
for AI training (16.93%), AI inference (17.25%) and memory usage (18.52%), making the
proposed framework feasible for practical clinical usage. The ablation study and run time
analysis demonstrate that the proposed method not only produces precise segmentation re-
sults but also takes less time and memory usage for training and inference time. In addition,
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the proposed deep learning-based approach that eradicates human error-related misclassi-
fications alongside cuts down AI inference time, improving accuracy and reproducibility,
which can be further validated in larger population-based research to help clinicians in
the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15153991/s1, Table S1: Multiple comparisons for segmen-
tation of breast cancer metastases on WSIs; Table S2: HER2 amplification on FISH breast dataset;
Table S3: DISH breast dataset.

Author Contributions: C.-W.W. and T.-K.C. conceived the idea of this work. C.-W.W. designed the
methodology and the software tool of this work. K.-L.C. and H.M. carried out the validation of
the methodology of this work. C.-W.W., K.-L.C. and H.M. performed the formal analysis of this
work. C.-W.W., K.-L.C. and H.M. performed the investigation. Y.-J.L. and T.-K.C. participated in the
curation of the dataset. C.-W.W. and T.-K.C. prepared and wrote the manuscript. C.-W.W. reviewed
and revised the manuscript. K.-L.C. and H.M. prepared the visualization of the manuscript. C.-W.W.
supervised this work. C.-W.W. and T.-K.C. administered this work. C.-W.W. and T.-K.C. acquired
funding for this work. All authors reviewed the manuscript before submission. All authors have read
and agreed to the published version of the manuscript.

Funding: This research study is supported by the national science and technology council, Taiwan
(112-2221-E-011-052), Tri-Service General Hospital, Taipei, Taiwan (TSGH-D-109094, TSGH-D-110036,
TSGH-A-111010 and TSGH-A-112008), National Taiwan University of Science and Technology—Tri-
Service General Hospital (NTUST-TSGH-112-02), and Ministry of Science and Technology, Taiwan
(MOST 111-2320-B-016-009).

Institutional Review Board Statement: Ethical approvals have been obtained from the research
ethics committee B of the National Taiwan University Hospital (NTUH-REC 201810082RINB) on 8
March 2019 and the research ethics committee of the Tri-Service General Hospital (TSGHIRB No.1-
107-05-171) on 21 December 2022 and (TSGHIRB No.B202005070) on 30 June 2020. The medical data
were de-identified and used for a retrospective study without impacting patient care.

Informed Consent Statement: Patient consent was formally waived by the approving review board,
and the data were deidentified and used for a retrospective study without impacting patient care.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationship that could have appeared to influence the work reported in this paper.

References
1. Pati, P.; Foncubierta-Rodríguez, A.; Goksel, O.; Gabrani, M. Reducing annotation effort in digital pathology: A Co-Representation

learning framework for classification tasks. Med. Image Anal. 2021, 67, 101859. [CrossRef]
2. Mormont, R.; Geurts, P.; Marée, R. Multi-task pre-training of deep neural networks for digital pathology. IEEE J. Biomed. Health

Inform. 2020, 25, 412–421. [CrossRef] [PubMed]
3. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I.

A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef] [PubMed]
4. Wang, C.W.; Liou, Y.A.; Lin, Y.J.; Chang, C.C.; Chu, P.H.; Lee, Y.C.; Wang, C.H.; Chao, T.K. Artificial intelligence-assisted fast

screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning.
Sci. Rep. 2021, 11, 16244. [CrossRef] [PubMed]

5. Khalil, M.A.; Lee, Y.C.; Lien, H.C.; Jeng, Y.M.; Wang, C.W. Fast Segmentation of Metastatic Foci in H&E Whole-Slide Images for
Breast Cancer Diagnosis. Diagnostics 2022, 12, 990. [PubMed]

6. Wang, C.W.; Lee, Y.C.; Chang, C.C.; Lin, Y.J.; Liou, Y.A.; Hsu, P.C.; Chang, C.C.; Sai, A.K.O.; Wang, C.H.; Chao, T.K. A Weakly
Supervised Deep Learning Method for Guiding Ovarian Cancer Treatment and Identifying an Effective Biomarker. Cancers 2022,
14, 1651. [CrossRef]

7. Wang, C.W.; Chang, C.C.; Lee, Y.C.; Lin, Y.J.; Lo, S.C.; Hsu, P.C.; Liou, Y.A.; Wang, C.H.; Chao, T.K. Weakly supervised deep
learning for prediction of treatment effectiveness on ovarian cancer from histopathology images. Comput. Med. Imaging Graph.
2022, 99, 102093. . [CrossRef]

8. Wang, C.W.; Lin, K.Y.; Lin, Y.J.; Khalil, M.A.; Chu, K.L.; Chao, T.K. A Soft Label Deep Learning to Assist Breast Cancer Target
Therapy and Thyroid Cancer Diagnosis. Cancers 2022, 14, 5312. [CrossRef]

https://www.mdpi.com/article/10.3390/cancers15153991/s1
https://www.mdpi.com/article/10.3390/cancers15153991/s1
http://doi.org/10.1016/j.media.2020.101859
http://dx.doi.org/10.1109/JBHI.2020.2992878
http://www.ncbi.nlm.nih.gov/pubmed/32386169
http://dx.doi.org/10.1016/j.media.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28778026
http://dx.doi.org/10.1038/s41598-021-95545-y
http://www.ncbi.nlm.nih.gov/pubmed/34376717
http://www.ncbi.nlm.nih.gov/pubmed/35454038
http://dx.doi.org/10.3390/cancers14071651
http://dx.doi.org/10.1016/j.compmedimag.2022.102093
http://dx.doi.org/10.3390/cancers14215312


Cancers 2023, 15, 3991 18 of 19

9. Lin, Y.J.; Chao, T.K.; Khalil, M.A.; Lee, Y.C.; Hong, D.Z.; Wu, J.J.; Wang, C.W. Deep Learning Fast Screening Approach on
Cytological Whole Slides for Thyroid Cancer Diagnosis. Cancers 2021, 13, 3891. [CrossRef]

10. Lu, W.; Toss, M.; Dawood, M.; Rakha, E.; Rajpoot, N.; Minhas, F. Slidegraph+: Whole slide image level graphs to predict her2
status in breast cancer. Med. Image Anal. 2022, 80, 102486. [CrossRef]

11. Wang, Q.; Qiao, K.; Qin, R.; Hai, J.; Yan, B. Predictive model of breast cancer lymph node metastasis based on deep learning
(E-Transformer). In Proceedings of the 2021 6th International Symposium on Computer and Information Processing Technology
(ISCIPT), Changsha, China, 11–13 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 168–173.
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