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Simple Summary: Lung cancer is one of the most common and deadly malignancies worldwide.
Microscopic examination of histological and cytological lung specimens can be a challenging and
time-consuming process. Most of the time, accurate diagnosis and classification require histochemical
and specific immunohistochemical staining. Currently, Artificial Intelligence-based methods show
remarkable advances and potential in Pathology and can guide lung cancer diagnosis, subtyping,
prognosis prediction, mutational status characterization, and PD-L1 expression estimation, perform-
ing with high accuracy rates. This systematic review aims to provide an overview of the current
advances in Deep Learning-based methods on lung cancer by using histological and cytological
images.

Abstract: Lung cancer is one of the deadliest cancers worldwide, with a high incidence rate, especially
in tobacco smokers. Lung cancer accurate diagnosis is based on distinct histological patterns com-
bined with molecular data for personalized treatment. Precise lung cancer classification from a single
H&E slide can be challenging for a pathologist, requiring most of the time additional histochemical
and special immunohistochemical stains for the final pathology report. According to WHO, small
biopsy and cytology specimens are the available materials for about 70% of lung cancer patients
with advanced-stage unresectable disease. Thus, the limited available diagnostic material necessi-
tates its optimal management and processing for the completion of diagnosis and predictive testing
according to the published guidelines. During the new era of Digital Pathology, Deep Learning
offers the potential for lung cancer interpretation to assist pathologists’ routine practice. Herein,
we systematically review the current Artificial Intelligence-based approaches using histological and
cytological images of lung cancer. Most of the published literature centered on the distinction between
lung adenocarcinoma, lung squamous cell carcinoma, and small cell lung carcinoma, reflecting the
realistic pathologist’s routine. Furthermore, several studies developed algorithms for lung adenocar-
cinoma predominant architectural pattern determination, prognosis prediction, mutational status
characterization, and PD-L1 expression status estimation.

Keywords: lung cancer; histopathology; histology; cytology; PD-L1; Digital Pathology; artificial
intelligence; deep learning; convolutional neural networks; CNN
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1. Introduction

Lung cancer is one of the most prevalent cancers worldwide, characterized by a high
mortality rate, reaching up to 18% of total cancer-related deaths, with cigarette smoking
being the leading cause [1]. Lung cancer is a heterogeneous disease, mainly classified
as non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC) [2].
NSCLC constitutes the majority of lung cancer cases (85%) and is further classified into
adenocarcinoma (ADC), squamous cell carcinoma (SCC), and large cell carcinoma (LCC),
while the remaining 15% accounts for SCLC, which is characterized by neuroendocrine
differentiation.

In the era of personalized medicine, lung cancer diagnosis and accurate classification
strongly rely on cytological and histological subtyping by microscopic evaluation with
standard histochemical stains and ancillary immunohistochemical staining [3]. Molecular
testing is also necessary for personalized therapeutic targeting and monitoring for patients’
stratification to targeted therapy and immunotherapy [4,5]. According to published guide-
lines by the College of American Pathologists, the International Association for the Study
of Lung Cancer, and the Association for Molecular Pathology, patients with advanced lung
cancer with an ADC component should be tested for epidermal growth factor receptor
(EGFR) mutations, anaplastic lymphoma kinase (ALK) and ROSproto oncogene 1 (ROS-1)
rearrangements, v-Raf murine sarcoma viral oncogene homolog B (BRAF) Val600Glu
(BRAFV600E), Ret Proto-Oncogene (RET) rearrangements, mesenchymal-epithelial tran-
sition (MET) exon 14 skipping mutations, Kirsten rat sarcoma (KRAS) mutations, and
neurotrophic tyrosine kinase receptor fusions (NTRK1-3) [2,6]. Advanced-stage non-
neuroendocrine carcinomas should be tested for programmed cell death ligand 1 (PD-L1)
expression status as patients with a PD-L1 Tumor Proportion Score (TPS) ≥ 50% are eligible
for first-line treatment with the anti-PD-L1 therapy, pembrolizumab. Immunohistochemical
assays are available for PD-L1 and ALK expression status detection [7–10]. Currently, reflex-
ordered testing for lung cancer is gaining ground, underlining the necessity of collaboration
between pathologists and oncologists. Although reflex testing is not feasible to perform in
many laboratories, it can provide additional valuable information, detect rare molecular
alterations, and minimize testing turnaround time [3,11].

In the last decade, Deep learning (DL) approaches, including mostly Convolutional
Neural Networks (CNNs), are increasingly valuable in Pathology. Limitations concerning
the shortage of pathologists worldwide, subjectivity in diagnosis, and intra- and inter-
observer variability could be overcome with the aid of DL models. Recent advances in
lung cancer pathology leverage image analysis potential for cancer diagnosis from hema-
toxylin and eosin (H&E) whole slide images (WSIs) [12,13]. Considering that small biopsy
and cytology specimens are the available material for 70% of lung cancer patients with
advanced unresectable disease, DL methods could guide the diagnosis with high accuracy,
minimizing the need for additional special stains required for differential diagnosis and
preserving the already limited material for molecular testing [2,14,15].

In this review, we systematically outline the current implications of DL algorithms for
lung cancer diagnosis, prognosis, and prediction using both histological and cytological
images. We further summarized the extracted data into distinct categories based on the
classification problem, presenting for each study the dataset details, the employed technical
method and methodology, as well as the performance metrics. The different categories
have been structured to be informative for both pathologists and cytologists, can provide
a detailed analysis and a comprehensive guide of the existing DL applications for lung
cancer, and offer valuable information to researchers for further study.

2. Materials and Methods

The systematic review followed the recommendations of the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) [16]. The protocol has not
been registered.
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2.1. Search Strategy

We systematically searched PubMed from inception to 31 March 2023 for primary
studies developing a DL model for the histopathological or cytopathological interpretation
of malignant lesions in lung specimens. For this purpose, we used the following algorithm:
(convolutional neural network* OR CNN OR deep learning) AND lung AND (cancer
OR neoplas* OR carcinoma OR adenocarcinoma OR malign* OR tumor*) AND (histolog*
OR histopatholog* OR eosin OR slide* OR section* OR immunohistochem* OR biop* OR
microscop* OR cytolog* OR cytopatholog* OR immunocytochem*).

2.2. Study Eligibility Criteria

Eligible articles were considered on the basis of the following criteria. We included
studies, the aim of which was to develop at least one DL model for the histopathological or
cytopathological assessment of malignant lesions in lung specimens. Eligible applications
of the DL models included diagnosis, subtyping, prognosis evaluation, characterization
of mutational status, and prediction of PD-L1 expression. Articles that presented in vitro
models or used non-histological/cytological data as well as reviews/meta-analyses, edi-
torials, letters, and invited opinions, were excluded. In addition, articles not available in
English and those referring to organisms other than humans were deemed ineligible.

2.3. Study Selection

All citations collected by the previously mentioned methodology were independently
screened by four authors, who were properly trained before the process started, using
the Rayyan web application [17]. Three of these researchers were scientifically capable of
evaluating the medical aspect of the query, and one of them was a CNN expert, able to
assess the technical part. During the screening period, the researchers met regularly to
discuss disagreements and continue training. Conflicts were resolved by consensus. The
full texts of potentially eligible articles were later retrieved for further evaluation.

2.4. Data Extraction

To facilitate the data extraction process, we specially designed a spreadsheet form,
which all researchers could access to import data from all the eligible articles. From each
paper, we manually extracted information regarding the first author, year of publication,
aim of medical research, technical method, classification details, dataset, and performance
metrics.

3. Results

Our systematic search returned 357 articles, 127 of which were selected for full-text
assessment. Ultimately, 96 articles met our criteria of eligibility and were included in our
study. A detailed description of the study selection process can be found in the PRISMA
flow diagram presented in Figure 1.

At first, the included studies were divided, based on the used dataset, into histology
and cytology sections. Further categorization of the histology section into diagnosis,
lung cancer classification, NSCLC subtyping, ADC predominant architectural patterns
classification, prediction of prognosis and survival, and prediction of molecular alterations
subsections was made based on the classification problem. Studies performing DL for the
PD-L1 expression status estimation were summarized in a particular section.
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included achieving high-performance rates with an accuracy of over 97%. Jiao et al. pro-
posed a rapid and efficient method for tumor classification called Deep Embedding-based 
Logistic Regression (DELR) [19]. DELR was applied in three different datasets (colorectal, 
lung, and breast cancer) and achieved an area under the curve (AUC) of over 0.95 for all 
three datasets. In lung cancer, the dataset consisted of 338 regions of interest (ROIs), in-
cluding ADC and SCC images. Moreover, Kanavati et al. trained a CNN to distinguish 
lung carcinoma from non-neoplastic tissue based on the EfficientNet-B3 architecture [20]. 
After training, the CNN was tested on four independent datasets and attained an AUC of 
more than 0.97, demonstrating its feasibility of generalization. Multiple Instance Learning 
(MIL) was employed for the same classification task without the need for manual annota-
tions by pathologists [21]. A multi-organ classification using weakly supervised learning 
was performed by Tsuneki et al. on transbronchial lung biopsy WSIs [22]. The AUC values 
of the three different balanced training datasets collected from medical institutions were 
0.879–0.933 (Table 1). 

Figure 1. Flow diagram of the study selection process illustrating the systematic search and screening
strategy along with the number of included and excluded studies.

3.1. Histology
3.1.1. Diagnosis

Jain et al. used DL architectures for detecting lung cancer from histopathological
images pre-processed for size, normalization, and noise removal [18]. Three datasets
were included achieving high-performance rates with an accuracy of over 97%. Jiao et al.
proposed a rapid and efficient method for tumor classification called Deep Embedding-
based Logistic Regression (DELR) [19]. DELR was applied in three different datasets
(colorectal, lung, and breast cancer) and achieved an area under the curve (AUC) of
over 0.95 for all three datasets. In lung cancer, the dataset consisted of 338 regions of
interest (ROIs), including ADC and SCC images. Moreover, Kanavati et al. trained a
CNN to distinguish lung carcinoma from non-neoplastic tissue based on the EfficientNet-
B3 architecture [20]. After training, the CNN was tested on four independent datasets
and attained an AUC of more than 0.97, demonstrating its feasibility of generalization.
Multiple Instance Learning (MIL) was employed for the same classification task without
the need for manual annotations by pathologists [21]. A multi-organ classification using
weakly supervised learning was performed by Tsuneki et al. on transbronchial lung biopsy
WSIs [22]. The AUC values of the three different balanced training datasets collected from
medical institutions were 0.879–0.933 (Table 1).
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Table 1. Characteristics of studies developing models for lung cancer diagnosis on histological
images.

1st Author, Year Technical Method Classification Dataset Performance Metrics

Jain, 2022
[18]

Kernel PCA combined
with Fast Deep Belief

Neural Network

Binary:
cancerous/normal cells

15,000 images from LZ2500
dataset, 215 tiles from the

NLST dataset and
1634 images from NCI

Genomic dataset

Acc: 97.10% in LZ2500
dataset, 98.00% in
NLST dataset and

97.50% in NCI
Genomic dataset

Civit-Masot, 2022
[23]

Custom Architecture
with 3 Convolution and

2 dense layers

Binary:
benign/malignant

15,000 images from LC25000
dataset

Overall Acc: 99.69%
using 50 epochs

Tsuneki, 2022
[22]

Weakly supervised
learning using
EfficientNet-B1

Binary:
ADC/non-ADC

8896 slides from Mita, Wajiro,
Shinkuki, Shinkomonji and

Shinmizumaki Hospitals

Acc: 85.30%
Se: 88.50%
Sp: 82.50%

Moranguinho,
2021
[21]

MIL approach using
attention module and
Grad-Cam algorithm

Binary:
tumor/normal

3220 samples from TCGA
dataset

Standard Attention
Acc: 90.00%
AUC: 0.94

Gated Attention
Acc: 91.20%
AUC: 0.95

Jiao, 2021
[19]

DELR: deep feature
extraction and active
learning for sample
selection in Logistic

Regression

Binary:
tumor/non-tumor 338 ROIs from TCGA dataset AUC: >0.95

Kanavati, 2020
[20]

Weakly supervised
learning employing

EfficientNet-B3
architecture

Binary:
carcinoma/non-

neoplastic

4204 WSIs from Kyushu
Medical Center, 500 WSIs

from International University
of Health and Welfare, Mital

Hospital, 680 WSIs from
TCGA dataset and 500 WSIs

from TCIA dataset

Weakly supervised
AUC: 0.97–0.98
Fully supervised
AUC: 0.88–0.96

Abbreviations: Acc, Accuracy; AUC, Area Under the Curve; DELR, Deep Embedding-based Logistic Regression;
MIL, Multiple Instance Learning; NCI, National Cancer Institute; NLST, National Lung Screening Trial; PCA,
Principal Component Analysis; ROI, Region Of Interest; Se, Sensitivity; Sp, Specificity; TCGA, The Cancer Genome
Atlas; TCIA, The Cancer Imaging Archive; WSI, Whole Slide Image.

3.1.2. Lung Cancer Classification

A common classification problem among all papers included refers to lung cancer
tissue classification into the main categories of ADC, SCC, and SCLC according to WHO
guidelines. Kanavati et al. developed a CNN for lung cancer subtyping (ADC, SCC, SCLC,
and non-neoplastic tissue) trained on transbronchial biopsy (TBLB) images with mainly
poorly differentiated carcinomas [24]. Their model was tested on four validation cohorts
(one with TBLB specimens and three with surgical resections), performing with AUC over
0.9 on all datasets. The same classification problem was employed with weakly supervised
CNN, including a smaller dataset from hospital archives and The Cancer Genome Atlas
(TCGA) database [25]. The model had an overall accuracy of 97.3% and achieved an AUC
of 0.856 in the TCGA cohort. In addition, three common CNNs (Inceptionv3, VGG-16,
InceptionResNetV2) were used for lung cancer classification on TMAs. The InceptionV3
model achieved the highest performance; however, many cases of ADC and SCC were
misclassified [26]. In a retrospective study by Yang et al., a six-type classifier model was
designed for lung cancer (ADC, SCC, SCLC) as well as other lung diseases (pulmonary
tuberculosis, organizing pneumonia) subtyping on H&E-stained slides [27]. The proposed
classification task achieved great performance and consistency with experienced patholo-
gists. In a different study, Yang et al. introduced a CNN for subtyping lung cancer in five
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classes, namely ADC, SCC, SCLC, large cell neuroendocrine carcinoma (LCNEC), and non-
tumor [28]. The customized model performed similarly or better than the pre-trained ones,
although existing limitations of the study, such as the use of patches instead of WSIs and
the limited dataset, resulted in moderate classification accuracies. Likewise, Kosaraju et al.
applied a novel DL framework for classifying ADC, SCC, SCLC, and LCNEC, achieving an
AUC of 0.96 [29]. The studies of Yang and Kosaraju et al. were the only ones that included
LCNEC in the classifiers representing the realistic diagnostic practice for a pathologist. Ilié
et al. applied a DL algorithm for distinguishing SCLC, LCNEC, and atypical carcinoid
(AC) [30]. A number of 150 H&E WSIs were included, and the model was in great agree-
ment when compared to expert and general pathologists, achieving an AUC of 0.93. Lastly,
in their recent study, Chen et al. proposed an immunohistochemical phenotype prediction
system for upgrading the classification of lung cancer into ADC, SCC, and SCLC [31].
The WSI-based Immunohistochemical Feature Prediction System (WIFPS) discriminated
lung cancer types on H&E slides based on the positive or negative expression scoring of
characteristic biomarkers for each class (ADC: TTF-1, CK7, and Napsin-A; SCC: CK5/6,
p40, and p63; SCLC: CD56, Synaptophysin, Chromogranin A, and TTF-1). The agreement
between the WIFPS model and pathologists achieved high to almost perfect consistency
(Cohen’s kappa value of 0.7903–0.8891) in validation sets and the AUC in surgical and
biopsy images was over 0.8 in all validation cohorts. In addition, ALK prediction status
achieved an AUC of 0.917; however, programmed cell death protein 1 (PD-1), PD-L1, KRAS,
and EGFR status did not reach high performance (Table 2).

Table 2. Characteristics of studies developing models for lung cancer classification and non-small
cell lung cancer subclassification on histological images.

1st Author, Year Technical Method Classification Dataset Performance Metrics

Lung cancer classification

Yang, 2022
[27]

ResNet-152
VGG-19
Xception

NASNetLarge

5-class: ADC/SCC/SCLC/
LCNEC/

non-tumor

205 WSIs from Gyeongsang
National University

Hospital

Novel CNN model
Acc: 75.03%

Macro-average AUC: 0.90

Chen, 2022
[31]

EfficientNet-B5
WSI-based IHC feature

prediction system: a novel
DL model based on

EfficientNet-B5

Binary:
normal/tumor tissue

Binary:
negative/positive

expression of biomarkers
3-class:

ADC/SCC/SCLC

1101 WSIs from First
Affiliated Hospital of Sun

Yat-sen University,
Shenzhen People’s Hospital

and Cancer Center of
Guangzhou Medical

University

Tissue classification
Micro-average AUC: 0.98
Macro-average AUC: 0.99

Biomarkers expression
AUC: 0.53–0.95

3-class
Acc: 90.00%

Kosaraju, 2022
[28]

DEEP-HIPO:
two magnifications (20×

and 5×), based on
CAT-NET with 19 layers

4-class: ADC/SCC/SCLC/
LCNEC

113 WSIs from Gyeongsang
National University

Hospital and 657 ADC WSIs
from TCGA dataset

AUC: 0.96

Ilié, 2022
[30] HALO-AI 4-class: SCLC/LCNEC/AC/

poorly differentiated ADC

150 NET and 25 poorly
differentiated ADC WSIs

from Laboratory of Clinical
and Experimental Pathology
of Nice University Hospital

Acc: 98.00% (95% CI:
93.70–1.00%)

AUC: 0.93
F1-score: 0.99 (95% CI:

0.94–1.00)

Yang, 2021
[26]

EfficientNet-B5-based and
ResNet-50-based DL

model

6-class:
ADC/SCC/SCLC/

pulmonary
tuberculosis/organizing
pneumonia/normal lung

1059 WSIs from First
Affiliated Hospital of Sun

Yat-sen University, 212 WSIs
from Shenzhen People’s

Hospital, and 422 WSIs from
TCGA dataset

EfficientNet-B5-based deep
learning model

AUC: 0.97 in Sun Yat-sen
University dataset 1, 0.92 in

Sun Yat-sen University dataset
2, 0.96 in Shenzhen People’s
Hospital dataset and 0.98 in

TCGA dataset
ICC: >0.87
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Table 2. Cont.

1st Author, Year Technical Method Classification Dataset Performance Metrics

Kanavati, 2021
[24]

Combination of
EfficientNet-B1 and RNN

4-class: ADC/SCC/SCLC/
non-neoplastic

1723 WSIs from Kyushu
Medical Center, 500 WSIs

from Mita Hospital and 905
NSCLC WSIs from TCGA

dataset

Independent TBLB dataset of
83 indeterminate WSIs

AUC: 0.99
1 independent TBLB and

3 independent surgical resection
datasets of 2407 WSIs

AUC: 0.94–0.99

Wang, 2020
[25] Modification of VGG-16 4-class: ADC/SCC/SCLC/

normal

939 WSIs from Sun Yat-sen
University Cancer Center
and 500 WSIs from TCGA

dataset

Acc: 97.30% in Sun Yat-sen
University Cancer Center

dataset and 82.00% in TCGA
dataset

AUC: 0.86 in TCGA dataset

Kriegsmann, 2020
[29]

VGG-16
InceptionV3

InceptionResNetV2

4-class: ADC/SCC/SCLC/
skeletal muscle

270 cases from Institute of
Pathology, University Clinic

Heidelberg

InceptionV3 with weights trained
on the training dataset

Acc: 86.00% in validation
dataset using 20 epochs and
85.00% in validation dataset

using 50 epochs

NSCLC subclassification

Mengash, 2023
[32]

MPADL-LC3 algorithm
based on MobileNet and

DBN

5-class:
lung ADC/lung SCC/lung

benign tissue/colon
ADC/colon benign tissue

25,000 images from LC25000
dataset

In testing phase using 80% of the
dataset for training and 20% for

testing
Acc: 99.42% for lung ADC,
99.28% for lung SCC and

99.30% for lung benign tissue

Al-Jabbar, 2023
[33]

ANN
GooLeNet
VGG-19

5-class:
lung ADC/lung SCC/lung

benign tissue/colon
ADC/colon benign tissue

25,000 images from LC25000
dataset

ANN with fusion features of
VGG-19 and handcrafted

Acc: 99.60% for lung ADC,
99.80% for lung SCC and

99.70% for lung benign tissue

Wang, 2023
[34]

A novel
multiplex-detection-based

MIL model
Binary: ADC/SCC 993 WSIs from TCGA

dataset

Overall metrics
Acc: 90.52%
AUC: 0.96

Patil, 2023
[35]

HistoROI: a
ResNet18-based 6-class

classifier
Binary: ADC/SCC 1034 WSIs from TCGA

dataset AUC: 0.93

El-Ghany, 2023
[36] ResNet 101

5-class: lung ADC/lung
SCC/lung benign

tissue/colon ADC/colon
benign tissue

25,000 images from LC25000
dataset

Average overall metrics
Acc: 99.94%
Sp: 99.96%
Pr: 99.84%
Re: 99.85%

F1-score: 99.84%

Zheng, 2022
[37]

Graph-based modules
with ResNet

3-class:
ADC/SCC/normal

2071 WSIs from 435 patients
from the CPTAC dataset,

2082 WSIs from 996 patients
from TCGA dataset and

665 WSIs from 345 patients
from NLST dataset

Five-fold cross-validation
Acc: 91.20% ± 2.50%

AUC: 0.98
External test data

Acc: 82.30% ± 1.00%
AUC: 0.93

Liu, 2022
[38]

SE-ResNet-50 with novel
activation function

CroRELU

3-class:
infiltra-

tion/microinfiltration/normal
5-class:

lung ADC/lung
SCC/normal lung/colon

ADC/normal colon

766 lung WSIs from First
Hospital of Baiqiu’en and

25,000 images from LC25000
dataset

3-class
Acc 98.33%

5-class
Acc: 99.96%
Se: 99.86%
Pr: 99.87%

Attallah, 2022
[39]

ShuffleNet, SqueezeNet,
and MobileNet:

3 pre-trained lightweight
CNN models

5-class:
lung ADC/lung SCC/lung

benign tissue/colon
ADC/colon benign tissue

25,000 images from LC25000
dataset

Acc: 99.30% for lung ADC,
99.00% for lung SCC and

100.00% for lung benign tissue
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Table 2. Cont.

1st Author, Year Technical Method Classification Dataset Performance Metrics

Civit-Masot, 2022
[23]

Custom Architecture with
3 Convolution and 2 dense

layers

3-class:
ADC/SCC/benign

15,000 images from LC25000
dataset

Colour CNN classifier
Overall Acc: 97.11% using

50 epochs
Greyscale CNN classifier

Overall Acc: 94.01% using
50 epochs

Wang, 2022
[40]

A custom architecture
consisting of

5 Convolution and 3 Fully
Connected layers along

with a segmentation
branch for up-sampling

3 class:
ADC/SCC/normal

312 images from 36 patients
from Qilu Hospital of
Shandong University

DSC: 93.50% for segmenting
SCC and 89.00% for

segmenting ADC
Acc: 97.80% in classifying SCC

versus normal tissue and
100.00% in classifying ADC

versus normal tissue

Dolezal, 2022
[37]

CNN models based on
Xception architecture Binary: ADC/SCC

941 WSIs from TCGA
dataset, 1.306 from CPTAC
dataset and 190 slides from

Mayo Clinic dataset

AUROC: 0.96 at maximum
dataset size for

non-uncertainty quantification
models

AUROC: 0.98 at maximum
dataset size for uncertainty

quantification models

Le Page, 2021
[41]

A novel CNN model
based on InceptionV3

Binary:
squamous/non-squamous

NSCLC

132 slides from Dijon
University Hospital,
65 slides from Caen
University Hospital,
60 slides from TCGA

database and 1 cytological
pericardium specimen

Based on WSIs
Acc: 99.00% in the training

dataset, 87.00% in validation
dataset, 85.00% in the test

dataset, 85.00% in the external
validation cohort and 75.00%

in TCGA dataset
Based on virtual TMAs

Acc: 99.00% in training dataset,
83.00% in validation dataset,
88.00% in test dataset, 92.00%
in external validation cohort
and 83.00% in TCGA dataset

AUC: 0.94 in external
validation cohort and 0.77 in

TCGA dataset

Wang, 2021
[42]

LungDIG: Combination of
InceptionV3 with

multilayer perceptron

Binary:
ADC/SCC

988 samples with both CNV
and histological data

Acc: 87.10%
AUC: 92.70%

F1-Score: 87.60%

Zhao, 2021
[43]

MR-EM-CNN:
Hierarchical multiscale
features on EM-CNN

Binary: ROI/non-ROI
Binary: ADC/SCC

2125 slides from TCGA
dataset

ROI localization
F1-score: 0.88

AUC: 0.96
NSCLC classification

Se: 94.74%
Sp: 85.83%

F1-score: 0.90
AUC: 0.96

Dehkharghanian,
2021
[44]

KimiaNet-22: a DL model
based on DenseNet Binary: ADC/SCC

735 WSIs from TCGA
dataset and 23 WSIs from

Grand River Hospital

Validation Sample
Pr: 92.00%
Re: 91.00%

F1-score: 0.91

Toğaçar, 2021
[45]

DarkNet-19 combined
with YOLO and SVM

5-class: lung ADC/lung
SCC/lung benign

tissue/colon ADC/colon
benign tissue

25,000 images from LC25000
dataset

Acc: 99.73% for lung ADC,
99.74% for lung SCC, 99.98%

for lung benign tissue

Carrillo-Perez,
2021
[46]

Merging ResNet-18 3-class: ADC/SCC/healthy
1420 WSIs and

980 RNA-sequencing data
from TCGA dataset

Histology Classifier
Acc: 86.03%

F1-Score: 83.39%
AUC: 0.95
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Table 2. Cont.

1st Author, Year Technical Method Classification Dataset Performance Metrics

Lu, 2021
[47]

Clustering-Constrained-
Attention MIL: a novel

DL-based weakly
supervised model

Binary:
ADC/SCC

131 resection and 110 biopsy
NSCLC WSIs from Brigham

and Women’s Hospital,
993 NSCLC WSIs from
TCGA dataset, and 974

NSCLC WSIs from TCIA
dataset

Public NSCLC WSI dataset
(TCGA and TCIA)

AUC: 0.96 ± 0.02 using 100%,
0.95 ± 0.02 using 75% and

0.94 ± 0.02 using 50% of cases
in training dataset

Independent NSCLC WSI dataset
(Brigham and Women’s Hospital)
AUC: 0.94 ± 0.02 using 100%,

0.92 ± 0.01 using 75% and
0.88 ± 0.02 using 50% of cases

in training dataset

Chen, 2021
[48]

MIL combined with
ResNet-50

3-class:
ADC/SCC/non-cancer

9662 WSIs from
2843 patients from Taipei

Medical University Hospital,
Taipei Municipal Wanfang

Hospital and Taipei Medical
University Shuang-Ho

Hospital and 532 WSIs from
TCGA dataset

AUC: 0.96 for ADC and 0.94
for SCC

Masud, 2021
[49]

Custom CNN architecture
consisting of

3 Convolution and 1 Fully
Connected layers

5-class:
lung ADC/lung

SCC/benign lung
tissue/colon ADC/benign

colonic tissue

25,000 images from LC25000
dataset

Testing dataset
Acc: 96.33%
Pr: 96.39%
Re: 96.37%

F1-score: 96.38%

Wang, 2021
[50]

InceptionV3, ResNet-50,
VGG-19, MobileNetV2,

ShuffleNetV2 and
MNASNET on HEAL

Platform

3-class:
ADC/SCC/normal

NSCLC WSIs from TCGA
dataset

AUC: 0.98 for ADC, 0.98 for
SCC and 0.99 for normal

Kobayashi, 2020
[51]

A proposed modification
to Diet Networks Binary: ADC/SCC 950 patients from Pan-Lung

Cancer dataset Acc: ~80.00%

Xu, 2020
[52]

Hierarchical multiscale
features on EM-CNN

Binary: tumor/normal
Binary: ADC/SCC

2125 images from TCGA
dataset

Tumor/normal
AUC: 1.00
ADC/SCC
AUC: 0.97

Yu, 2020
[53]

AlexNet
GoogLeNet
VGGNet-16
ResNet-50

Binary: ADC/benign
Binary: SCC/benign
Binary: ADC/SCC

3-class: terminal respiratory
unit/proximal-

inflammatory/proximal-
proliferative ADC

transcriptome subtype
4-class: classi-

cal/basal/secretor/primitive
SCC transcriptome subtype

884 WSIs from TCGA
dataset and 125 images from

ICGC dataset

ADC/benign
AUC: 0.95–0.97 in TCGA test
dataset and 0.92–0.94 in ICGC

test dataset
SCC/benign

AUC: 0.94–0.99 in TCGA test
dataset and >0.97 in ICGC test

dataset
ADC/SCC

AUC: 0.88–0.93 in TCGA test
dataset and 0.73–0.86 in ICGC

test dataset
ADC transcriptome subtype

AUC: 0.77–0.89
SCC transcriptome subtype

AUC: ~0.70

Shi, 2019
[54]

Graph temporal
ensembling: a novel

semi-supervised CNN
model based on AlexNet

Binary: ADC/SCC
2904 NSCLC image patches

from WSIs of 42 patients
from TCGA

Acc: 90.50% using 20% labeled
patients, 91.00% using 35%

labeled patients, 91.10% using
50% labeled patients and
94.00% using all labeled

patients
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Table 2. Cont.

1st Author, Year Technical Method Classification Dataset Performance Metrics

Khosravi, 2018
[55]

CNN-basic
InceptionV3-Last
layer-4000 steps

InceptionV3-Last
layer-12,000 steps

InceptionV1-Fine tune
Inception-ResNetV2-Last

layer
InceptionV3-Fine tune

Binary: ADC/SCC
1273 images from TMAD

and 3149 from TCGA
dataset

InceptionV1-Fine tune
Acc: 92% for TMAD images,
100% for TCGA intra-images

and 83% for TCGA
inter-images

Coudray, 2018
[56] InceptionV3 Binary: tumor/normal

3-class: normal/ADC/SCC

1634 WSIs from Genetic
Data Commons database
and 340 slides from New
York University Langone

Medical Center

Binary
AUC: 0.99

3-class
AUC: 0.97

Hou, 2016
[57]

14 different combinations
of EM-based MIL

approach with CNN and
multiclass logistic
regression or SVM

3-class: ADC/SCC/ADC
with mixed subtypes

718 WSIs from 641 patients
from TCGA dataset Acc: 79.80%

Abbreviations: AC, Atypical Carcinoid; Acc, Accuracy; ADC, Adenocarcinoma; ANN, Artificial Neural Network;
AUC, Area Under the Curve; AUROC, Area Under the Receiver Operating Characteristic; CI, Confidence
Interval; CNN, Convolutional Neural Network; CNV, Copy Number Variation; CPTAC, Clinical Proteomic
Tumor Analysis Consortium; DSC, Dice Similarity Coefficient; EM, Expectation-Maximization; ICC, Interclass
Correlation Coefficient; ICGC, International Cancer Genome Consortium; LCNEC, Large Cell Neuroendocrine
Carcinoma; MIL, Multiple Instance Learning; MR, Multi-Resolution; NET, Neuroendocrine Tumor; NLST, National
Lung Screening Trial; NSCLC, Non-Small Cell Lung Cancer; Pr, Precision; Re, Recall; RNA, Ribonucleic Acid;
RNN, Recurrent Neural Network; ROI, Region Of Interest; SCC, Squamous Cell Carcinoma; SCLC, Small Cell
Lung Cancer; Se, Sensitivity; Sp, Specificity; SVM, Support Vector Machine; TBLB, Transbronchial Lung Biopsy;
TCGA, The Cancer Genome Atlas; TCIA, The Cancer Imaging Archive; TMA, Tissue Microarray; TMAD, Tissue
Microarray Database; WSI, Whole Slide Image.

3.1.3. NSCLC Subtypes Classification

The diagnosis between ADC and SCC from a single H&E slide from a small biopsy
or cytological material can be challenging. Thus, for precise diagnosis, additional staining
for immunohistochemical biomarkers, such as TTF-1, CK5/6, CK7, pan keratin, p40, and
p63, and histochemical stains, such as periodic acid-Schiff (PAS), must be performed. Sev-
eral studies have addressed binary classification problems concerning NSCLC subtyping
from H&E slides for an accurate and fast diagnosis. The majority of these mainly include
ADC and SCC WSIs, mostly from the TCGA dataset, whereas the classification task is
performed by a CNN or a combination of the state-of-the-art CNN architectures with
varying approaches and techniques [37,47,51–56,58,59]. Moreover, NSCLC subtyping was
combined with genomic data, namely copy number variations (CNVs), from TCGA [42].
The authors demonstrated that their proposed LungDIG model could be of great impor-
tance not only for ADC and SCC diagnosis but also for stratifying patients for targeted
therapies, as the performance metrics of the model were higher when WSI and CNV data
were combined compared to when WSI or CNV features were used alone. Zhao et al.
developed a weakly supervised DL model to localize ROIs on WSIs (AUC of 0.9602) and
then accurately subtype NSCLC into ADC and SCC with high sensitivity and specificity
rates (0.9474 and 0.8583, respectively) [43]. In another study extracting prominent deep
features (DFs) for each histopathological image, classification accuracy was better, and the
authors identified 15 DFs with the ability to classify lung cancer with an accuracy of over
85% [44]. The generalizability of the model was feasible in distinguishing ADC from SCC
on 21 non-pulmonary carcinomas; however, classification accuracy reached 56% in the ex-
ternal validation cohort. Hou et al. performed a classification task of NSCLC subtyping into
ADC, SCC, and ADC with mixed subtypes [57]. Their proposed framework was trained
and tested on a TCGA dataset with a classification accuracy of 0.798. Masud et al. designed
a classification framework for diagnosing lung and colon cancer from histopathological
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images from the LC25000 dataset [49]. The model achieved a peak classification accuracy of
96.33%; however, the lung ADC class had a higher misclassification rate. The same problem
using the LC25000 dataset was employed by other authors, with an overall accuracy of
99% [32,33,36,39]. DarkNet-19 model reached accuracies of 97.57%, 99.87%, and 97.73%
in classifying ADC, benign, and SCC images, respectively, while the overall accuracy of
the model was 99.69% [45]. Likewise, Civit-Masot et al. employed Explainable Artificial
Intelligent (AI) Technologies [23]. Liu et al. used AI along with activation function for
cancer infiltration screening on histopathological images [38]. Their method was further
utilized for lung cancer classification (ADC and SCC) using the LC25000 database, present-
ing good generalization ability. In a more recent study, Liu et al. proposed a novel method
for automated detection of lung ADC infiltration using 780 images with sensitivity and
specificity of 93.10% and 96.43%, respectively [60]. Utilizing a combination of molecular
and histological data (gene expression data and WSIs, respectively) as input for NSCLC
classification, Carrillo Perez et al. demonstrated that the fusion model could provide robust
information for decision-making to targeted therapies [46]. Wang et al. proposed a platform
for the automated classification of NSCLC into ADC, SCC, and normal regions as well as
for prediction of mutational status of 10 frequently mutated genes in ADC [50]. The model
predicted with an AUC of 0.824 the EGFR mutational status on ADC H&E WSIs. Similarly,
a model for NSCLC subtyping (ADC, SCC, normal regions) achieved an AUC of 0.97 [56].
The authors trained the model to predict the mutational status in lung ADC slides. Of the
ten frequently mutated genes in ADC, STK11 and KRAS had the highest AUC (0.845 and
0.814, respectively). An annotation-free DL method for the subtyping of NSCLC slides
achieved high performance for ADC and SCC (AUC of 0.9594 and 0.9414, respectively)
and could be employed in clinical practice as it overcomes the time-consuming process
of annotations and limitations concerning the capacity/memory of WSIs [48]. Wang et al.
developed a DL model to perform cancer lesion region segmentation and histological
subtype classification on ADC and SCC slides [40]. The model showed high classifica-
tion performance metrics (accuracy was 100% and 95.1%, sensitivity was 95.0 and 100.0%,
and specificity was 95.2 and 100.0% for SCC and ADC classification tasks, respectively).
Classification of transcriptomic lung ADC (bronchioid, squamoid, and magnoid) and/or
SCC (primitive, classic, secretory, and basal) subtypes was performed by Yu and Antonio
et al. [53,61]. In the first study, classification was performed on both ADC and SCC, result-
ing in a significant correlation between the transcriptomic subtype and the histopathology
classification scores and achieving AUC of 0.771–0.892 and approximately 0.7 for ADC and
SCC, respectively, with the employment of four CNNs. In the study of Antonio et al., ADC
transcriptome subtype classification resulted in a classification accuracy of 98.9%. Lastly, Le
Page et al. tried to distinguish squamous from non-squamous lung carcinoma from initial
cytology and small biopsy specimens [41]. Their model performed with good classification
accuracy, while the accuracy was slightly increased in the external validation cohorts when
tissue microarrays (TMAs) were selected (accuracy rates of 0.78 in biopsies versus 0.82 in
TMAs). Finally, two recent studies performed a binary classification between ADC and
SCC using over 900 WSIs from TCGA and achieving an AUC of over 0.90 [34,35] (Table 2).

3.1.4. Lung ADC Predominant Architectural Patterns Classification

ADC cases exhibit various histological patterns. According to the WHO, there are
five distinct histological subtypes (lepidic, acinar, papillary, micropapillary, and solid) that
must be included in a pathology report when the material is a resection specimen [2]. The
detection of ADC predominant architectural patterns has been the scope of several research
papers (Table 3). The study by Sadhwani et al. performed a classification problem including
six histological subtypes (acinar, lepidic, solid, papillary, micropapillary, cribriform) and
then combined the predicted output with clinical data (smoking status, age, etc.) for tumor
mutational burden (TMB) status prediction [62]. The AUC for ADC predominant architec-
tural patterns classification was 0.93 and 0.92 for TCGA and the external validation cohort,
respectively, while for the TMB status prediction, it was 0.71. Furthermore, a six-class
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problem (lepidic, acinar, papillary, micropapillary, solid, benign) for lung ADC histological
subtypes classification in lung ADC WSIs was in moderate agreement with pathologists’
estimations [63]. In a similar study, ADC histological patterns were classified into five
categories (solid, micropapillary, acinar, cribriform, non-tumor) using three different CNN
architectures [64]. The best classification accuracy was 89.24%, while, in the study of Di-
Palma et al., the histological classification of the known five patterns of lung ADC resulted
in a classification accuracy of 94.51% [65]. Xiao et al. created a novel framework combining
CNNs and graph convolutional networks for quantitative estimation of histopathological
growth patterns in lung ADC slides [66]. Another lung ADC subtyping problem was
performed by Sheikh et al. achieving a high accuracy rate of 0.946 and outperforming the
state-of-the-art models [67]. In a different study, Gao et al. collected slides from ADC with
micropapillary patterns and performed a binary classification problem for detecting the
presence of a micropapillary pattern in ADC slides [68]. Maleki et al. investigated how
several possible methodological errors, such as oversampling and data augmentation, can
lead to poor generalizability performance and performed a binary classification task for the
distinction of solid and acinar predominant histologic subtypes in ADC H&E slides [69].

Table 3. Characteristics of studies developing models for the identification of lung adenocarcinoma
predominant architectural pattern.

1st Author, Year Technical Method Classification Dataset Performance Metrics

Gao, 2022
[68] Inspired by YOLOv5 Binary: micropapillary/non-

micropapillary
ADC WSIs from Shandong

Provincial Hospital

Supervised model
Pr: 76.20%
Re: 88.40%

Semi-supervised model
Pr: 77.50%
Re: 89.60%

Xiao, 2022
[66]

GCNs combined with
VGG-16

5-class:
lepidic/acinar/papillary/

micropapillary/solid

243 images from 243 patients
from Shandong Provincial

Hospital

LAD-GCN
Acc: 90.35%

Pr: 86.53–98.34%
Re: 85.80–98.78%

F1-score: 0.86–0.99

Sheikh, 2022
[67]

Unsupervised deep
learning model which

employs stacked
autoencoders

5-class:
lepidic/acinar/papillary/

micropapillary/solid

31 WSIs from
Dartmouth-Hitchcock

Medical Center

Acc: 94.60%
Se: 94.10%
Pr: 94.20%

F1-score: 0.94

Maleki, 2022
[69]

Four novel CNN
models based on

ResNet-50

Binary:
solid/acinar

110 WSIs from
Dartmouth-Hitchcock

Medical Center
Acc: 65.90–99.90%

Sadhwani, 2021
[62]

InceptionV3 and Deep
features extraction

combined with logistic
regression in two

stages

9-class: aci-
nar/lepidic/solid/papillary/

micropapillary cribri-
form/necrosis/leukocyte

aggregates/other

ADC WSIs from TCGA
dataset and 50 ADC WSIs

for external validation from
an independent pathology
laboratory in the United

States

AUC: 0.93 in TCGA dataset and
0.92 in external validation dataset

DiPalma, 2021
[65]

MIL approach using
ResNet

5-class:
lepidic/acinar/papillary/

micropapillary/solid

269 slides from TCGA
dataset and

Dartmouth-Hitchcock
Medical Center

Acc: 94.51% (95% CI: 92.77–96.20%)
Pr: 80.41% (95% CI: 70.55–89.56%)
Re: 81.67% (95% CI: 71.20–90.43%)
F1-score 0.80 (95% CI: 0.71–0.88)

Wei, 2019
[63] ResNet-18

6-class:
lepidic/acinar/papillary/

micropapillary/solid/benign

422 ADC WSIs from
Dartmouth-Hitchcock

Medical Center
AUC: 0.97–1.00

Gertych, 2019
[64]

GoogLeNet,
ResNet-50 and

modified AlexNet
developed in Caffe

engine

5-class:
solid/micropapillary/

acinar/cribriform/non-
tumor

50 cases from Cedars-Sinai
Medical Center in Los
Angeles, 33 cases from

Military Institute of
Medicine in Warsaw and

27 cases from TCGA dataset

Overall Acc: 89.24%

Abbreviations: Acc, Accuracy; ADC, Adenocarcinoma; AUC, Area Under the Curve; CI, Confidence Interval;
CNN, Convolutional Neural Network; GCN, Graph Convolutional Network; MIL, Multiple Instance Learning; Pr,
Precision; Re, Recall; Se, Sensitivity; TCGA, The Cancer Genome Atlas; WSI, Whole Slide Image.
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3.1.5. Prediction of Prognosis and Survival

The quantification and evaluation of the tumor microenvironment (TME) features from
histopathological images, derived by the spatial distribution of different cell types (lympho-
cytes, stromal cells), the density of stromal cells, etc., provide valuable information not only
for immune therapy response but also for the probability of survival [70]. TME plays an
important role in immunotherapy response as well as in cancer progression and metastasis
in lung cancer. Several studies have aimed to develop algorithms for TME characterization
of lung cancer pathology images to predict response to targeted therapies and extract prog-
nostic value. Barmpoutis et al. proposed a methodology to identify and quantify tertiary
lymphoid structures (TLS) in lung cancer H&E images [71]. Segmentation of lymphocytes
showed that their density within a TLS region was 3-fold higher than lymphocytes outside
TLS regions. Their study had high sensitivity and specificity rates and could be used as
a prognostic feature to predict response to immunotherapy. DeepRePath was proposed
for prognosis prediction in patients with early-stage ADC [72]. On the external validation
cohort, DeepRePath had an AUC of 0.76, while histopathological features, such as necrosis
or atypical nuclei, were associated with a higher probability of recurrence. The same model,
DeepRePath, was employed by Wu et al. for predicting the recurrence risk of lung cancer,
achieving an AUC of 0.79 on a small testing cohort [73]. In the study of Wang et al., cell type
classification into tumor cells, stromal cells, and lymphocytes achieved great classification
accuracy [74]. TME analysis for spatial distribution estimation associated TME with overall
survival (OS) and could provide valuable information about the patient’s prognosis. In a
similar framework, Wang et al. proposed a CNN for a 6-class classification problem to iden-
tify different cell types nuclei for estimating TME and its prognostic value [75]. The derived
features from the TME analysis were indicators of OS. For instance, higher karyorrhexis
density was associated with worse survival outcomes, while higher stromal nuclei density
was associated with better survival outcomes. Moreover, segmentation of cell nuclei on
H&E WSIs was applied to identify and quantify tumor-infiltrating lymphocytes (TILs) for
prognostic value on NSCLC patients [76]. The authors highlighted the potential of their
proposed model for quantifying TILs, instead of immunohistochemical staining (CD8), for
assisting pathologists. Likewise, the quantitative and spatial localization characteristics
of TILs and tumor cells were evaluated for OS and relapse-free survival (RFS) in NSCLC
cohorts [77]. From 10 immune checkpoint proteins, galectin-9 and OX40L had the higher
relative contribution to OS (33.55%) and RFS (29.02%), respectively, while the percentage
of positive tumor cells and the distance between positive TILs and positive tumor cells
contributed the most to predict OS. A two-step approach of a DL method was proposed by
Pham et al. for detecting lung cancer lymph node metastasis [78]. The proposed approach
was developed to eliminate false positive results by performing a first classification task
for distinguishing reactive lymphoid follicles from lung cancer in lymph nodes. In the
study of Rączkowski et al., tumor prevalence and TME composition were used as input for
predicting survival and gene mutations in lung ADC cases [79]. The prediction of OS on the
lung dataset was evaluated according to clinical and demographic data [80]. The proposed
weakly supervised and annotation-free CNN achieved a C-index of 0.7033, and features
such as TILs, necrosis, and inflamed stromal regions were identified as prognostic factors
associated with poor outcomes. Estimation of lung ADC tumor cellularity for genetic
tests by pathologists could be improved by DL support. Sakamoto et al. showed that
tumor cellularity can be estimated with minimum deviation from the ground truth when
pathologists and AI scores are combined [81]. Pathologists’ estimations deviated from
the ground truth by approximately 15%, implying over- or under-estimations; however,
false positive results were obtained by AI when cell blocks were evaluated. Prediction
of lung ADC recurrence in several predominant subtypes, including acinar and papillary
carcinoma, after complete resection achieved an accuracy of 90.9% in H&E WSIs from
55 patients [82]. The density of cancer epithelium and cancer stroma lymphocytes was
calculated in H&E slides from lung ADC cases to predict patients’ survival [83]. Low score
rates were associated with significantly superior OS and disease-free survival in patients
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with ADC. The authors also included RNA transcripts to determine the TILs infiltration
between the high-risk and low-risk groups revealing that patients in the low-risk group
had a higher proportion of CD8+ T cells, activated CD4+ memory T cells, and plasma cells
versus those in the high-risk group. Slides of lung ADC immunohistochemically stained
for CD3, CD8, and CD20 were used for the detection and quantification of immune cell
biomarkers [84]. High sensitivity and specificity rates were recorded in discriminating T
cells, considering the immunostaining intensity variables and the presence of anthracotic
pigment in the tissue slides. In a recent study, a DL method was employed for predicting
aneuploidy from lung ADC WSIs performing nuclei segmentation and using a single-cell
analysis [85] (Table 4).

Table 4. Characteristics of studies developing models for the prediction of lung cancer prognosis
using histological data.

1st Author, Year Aim of Study Technical Method Classification Dataset Performance Metrics

Liu, 2023
[60]

ADC
prognosis prediction

MIM (MLP IN MLP):
a novel deep

learning-based model

3-class: infiltra-
tion/microinfiltration/

normal

780 images from
the First Hospital of Jilin

University

Overall metrics in the test
dataset

Acc: 95.31%
Se: 93.10%
Sp: 96.43%

F1-score: 93.10%
Pr: 93.09%

Yu, 2023
[85]

ADC
prognosis prediction

Transformer-guided
MIL with both

handcrafted and deep
features

Binary: negative/positive
aneuploidy

Slides from 339 patients from
TCGA dataset

In lung ADC test dataset
Acc: 77.60%

F1-score: 79.50%
Cohen’s kappa: 0.55

AUC: 0.82

Qaiser, 2022
[80]

Lung cancer
prognosis prediction

ResNet-18 along with
attention mechanism Binary: high/low OS 1122 WSIs from 410 patients

from NLST dataset C-index: 0.70

Shvetsov, 2022
[76]

NSCLC prognosis
prediction HoVer-Net Binary: high-TIL/low-TIL

WSIs from CoNSeP, PanNuke,
MoNuSAC and UiT-TILs

datasets

HoVer-Net PanNuke Aug
model

HR: 0.30 (95% CI:
0.15–0.60)

HoVer-Net MoNuSAC Aug
model

HR: 0.27 (95% CI:
0.14–0.53)

Guo, 2021
[77]

NSCLC prognosis
prediction

EfficientUnet: a
combination of

EfficientNet and Unet
ResNet

Binary: tumor/non-tumor
area

Binary: positive/negative
tumor cell staining

Binary: positive/negative
TILs staining

1859 NSCLC TMAs from
Medical University of Gdansk

and 214 NSCLC WSIs from
Shanghai Pulmonary Hospital

Integrated score in the
training dataset

AUC: 0.90 for OS and 0.85
for RFS

Res-score in the external
validation dataset

AUC: 0.80–0.87 for OS and
0.83–0.94 for RFS

Pan, 2022
[83]

ADC
prognosis
prediction

ResNet-50
HoVer-Net Binary: high-risk/low-risk

Patients from Guangdong
Provincial People’s Hospital,

Shanxi Cancer Hospital,
Yunnan Cancer Hospital and

TCGA

In terms of OS
HR: 2.68 in discovery

cohort, 3.05 in validation
cohort 1, 2.39 in validation

cohort 2 and 1.99 in
validation cohort 3

In terms of DFS
HR: 2.07 in discovery

cohort, 1.54 in validation
cohort 1, and 3.80 in
validation cohort 2

Levy-Jurgenson,
2020
[86]

ADC
prognosis
prediction

5 deep learning
models based on

InceptionV3

Binary: low/high
heterogeneity index

469 ADC slides from TCGA
dataset and mRNA/miRNA
expression data from GDC

database

Log rank p-value: 0.07

Wang, 2020
[75]

ADC
prognosis
prediction

Mask-RCNN Binary: high-risk/low-risk

208 images from 135 patients
from NLST dataset and 431

histological images from 372
patients from TCGA dataset

HR: 2.23 (95% CI:
1.37–3.65)
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Table 4. Cont.

1st Author, Year Aim of Study Technical Method Classification Dataset Performance Metrics

Wang, 2019
[74]

ADC
prognosis
prediction

ConvPath: A custom
architecture with

2 convolution layers
Binary: high-risk/low-risk

1337 images from 523 patients
from TCGA dataset,

345 images from 201 patients
from NLST dataset, 102 images
from 102 patients from Chinese
Academy of Medical Sciences
dataset and 130 images from

112 patients from Special
Program of Research

Excellence dataset

Log rank p-value: <0.01 in
TCGA dataset and 0.03 in

Chinese Academy of
Medical Sciences dataset

Wu, 2020
[73]

Lung cancer
recurrence and

metastasis prediction

DeepLRHE: a novel
deep learning model
consisting of a CNN

and a ResNet
component

Binary: high-risk/low-risk 211 images from TCGA dataset

Se: 84.00%
Sp: 67.00%
Pr: 78.00%

F1-score: 81.00%
AUC: 0.79

Hattori, 2022
[82]

ADC recurrence
prediction

Custom Architecture
consisting of 3

Convolution and 1
Fully Connected layer

in different color
spaces

Binary: presence/absence
of recurrence

WSIs from 55 stage IB ADC
patients

Se: 91.70%
Sp: 90.20%

Acc: 90.90%

Shim, 2021
[72]

ADC
recurrence
prediction

DeepRePath: a novel
CNN model based on

ResNet-50

Binary: high/low
probability of recurrence

within 3 years

3923 slides from 5 St. Mary’s
hospitals affiliated with the

Catholic University of Korea in
Seoul, Incheon, Uijeongbu,
Bucheon, and Yeouido and

1067 WSIs from TCGA dataset

HR: 5.56

Yang, 2021
[87]

Lung cancer
immunotherapy

efficacy prediction

DeepLRHE: a novel
deep learning model
consisting of a CNN

and a ResNet
component

Binary: positive/negative
expression of TP53, EGFR,

DNMT3A, PBRM1 and
STK11

180 WSIs from TCGA dataset

AUC: 0.87 for TP53, 0.84
for EGFR, 0.78 for

DNMT3A, 0.75 for PBRM1
and 0.71 for STK11

Barmpoutis, 2021
[71]

Lung cancer TLS
identification and

quantification

Combination of
DeepLadV3 with

Inception-ResNetV2

Binary: TLS/non-TLS
region

Slides from 18 patients from
Norfolk and Norwich
University Hospital

Sp: 92.87% with Se: 95.00%
Sp: 88.79% with Se: 98.00%
Sp: 84.32% with Se: 99.00%

AUROC: 0.96

Hu, 2021
[88]

Anti-PD-L1 response
prediction

Combination of
Xception, PCA, and

SVM

Binary:
response/non-response

190 melanoma slides from
TCGA-SKCM dataset and

55 NSCLC slides from
Guangdong Province Cancer

Hospital

AUC: 0.65 (95% CI:
49.40–78.40%)

Abbreviations: Acc, Accuracy; ADC, Adenocarcinoma; AUC, Area Under the Curve; AUROC, Area Under the
Receiver Operating Characteristic; CI, Confidence Interval; CNN, Convolutional Neural Network; DFS, Disease-
Free Survival; GDC, Genomic Data Commons; HR, Hazard Ratio; miRNA, micro-Ribonucleic Acid; mRNA,
messenger Ribonucleic Acid; NLST, National Lung Screening Trial; NSCLC, Non-Small Cell Lung Cancer; OS,
Overall Survival; Pr, Precision; RCNN, Regional-Convolutional Neural Network; RFS, Relapse-Free Survival; Se,
Sensitivity; Sp, Specificity; TCGA, The Cancer Genome Atlas; TIL, Tumor-Infiltrating Lymphocyte; TLS, Tertiary
Lymphoid Structures; TMA, Tissue Microarray; WSI, Whole Slide Image.

3.1.6. Prediction of Significant Molecular Alterations

Molecular detection of prognostic and predictive biomarkers in specific histological
subtypes can predict favorable responses to targeted therapy and treatment. The detection
of significant molecular alterations on immunohistochemistry (IHC) slides using DL algo-
rithms was the scope of several studies. Concerning ALK rearrangements prediction, in
the study by Terada et al., the commercially available HALO-AI platform and DenseNet
were employed in IHC slides achieving a maximum AUC of 0.73 (in the resolution of
1.0 µm/pix) [89]. Another study aimed to predict mutations (EGFR, BRAF, TP53, STK11,
and KRAS) based on Next Generation Sequencing (NGS) data and H&E WSIs from ADC
samples with several deep neural network-based models [90]. Predicting EGFR and TP53
mutations achieved better performance compared to the remaining genes involved in the
study. In the study of Wang et al., the proposed model for predicting the mutational status
of 10 frequently mutated genes in ADC slides had the best performance for EGFR muta-
tional status with an AUC of 0.824 [50]. Similarly, Coudray et al. trained the Inceptionv3
network to predict the mutational status of 10 genes in lung ADC, with STK11 and KRAS
having the highest AUC of 0.845 and 0.814, respectively [56]. In addition, high performance
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was recorded for TP53 and EFGR biomarkers prediction, with AUC of 0.87 and 0.84, respec-
tively, in the study of Yang et al. [87]. However, the model was not validated on an external
cohort, and only 180 WSIs from the TCGA database were used. MET, FGFR1, and FGFR2
mutations were predicted with accuracies of 86.3%, 83.2%, and 82.1%, respectively [91]. The
recent study by Mayer et al. was the first to employ DL for predicting ROS1 rearrangement
directly from H&E WSIs [92]. ROS1 rearrangement prediction reached sensitivity and
specificity of 100% and 98.48%. Moreover, the characterization of intra-tumor heterogeneity
in ADC by gene expression levels was associated with patients’ survival [86]. In the lung
cancer dataset, the highest AUC was detected for miR-17-5p microRNA, followed by KRAS
and CD274 (PD-L1). Another study determined TMB value (low or high) according to a
selected threshold in lung ADC WSIs. TMB value was predicted for each area of the image,
reflecting the heterogeneity of TMB [93]. No significant correlation between the TMB status
and the tumor stage of the patient was noted, while the performance of the DL model was
relatively low, with an AUC of 0.641. Likewise, the prediction of TMB in 50 SCC H&E
images achieved an AUC of 0.65 (Table 5) [94].

Table 5. Characteristics of studies developing models for the prediction of lung cancer mutational
status using histological data.

1st Author, Year Technical Method Classification Dataset Performance Metrics

Pao, 2023
[95]

An attention-based MIL
model based on ResNet50

Binary:
mutated/wild-type EGFR 2099 specimens

AUC: 0.87
NPV: 95.40%
PPV: 41.00%

Dammak, 2023
[94]

VGG16
Xception

NASNet-Large
Binary: high/low TMB 50 slides from TCGA

dataset

Per-patient metrics for the optimal
model (VGG16)

AUC: 0.65
Acc: 65.00%
Se: 77.00%
Sp: 43.00%

Mayer, 2022
[92]

GANs along with
unsupervised and

semi-supervised learning

Binary: positive/negative
ALK and ROS1
rearrangement

Slides from
234 advanced-stage

NSCLC patients from
Sheba Medical Center

Se: 100% for both ALK and ROS1
Sp: 100% for ALK and 98.57%

for ROS1
NPV: 100% for both ALK and

ROS1
PPV: 100% for ALK and 50.50%

for ROS1

Terada, 2022
[89]

DenseNet via the
HALO-AI platform

Binary: positive/negative
ALK rearrangement

300 patients from
Shizuoka Cancer Center,

Shizuoka, Japan

With 50% probability threshold
AUC: 0.73 (95% CI: 0.65–0.82)

Acc: 73.00%
Se: 73.00%
Sp: 73.00%

PPV: 73.00%
NPV: 73.00%

F1-score: 37.00%

Tomita, 2022
[90] ResNet-18, EfficientNet-B0

Binary:
mutated/wild-type BRAF,
EGFR, KRAS, STK11, and

TP53

747 WSIs from
232 patients from

Dartmouth-Hitchcock
Medical Center and 111

cases from CPTAC-3 study

Internal test dataset from
Dartmouth-Hitchcock Medical

Center
AUC: 0.80 (95% CI: 0.69–0.90) for

EGFR and 0.71 (95% CI:
0.61–0.81) for TP53

External test dataset from CPTAC-3
study

AUC: 0.69 (95% CI: 0.62–0.75) for
EGFR and 0.68 (95% CI:

0.60–0.75) for TP53

Rączkowski, 2022
[79]

ARA-CNN inspired by
ResNet and DarkNet

Binary:
mutated/wild-type ALK,

BRAF, DDR2, EGFR,
KEAP1, KRAS, MET,
PIK3CA, RET, ROS1,

STK11, TP53 and PDGFRB

Samples from 55 tumors
from the Medical

University of Lublin,
Poland, and 467 images

from TCGA dataset

AUC: up to 0.74 for PDGFRB



Cancers 2023, 15, 3981 17 of 33

Table 5. Cont.

1st Author, Year Technical Method Classification Dataset Performance Metrics

Niu, 2022
[93] ResNet-18 Binary: high/low TMB

427 WSIs from
427 patients from TCGA

dataset
AUC: 0.64

Li, 2022
[96] Fine-tuned pre-trained

Xception model

Binary:
mutated/wild-type

STK11, TP53, LRP1B, NF1,
FAT1, FAT4, KEAP1,

EGFR and KRAS

100,000 images from
NCT-CRC-100k dataset

and 900 ADC WSIs from
TCGA dataset

AUC

Wang, 2021
[50]

InceptionV3, ResNet-50,
VGG-19, MobileNetV2,

ShuffleNetV2 and
MNASNET on HEAL

Platform

Binary:
mutated/wild-type

STK11, KEAP1, NF1, TP53,
EGFR, FAT1, FAT4, LRP1B,

SETBP1 and KRAS

NSCLC WSIs from TCGA
dataset

AUC: 0.63 for STK11, 0.77 for
KEAP1, 0.70 for NF1, 0.72 for
TP53, 0.82 for EGFR, 0.55 for
FAT1, 0.69 for FAT4, 0.76 for

LRP1B, 0.54 for SETBP1, 0.66 for
KRAS

Huang, 2021
[91]

DeepIMLH: a novel CNN
model based on ResNet

concept

Binary:
mutated/wild-type AKT1,
FGFR1, FGFR2, HRAS and

MET

180 WSIs from TCGA
dataset

Acc: 72.00% for AKT1, 83.00%
for FGFR1, 82.00% for FGFR2,

79.00% for HRAS and 86.00% for
MET

AUC: 0.83 for FGFR1, 0.82 for
FGFR2, 0.79 for HRAS and 0.86

for MET

Sadhwani, 2021
[62]

InceptionV3 and Deep
features extraction

combined with logistic
regression in two stages

Binary: low/high TMB

ADC WSIs from TCGA
dataset and 50 ADC WSIs

for external validation
from an independent

pathology laboratory in
the United States

AUC: 0.71 (95% CI: 0.63–0.79)

Coudray, 2018
[56] InceptionV3

Binary:
mutated/wild-type NF1,

FAT4, LRP1B, KEAP1,
KRAS, FAT1, TP53, SETB1,

EGFR and STK11

1634 WSIs from Genetic
Data Commons database
and 340 slides from New
York University Langone

Medical Center

AUC: 0.64 for NF1, 0.64 for FAT4,
0.66 for LRP1B, 0.68 for KEAP1,

0.73 for KRAS, 0.75 for FAT1,
0.76 for TP53, 0.78 for SETB1,

0.83 for EGFR and 0.86 for STK11

Abbreviations: Acc, Accuracy; ADC, Adenocarcinoma; AUC, Area Under the Curve; CI, Confidence Interval;
CNN, Convolutional Neural Network; CPTAC, Clinical Proteomic Tumor Analysis Consortium; GAN, Generative
Adversarial Network; MIL, Multiple Instance Learning; NPV, Negative Predictive Value; Non-Small Cell Lung
Cancer; PPV, Positive Predictive Value; Se, Sensitivity; Sp, Specificity; TCGA, The Cancer Genome Atlas; TMB,
Tumor Mutation Burden; WSI, Whole Slide Image.

3.2. Cytology

Cytological specimens from the lung are frequently the only available diagnostic ma-
terial. However, by its nature, this material is limited, prohibiting auxiliary techniques for
specific subtyping, such as immunocytochemistry. Only a limited number of studies have
addressed the issue of utilizing cytological images for training neural networks for lung
cancer diagnosis and subtyping (Table 6). The first study for the classification of lung cancer
cytological images (ADC, SCC, SCLC) achieved a classification accuracy of 71% after the
data augmentation process [97]. In addition to this study, Teramoto et al. further extended
their work for the classification of lung cytological images (real and synthesized) into
benign and malignant with a generative adversarial network (GAN) [98]. The proposed
method achieved an AUC of 0.901. Similarly, the classification of benign and malignant
cells from cytological pleural effusions WSIs, by a weakly supervised model achieved an
AUC of 0.9526 [99]. The model had a significantly strong correlation with the histological
diagnosis gold standard as well as with senior cytopathologists’ diagnosis. Misclassifi-
cation was observed when poor adhesion of tumor cells or clusters of mesothelial cells
were present. Diagnosis between benign and malignant cells from cytological specimens
was performed in the studies of Lin and Teramoto et al., including 499 and 322 images,
respectively [100,101]. Distinct morphological features (size of cells, nuclei, and nucleoli) of
cytological specimens of lung cancer were recognizable by four different fine-tuned deep
CNNs (DCNNs) [102]. Three out of four DL models resulted in a classification accuracy
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of more than 73% for lung cancer subtyping into ADC, SCC, and SCLC; however, some
cases of poorly differentiated NSCLC were misclassified. Furthermore, the distinction
between LCNEC and SCLC showed promising results in the study of Gonzalez et al. [103].
Three classifiers were developed with three distinct datasets of Diff-Quik®-, Papanicolaou-
and H&E-stained cytological WSIs and achieved an AUC of 1, 1 and 0.875, respectively.
Lastly, endobronchial ultrasound (EBUS)-guided transbronchial needle aspiration (TBNA)
cytological images were employed for diagnosing mediastinal metastatic lesions [104].
The study by Wang et al. was the first to include EBUS-TBNA cytological images for
automatic segmentation of enlarged mediastinal lymph nodes metastasis, outperforming
three state-of-the-art baseline models.

Table 6. Characteristics of studies developing models for the cytological interpretation of lung cancer.

1st Author, Year Technical Method Classification Dataset Performance Metrics

Tsukamoto, 2022
[102]

AlexNet
GoogLeNet/InceptionV3

VGG-16
ResNet-50

3-class:
ADC/SCC/SCLC

82 images from 36 ADC
cases, 125 images from

14 SCC cases and
91 images from 5 SCLC

cases

AlexNet
Acc: 73.70%

GoogLeNet/InceptionV3
Acc: 66.80%

VGG16
Acc: 76.80%

ResNet50
Acc: 74.00%

Wang, 2022
[104]

Custom Architecture
with 8 Convolution and
1 Deconvolution layers

Binary:
positive/negative

lymph node metastasis

122 WSIs from
EBUS-guided TBNA

samples from
Tri-Service General

Hospital

Novel DL model
Pr: 93.40% in 1st and 91.80%

in 2nd experiment
Se: 89.80% in 1st and 96.30%

in 2nd experiment
DSC: 82.20% in 1st and

94.00% in 2nd experiment
IoU: 83.20% in 1st and

88.70% in 2nd experiment

Xie, 2022
[99] ResNet-18 Binary:

benign/malignant
404 WSIs from Shangai

Pulmonary Hospital

Acc: 91.67%
Sp: 94.44%
Se: 87.50%

AUC: 0.95 (95% CI: 0.90–0.99)

Lin, 2021
[100] ResNet-101 Binary:

benign/malignant

499 images from
97 patients from
National Taiwan

University Cancer
Center and National
Taiwan University
Hsin-Chu Hospital

Acc: 98.80% for patch-based
classification, 95.50% for

image-based classification
and 92.90% for patient-based

classification
Se: 98.80% for patch-based

classification
Sp: 98.80% for patch-based

classification

Teramoto, 2021
[101]

MIL approach with
attention mechanism

and several CNN
architectures as

backbone

Binary:
benign/malignant

Images from
322 patients Acc: 91.60%

Teramoto, 2020
[98]

Combination of
progressive growing

GAN and
VGG-16 architecture

Binary:
benign/malignant Images from 60 patients Acc: 85.30%
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Table 6. Cont.

1st Author, Year Technical Method Classification Dataset Performance Metrics

Gonzalez, 2020
[103]

A deep learning model
based on InceptionV3

Binary:
LCNEC/SCLC

114 cytological and
histological slides from

40 cases

Diff-Quik®-stained model
AUC: 1.00 with a threshold at
Se: 100.00% and Sp: 87.50%

Pap-stained model
AUC: 1.00 with a threshold at
Se: 100.00% and Sp: 85.70%

H&E-stained model
AUC: 0.88 with a threshold at
Se: 100.00% and Sp: 87.50%

Teramoto, 2017
[97]

Custom architecture
consisting of 3

convolutions and 3
Fully Connected layers

3-class:
ADC/SCC/SCLC 76 cases

Original images
Acc: 73.20% for ADC, 44.80%

for SCC, 75.80% for SCLC
and 62.10% overall
Augmented images

Acc: 89.00% for ADC, 60.00%
for SCC, 70.30% for SCLC

and 71.10% overall

Abbreviations: Acc, Accuracy; ADC, Adenocarcinoma; AUC, Area Under the Curve; CI, Confidence Interval;
CNN, Convolutional Neural Network; DSC, Dice Similarity Coefficient; EBUS, Endobronchial Ultrasound; GAN,
Generative Adversarial Network; H&E, Hematoxylin & Eosin; IoU, Intersection over Union; LCNEC, Large Cell
Neuroendocrine Carcinoma; MIL, Multiple Instance Learning; Pr, Precision; SCC, Squamous Cell Carcinoma;
SCLC, Small Cell Lung Cancer; Sp, Specificity; Se, Sensitivity; TBNA, Transbronchial Needle Aspiration; WSI,
Whole Slide Image.

3.3. PD-L1 Expression Status

PD-L1 is an immune checkpoint protein expressed on tumor cells and activated im-
mune cells [105]. In NSCLC patients, assessment of PD-L1 expression is pivotal for guiding
patients’ treatment selection with immune checkpoint inhibitors (ICIs). IHC is the currently
accepted diagnostic assay performed on formalin-fixed paraffin-embedded (FFPE) lung
tissue or cytological specimens [106]. There are different platforms for IHC interpretation,
PD-L1 antibodies, guidelines for evaluation and scoring, as well as positivity cut-offs for
immunotherapy selection. Currently, four IHC assays (28-8 and 22C3 from DAKO, SP263
and SP142 from Ventana) have been approved for use by the Food and Drug Administra-
tion (FDA). The 22C3 and 28-8 pharmDx (DAKO) IHC assays are companion diagnostics
for selecting patients for pembrolizumab and nivolumab, respectively [107,108]. SP142
and SP263 (Ventana) IHC assays are also FDA-approved for companion diagnostic to
atezolizumab. Evaluation of PD-L1 expression with the 22C3 and 28-8 pharmDx, as well
as SP263 (Ventana) assays, only refers to the PD-L1 expression on tumor cells, while, on
the other hand, the SP142 (Ventana) assay refers to tumor and immune cells staining [109].
As PD-L1 scoring algorithms determine the therapeutic choice and interobserver discor-
dance is common, it is conceivable that quantitative validation of PD-L1 expression by
DL algorithms may assist pathologists in their assessment. In a recent study, Hondelink
et al. developed a fully supervised DL model for PD-L1 TPS assessment in NSCLC WSIs
according to three cut-off points (<1%, 1–50%, and 50–100%) [110]. TPS prediction was in
concordance with the mean score of three pathologists in 79% of the cases. Misclassification
of some cases was noted when positive PD-L1 immune cells were present around the tumor
site, the intensity of PD-L1 positive neoplastic cells was weak, or when non-membranous
staining was detected. In a similar framework, Liu et al. performed tumor region seg-
mentation and nuclei detection for PD-L1 TPS prediction on SCC WSIs according to three
cut-off points (<1%, 1–49%, and ≥50%) [111]. Their proposed model’s predictions were
compared to the pathologist’s prediction with different experience levels. The model’s clas-
sification accuracy was 74.51%, higher than trainees (71.55%) but lower than subspecialist
and non-subspecialist pathologists (97.06% and 84.03%, respectively). In another study,
TPS assessment reached high performance in terms of sensitivity and specificity in both
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1% and 50% cut-off points [112]. The classification was performed on slides stained with
22C3 antibody, and the proposed patch-based dual-scale categorization method based on
VGG16 architecture achieved higher performance compared to VGG16. The study of Sha
et al. resulted in an AUC of 0.80 on a balanced testing cohort in classifying positive and
negative PD-L1 tumor cells [113]. In SCC-separated cases, the model achieved a lower
AUC compared to ADC cases (0.64 and 0.83, respectively), maybe due to an imbalance in
the training cohort. In the studies of Kapil et al., TPS was estimated by dividing the pixel
number of positive tumor cells by the total pixel number of positive and negative tumor
cells [114,115]. Of all the included studies estimating PD-L1 TPS, these two were the only
ones using slides stained with SP263 antibody with the cut-off point defined at 25%. In their
first study, fully- and semi-supervised network architectures were used for estimating TPS
in NSCLC specimens, with results agreeing with pathologists’ evaluation, while, in their
subsequent study, TPS estimation was performed with a GAN. Two classification problems
were addressed, namely, a binary task for epithelial and non-epithelial region segmentation
as well as TPS estimation. An additional dataset of WSIs stained with the epithelial marker
Pan-Cytokeratin was used for the binary segmentation task of the epithelial benign and
malignant regions. In the study of Wu et al., PD-L1 IHC slides stained with 22C3 assay
were used for training U-Net to perform tumor area detection and TPS calculation [116].
The model was highly consistent with trained pathologists and achieved high performance
when further tested in SP263 (Ventana) stained slides (accuracy of 0.9326 and 0.9624 for
22C3- and SP263-stained slides, respectively). Furthermore, the authors demonstrated that
the AI-based model could help untrained pathologists with TPS assessment by reducing
the time of microscopic examination. In the same framework, three automated workflows
based on DL, including both 22C3 (DAKO) and SP263 (Ventana) IHC assays, and two
cut-off points (<1%, ≥50%), achieved better performance in the <1% cut-off point [117]. The
model by Choi et al. achieved an area under the receiver operating characteristic (AUROC)
of 0.889 in detecting PD-L1 positive and negative tumor cells and estimating TPS value,
while it significantly increased the concordance of pathologists after a disagreement (ini-
tial/baseline concordance of 81.4% versus revised concordance of 90.2%) [118]. Aitrox’s AI
performance for PD-L1 expression by Huang et al. was comparable to those of experienced
pathologists, while it surpassed inexperienced ones (Table 7) [119].

Table 7. Characteristics of studies developing models for the assessment of programmed cell death
ligand 1 expression in lung cancer using histological data.

1st Author,
Year Technical Method Classification IHC Assay Dataset Performance Metrics

Cheng, 2022
[117]

MobileNetV2 for
classification and

YOLO for detection

3-class:
PD-L1+ tumor

cells/PD-L1+ immune
cells/PD-L1− tumor

cells

22C3 pharmDx
(DAKO) and

SP263 (Ventana)

1288 samples from
Zhejiang Cancer

Hospital

Best model
LCC 95% CI: 0.86–0.89

with PD-L1 (22C3) assay
and 0.81–0.91 with PD-L1

(SP263) assay

Choi, 2022
[118] Faster R-CNN

Binary:
PD-L1+/PD-L1−

tumor cells

22C3 pharmDx
(DAKO)

348 slides from
Samsung Medical

Center and 131 slides
from Seoul National
University Bundang

Hospital

AUROC: 0.89 for PD-L1+
cells and 0.81 for PD-L1−

cells
F1-score: 72.30% for

PD-L1+ cells and 72.20%
for PD-L1− cells

Huang, 2022
[119]

U-Net based
architecture

3-class: negative PD-L1
expression (TPS:

<1%)/low PD-L1
expression (TPS:

1–49%)/high PD-L1
expression (TPS: ≥50%)

22C3 pharmDx
(DAKO)

222 WSIs from Fudan
University Shanghai

Cancer Center

rs: 0.87
Acc: 79.13% for all
subsets, 85.29% for

negative TPS subset,
77.79% for low TPS

subset, and 72.73% for
high TPS subset
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Table 7. Cont.

1st Author,
Year Technical Method Classification IHC Assay Dataset Performance Metrics

Hondelink,
2022
[110]

A novel supervised
deep learning model
based on AIFORIA
CREATE software

(v4.6)

3-class:
TPS <

1%/1–49%/50–100%

22C3 pharmDx
(DAKO)

199 stage IV NSCLC
WSIs stained with

PD-L1 22C3 antibody
from Leiden

University Medical
Centre

ICC: 0.96 (95% CI:
0.94–0.97)

Cohen’s kappa: 0.68

Wu, 2022
[116]

A novel supervised
deep learning

algorithm based on
U-Net

Binary:
tumor/non-tumor

3-class:
TPS <

1%/1–49%/50–100%

22C3 pharmDx
(DAKO) and

SP263 (Ventana)

501 NSCLC WSIs
from Peking

University Cancer
Hospital and Tianjin
Medical University

Cancer Hospital

Binary
Acc: 93.26%
Sp: 96.41%
Pr: 92.48%
Re: 86.09%

F1-score: 88.71%
IoU: 80.51%

3-class
r: 0.94–0.95 in 22C3 assay
and 0.98 in SP263 assay

Kapil, 2021
[114]

DASGAN network:
an extension of

CycleGAN
architecture

An extension of the
deep survival

learning
methodology

Binary: epithelial/non-
epithelial

3-class: tumor PD-L1+
epithelial region/tumor

PD-L1− epithelial
region/other regions

(immune, stromal,
necrotic)

SP263 (Ventana)

56 WSIs stained with
Pan-Cytokeratin and

122 WSIs stained
with PD-L1 SP263

antibody

Binary
F1-score: 88.60%

3-class
F1-score: 85.00%

Wang, 2021
[112]

DSC-VGG-16: a
novel dual-scale

categorization-based
deep learning model

based on VGG-16

4-class: PD-L1+ tumor
cells/PD-L1− tumor

cells/PD-L1+ immune
cells/other region
3-class: maximum
counts of PD-L1+

tumor cell (TP1)/50%
PD-L1+ tumor cell of

TP1 (TP2)/25% PD-L1+
tumor cell of TP1 (TP3)

3-class: TPS <
1%/1–49%/50–100%

22C3 pharmDx
(DAKO)

300 NSCLC slides
stained with PD-L1
22C3 antibody from

Changhai and
Changzheng

hospitals

TPS prediction
F1-score: 90.24% with 1%

and 81.82% with 50%
cut-off

AUC: 0.97 with 1% and
0.99 with 50% cut-off

Se: 88.10% with 1% and
75.00% with 50% cut-off
Sp: 95.59% with 1% and
98.98% with 50% cut-off

Cohen’s kappa: 0.79 (95%
CI: 0.68–0.90)

Lcc: 0.88 (95% CI:
0.83–0.92)

Liu, 2021
[111]

Automated Tumor
Proportion Scoring

System: a novel deep
learning model using
Res50UNet for tumor
region segmentation

and MicroNet for
tumor nuclei

detection

3-class:
TPS <

1%/1–49%/50–100%

22C3 pharmDx
(DAKO)

96 SCC WSIs stained
with PD-L1 22C3

antibody from Fudan
University Shanghai

Cancer Center

Acc: 74.51%
MAE: 8.65 (95% CI:

6.42–10.90)
r: 0.94

Sha, 2019
[113] Modified ResNet-18

3-class: tumor
PD-L1+/tumor
PD-L1−/other

22C3 pharmDx
(DAKO) 130 NSCLC samples

AUC: 0.80 for all cases,
0.83 for ADC cases and

0.64 for SCC cases

Kapil, 2018
[115]

Auxiliary Classifier
GAN

Binary:
PD-L1+/PD-L1−

tumor regions
SP263 (Ventana)

270 NSCLC slides
from NCT01693562
and NCT02000947

clinical trials

Lcc: 0.94
r: 0.95

MAE: 8.00
OPA: 0.88
NPA: 0.90
PPA: 0.85

Abbreviations: Acc, Accuracy; ADC, Adenocarcinoma; AUC, Area Under the Curve; AUROC, Area Under
the Receiver Operating Characteristic; CI, Confidence Interval; CNN, Convolutional Neural Network; GAN,
Generative Adversarial Network; ICC, Interclass Correlation Coefficient; IHC, Immunohistochemistry; IoU,
Intersection over Union; LCC, Linear Correlation Coefficient; Lcc, Lin’s concordance coefficient; MAE, Mean
Absolute Error; NPA, Negative Percent Agreement; NSCLC, Non-Small Cell Lung Cancer; OPA, Overall Percent
Agreement; PD-L1, Programmed cell Death Ligand 1; PPA, Positive Percent Agreement; Pr, Precision; r, Pearson’s
correlation coefficient; Re, Recall; rs, Spearman’s rank correlation coefficient; SCC, Squamous Cell Carcinoma; Se,
Sensitivity; Sp, Specificity; TPS, Tumor Proportion Score; WSI, Whole Slide Image.
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3.4. Deep Learning Approaches

From a clinical point of view, the main challenges in Digital Pathology are (i) the
extremely large size of the images produced by whole-slide scanning and the requirement
for pathologists to evaluate the entire specimen; (ii) the digitization of annotated findings of
interest, which is a very demanding and time-consuming process. The latter, combined with
the fact that DL techniques require a large amount of training data, intensifies the problem
of the provision of reliable results. Many studies presented in the literature attempt to
overcome the lack of annotations by using weakly supervised or semi-supervised learning
techniques instead of fully supervised approaches. These approaches interact with known
CNN architectures to classify patches of images or to detect tissue alterations and/or
morphological features of cancer. Weakly supervised learning is a branch of machine
learning (ML) that aims to use less or lower quality labels for training predictive models.
It works by leveraging the unlabeled data or refining the labels to improve the model
performance. In terms of Digital Pathology, weakly supervised methods use a small
number of annotations by selecting informative patches to classify the WSIs [25]. General
approaches of weakly supervised learning in histopathological images have been proposed,
employing VGG-16 [25], EM-CNN [52], EfficientNet-B3 [20], and ResNet [80]. Furthermore,
most of the presented studies in this category employ MIL [34,85], which is a weakly
supervised learning technique that groups data points into bags. Each bag is labeled with
the class by the instance count of that particular class. This technique is well-suited for
histology slide classification because it is designed to operate on weakly-labeled images [65].
For example, clustering-constrained-attention MIL (CLAM), developed by Lu et al. [47], is
a weakly supervised method that uses attention-based learning to automatically identify
subregions of high diagnostic value and, thus, accurately classify the whole slide. Other
works combine the MIL approaches with well-known architectures of CNNs, such as
ResNet [48,65,95], EfficientNetB1 [22], and SimCLR [59]. Moreover, Teramoto et al. [101]
compared several CNNs as backbones (LeNet, AlexNet, ResNet, Inception, DenseNet) using
MIL and an attention mechanism, while Hou et al. [57] presented 14 different combinations
of expectation maximization (EM)-based MIL approach with Logistic Regression and
Support Vector Machine (SVM). Finally, another work that attempted to overcome the lack
of labeled data employs a semi-supervised approach inspired by YOLOv5 for the detection
of micropapillary lung ADC. This method implements a teacher model, which is directly
trained by the ground truth data, and a student model, which indirectly learns from the
teacher model [68].

From a technical perspective, the extremely large size of images and the complexity
of classification or detection problems in these images as well generate a very demanding
process in terms of computational resources and training time of supervision. Typically,
researchers can follow two main different approaches: (i) to develop a custom architecture,
implementing all the components of both convolutional and fully connected layers and
defining all the super parameters of the network or (ii) to use already pre-trained archi-
tectures and take advantage of transfer learning from other datasets (i.e., IMAGENET).
Custom architectures can be more accurate than pre-trained CNNs with transfer learning
if they are designed well for a specific problem and trained on an adequate set of images.
However, they require more time and resources to develop and train. For these reasons,
custom CNNs are mostly less deep than the pre-trained models to overcome the limitations
of the demanding implementation and the computational requirements. Thus, most of the
presented custom architectures for lung cancer consist of up to three convolution layers as
well as up to three fully connected layers [21,49,61,74,82,97]. One of these works utilizes
two different color spaces developing two same feature extractors, one for RGB and one
based on HLS [82]. More extended architectures schemas have also been presented, devel-
oping six convolutions and two dense layers [84] or more than five convolution layers along
with one devolution for upscaling [40,104]. Finally, the deeper CNN in this category, called
Deep Hipo, operates on both magnifications (20× and 5×), and it is based on CAT-NET
developing 19 layers in total [28].
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As a result of the limited implementation effort needed, the vast majority of DL
methods presented in the literature for lung cancer leverage well-known Convolutional
Networks architectures, which are often pre-trained in different datasets. Several of
these use architectures included in cloud-based platforms or frameworks, such as HALO-
AI [30,78,81,89], HEAL Platform [50], AIFORIA [110], and Caffe [53,64,78]. In these cases,
many well-known CNNs have been employed. For example, Wang et al. [50] used Incep-
tionV3, ResNet50, VGG19, MobileNetV2, ShuffleNetV2 and MNASNET, while Yu et al. [53]
employed AlexNet, GoogLeNet (InceptionV3), VGG-16 and ResNet-50. For classifica-
tion problems, the most employed architectures seem to be the ResNet-based models,
such as ResNet-18 [63,93,99], ResNet-50 [69,83], and ResNet-101 [36,100], as well as the
Inception-based models [55,56,86]. Apart from these, U-Net [116,119], Xception [58,94,96],
Hover-Net [76,83] and InceptionV3 [41] have also been used in several studies. In compara-
tive studies or studies which use multiple architectures of CNNs, several other models have
been presented, such as NASNetLarge [27], EfficientNet [26], SqueezeNet [39], etc. On the
other hand, few approaches utilized known DL detectors for segmentation or quantitation
purposes. Choi et al. [118] detected PD-L1 positive and PD-L1 negative tumor cells using
Faster R-CNN, while Cheng et al. [117] for the same problem employed YOLO. Finally,
Wang et al. [75] detected six different classes of cells segmenting the images with Mask
R-CNN.

More sophisticated DL methods have been proposed, either modifying known archi-
tectures of CNNs or combining two differing CNN architectures and CNN architectures
with classic ML techniques. Most of the modified architectures are based on ResNet.
DeepRePath [72] is a novel CNN model based on ResNet-50 that operates on different
magnifications building two CNNs, while a similar approach proposed by Sha et al. [113]
developed two branches for the processing of small and large field-of-view features of
PD-L1 classes. On the other hand, SE-ResNet-50 [38] focuses on the improvement of the ac-
tivation function introducing CroRELU. Other novel modifications of known architectures
are the KimiaNet22 based on DenseNet [44], the MR-EM-CNN, which extracts hierarchical
multiscale features on an EM-CNN model [43], the DSC-VGG16, which provides a dual
scale categorization of PD-L1 classes based on VGG16 [112], the WIFPS model [31] based
on EfficientNet-B5, and the novel architecture proposed by Gonzales et al. [103], which
utilizes three different stains. Finally, Rączkowski et al. [79] developed a novel architecture
called ARA-CNN, which is inspired by both ResNet and DarkNet models.

By combining different CNN models or CNNs with classic ML techniques, researchers
attempt to provide better performance in several categories of lung cancer problems.
Combinations of different CNN models presented in the literature are (i) ResNet-50
with U-Net [111], (ii) EfficientNet with U-Net [77], and (iii) DeepLadV3 with Incepetion-
ResNetV2 [71]. By combining DL and ML approaches, Wang et al. [42] introduced the
LungDIG architecture, which employs an Inception-V3 model along with a classic mul-
tilayer perceptron. Two other approaches extract deep features utilizing the convolution
layers of CNNs and then provide predictions using logistic regression [19,62]. SVM has
also been used in cooperation with CNN models. Perez et al. [46] merged information
from ResNet-18 from the processing of WSIs along with SVM from RNA-sequencing data,
while Toğaçar et al. [45] and Hu et al. [88] combined SVM with DarkNet and Xception
models, respectively. Finally, principal component analysis (PCA) techniques have been
used along with CNNs architectures for dimensionality reduction of the extracted fea-
tures [18,88]. The contribution of DL in lung cancer presents several other methods that
employ Graph-based CNNs, GANs, and autoencoders. Graph CNNs have been used to
identify regions or cell structural features that are highly associated with the class label. In
this category, three approaches have been proposed, where Graph-based modules are com-
bined with AlexNet [54], VGG16 [66], and ResNet. [37]. GANs are mostly used to generate
informative synthetic sets of images in order to increase the training set and, thus, avoid
overtraining issues. DASGAN, which is an extension of the CycleGAN architecture, has
been introduced [114], merging two stains and leading deep survival learning methodology.
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Teramoto et al. introduced a progressive growing approach of GANs (PGGAN) combined
with the VGG-16 model [98], while Mayer et al. [92] combined GANs with semi-supervised
learning. Another auxiliary classifier GANs (AC-GANs) approach has been proposed by
Kapil et al. [115] to generate classifier models and detect ALK and ROS1 fusions directly
from H&E images. Finally, an unsupervised DL model that employs stacked autoencoders
has been developed by Sheikh et al. [67].

4. Discussion

DL is progressively embraced in Pathology, especially for breast, colorectal, prostate,
and lung cancer diagnosis, transforming the current landscape of medicine [120–131]. AI
could play a pivotal role in the multidisciplinary approach to diagnosis and patient man-
agement. As already underlined above, in lung cancer, classification, accurate diagnosis
and subtyping depend on distinct morphological features among cancer cells combined
with staining patterns, tumor biological characteristics, and molecular data of mutations.
Lung cancer histology is characterized by cellular heterogeneity, challenging the diag-
nostic process [132]. Several histological features can be defined by examining a single
H&E-stained slide, such as glandular differentiation in lung ADC, the presence of kera-
tinization and intercellular bridges in SCC, as well as scant cytoplasm and poorly defined
cell borders in SCLC. However, for differential diagnosis, special immunohistochemical
staining is required for accuracy. According to the WHO guidelines, the terminology
for lung cancer classification in small biopsies or cytology and resection specimens must
follow the proposed criteria [2]. For example, in resection specimens, lung ADC cases must
be morphologically determined by the predominant histological pattern (lepidic, acinar,
papillary, micropapillary, solid). The distinction of lung neuroendocrine tumors (NETs)
directly from the H&E slide can also be challenging, whereas NETs are further classified as
typical carcinoids, atypical carcinoids, SCLC, and LCNEC. Given that small biopsies and
cytology specimens are encountered for diagnosis in about 70% of the patients, the available
diagnostic material is often limited and thus, every effort should be employed to preserve
sufficient material for molecular analysis. Therefore, it is strongly recommended to use only
a limited panel of biomarkers, including the most representative ones for immunostaining
for differential diagnosis. However, this approach can hamper accurate diagnosis. Here,
AI could be of great help to the pathologist by guiding with high accuracy the prevailing
diagnosis from an H&E-stained slide.

Data extraction of our systematic review demonstrated that DL-based methodologies
for lung cancer diagnosis are mainly performed on histological H&E WSIs, with ADC
versus SCC being the predominant classification task, as shown in Table 2. All the studies
were performed with high classification accuracy for identifying ADC and SCC. Secondly,
many studies utilized different CNN architectures for classifying ADC, SCC, and SCLC
in small biopsies. The higher performance was in the study of Kanavati et al. [24] (AUC
of 0.94–0.99), which included a large number of images. Only two studies designed a
classification task for identifying ADC, SCC, SCLC, and LCNEC on WSIs [27,28]. This
4-class task represents the realistic daily practice of a pathologist. In both studies, the
AUC was over 0.90, encouraging the fact that such DL models could be employed and of
great value in a pathology laboratory. The third most common approach in histological
slides was the employment of DL-based models for lung ADC histological subtyping. The
studies of Sheikh [67] and DiPalma et al. [65] achieved the highest classification accuracy
performing a 5-class problem (lepidic, acinar, papillary, micropapillary, solid). Albeit
limited in number, eight noteworthy studies utilized cytological slides for lung cancer
diagnosis or classification. Four of them performed a binary classification task for benign
and malignant cell detection [98–101]. All studies showed good classification accuracy;
however, compared to the classification problems performed on histological data, the
dataset was limited in the majority of the studies. In addition, in the cytology section,
the most common classification task for lung cancer (ADC, SCC, and SCLC) resulted in
modest classification accuracies, including state-of-the-art architectures (66–77% and ~71%),
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with the main limitation being the small number of images included for training (55 and
76 cytological slides, respectively) [97,102]. Prediction of OS and risk of recurrence as well
as identification of prognostic features, were also the aim of many research papers, in which
the predicted output emerged after nuclei segmentation, TILs quantification, identification
of gene expression, or clinical data. The highest AUC (0.917) for ALK rearrangements
prediction was in the study by Chen et al. [31], while EGFR mutations were predicted
with an AUC of 0.824, 0.84, and 0.83 in the studies by Wang, Yang, and Coudray et al.,
respectively [31,50,56,87]. In the most recent study by Pao et al., the prediction of EGFR
mutational status in 2099 lung ADC tissue specimens reached an AUC of 0.87 [95]. As far
as PD-L1 quantification is concerned, the majority of studies included datasets consisting
of WSIs stained with the 22C3 antibody. The remaining studies included slides stained
with the SP263 antibody or a combination of 22C3 and SP263 antibodies. For quantitative
problems, such as TPS estimation for PD-L1 expression, labeling ground truth must be as
consistent as possible to avoid misclassification concerning the specific cut-off points for
PD-L1 evaluation DL-based models for PD-L1 TPS estimation offer several advantages
to pathologists as TPS quantification is a time-consuming process prone to subjective
estimation. Despite the extensive research and progress on histological images, further
research on cytological material, including a larger dataset, is considered essential for
optimizing classification performance.

According to the technical point of view, summarizing the methods presented in the
literature, most of them (78 studies) developed supervised learning methodologies, basi-
cally dealing with classification problems of the medical question. Specifically, 11 studies
implemented custom CNN architectures, 36 studies employed known models with or
without transfer learning, 11 studies modified known architectures, and, finally, 14 studies
combined CNNs either with each other or with ML techniques. Apart from the above
crisp categories of supervised learning, the category named “other methods” contained six
supervised, one weakly supervised, and one unsupervised method (eight studies in total).
Weakly supervised methods are 13 in total, while there are one semi-supervised and one
unsupervised method (Figure 2).

Cancers 2023, 15, 3981 26 of 35 
 

 

mutational status in 2099 lung ADC tissue specimens reached an AUC of 0.87 [95]. As far 
as PD-L1 quantification is concerned, the majority of studies included datasets consisting 
of WSIs stained with the 22C3 antibody. The remaining studies included slides stained 
with the SP263 antibody or a combination of 22C3 and SP263 antibodies. For quantitative 
problems, such as TPS estimation for PD-L1 expression, labeling ground truth must be as 
consistent as possible to avoid misclassification concerning the specific cut-off points for 
PD-L1 evaluation DL-based models for PD-L1 TPS estimation offer several advantages to 
pathologists as TPS quantification is a time-consuming process prone to subjective esti-
mation. Despite the extensive research and progress on histological images, further re-
search on cytological material, including a larger dataset, is considered essential for opti-
mizing classification performance. 

According to the technical point of view, summarizing the methods presented in the 
literature, most of them (78 studies) developed supervised learning methodologies, basi-
cally dealing with classification problems of the medical question. Specifically, 11 studies 
implemented custom CNN architectures, 36 studies employed known models with or 
without transfer learning, 11 studies modified known architectures, and, finally, 14 stud-
ies combined CNNs either with each other or with ML techniques. Apart from the above 
crisp categories of supervised learning, the category named “other methods” contained 
six supervised, one weakly supervised, and one unsupervised method (eight studies in 
total). Weakly supervised methods are 13 in total, while there are one semi-supervised 
and one unsupervised method (Figure 2). 

 
Figure 2. Summary of DL methods for lung cancer. 

To conclude about the most commonly used known architectures, the employed ar-
chitectures have been counted for each study, and the results are presented in Figure 3. 
Note that several studies have not used known architectures (for example the studies that 
develop custom CNN architectures), while several studies employ more than one. 

Figure 2. Summary of DL methods for lung cancer.

To conclude about the most commonly used known architectures, the employed
architectures have been counted for each study, and the results are presented in Figure 3.
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Note that several studies have not used known architectures (for example the studies that
develop custom CNN architectures), while several studies employ more than one.
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Our review shows that many of the employed DL methods in lung cancer are par-
ticularly extensive and sophisticated, as well as scalarly evolving into new techniques
following the development of AI. According to the comparative studies presented in this
review, DL methods overall outperform traditional ML techniques. This superiority of DL
could partially be explained by the quality of the features feeding the fully connected layers.
The features in CNNs are not selected subjectively by the specialists but are automatically
extracted from the convolutional layers, maximizing the carried information.

Comparing the reviewed architectures, it is evident from the results of the review
that ResNet-based and Inception-based architectures have been used in about half of
the methods presented in the literature, showing high performances compared to other
architectures. The existence of residual blocks in most of these architectures (all ResNet
and InceptionV4 models) seems to operate efficiently and effectively in biopsy image
processing. Jumping features directly from a convolutional layer to many subsequent
layers operates like merging features from different digital magnifications of scanning.
Such a procedure seems to make sense for biopsy imaging, where different magnifications
of scanning provide different knowledge about the microenvironment of the cells.

It is also meaningful to summarize the limitations of the DL techniques in lung cancer.
Table 8 emphasizes several limitations of the application of the proposed DL methodologies
in lung cancer diagnosis that we were able to identify based on our systematic review.
Some of them are generally well-known constraints, while some others are related to the
imaging problem of lung biopsies.

Our findings demonstrate that the field of Digital Pathology for lung cancer diagnosis
has evolved rapidly in the last 5 years. However, at least for most laboratories, the use of
these capabilities in daily clinical practice is still in its early stages. Adopting a fully digital
workflow can be challenging, and limitations must be overcome for implementation in the
clinical setting. Digital slide generation is the first step in moving from traditional to Digital
Pathology. WSI scanners provide high-quality images of histological and cytological slides.
These images can be uploaded and remotely reviewed by pathologists and cytologists on
a computer, while they can be available for review by multiple pathologists. However,
the organization and storage of large amounts of digitized data require high computing
power, storage space, technical infrastructure, and backup capability. Furthermore, as a
consequence of digitized data, ethical issues are arising concerning the sharing of sensitive
personal data. DL models require large amounts of data for training, testing, and validation,
which are retrieved from hospital archives. Therefore, a regulatory framework is essential to
protect patient’s rights and ensure the security of sensitive medical data and confidentiality.
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Table 8. Deep learning limitations for lung cancer applications.

Limitation Property

Lack of interpretability and
explainability

According to the review, only a few approaches focus on
performing tasks that require common sense reasoning, such
as understanding the physical characteristics of the cells.
More explainable artificial intelligence approaches could be
proposed in the future.

Training limitations with
inadequate samples

Deep learning algorithms require massive amounts of labeled
data to achieve good performance, and thus, thousands of
annotations must be performed by pathologists.

Less powerful in problems
beyond classification

Deep learning algorithms are mainly designed for
classification problems, such as image recognition and natural
language processing. They are less effective for other types of
problems, such as regression, clustering, etc.

Lack of global generalization Deep learning algorithms often overfit the training data and
fail to generalize to new or unlabeled data. For example, a
deep learning model may perform well on images from a
specific microscopic scanner but poorly on images from a
different microscope.

High memory and
computational cost
requirements

The training of deep models using extremely large size of
images, such as biopsies, constitutes a very demanding
process in terms of computational resources and training time
of the supervision.

5. Conclusions

The field of Digital Pathology is evolving rapidly and, in the following years, is ex-
pected to be an inextricable part of a pathology laboratory. As highlighted above, AI-based
approaches in Pathology are accompanied by several advantages, yet many challenges
remain to be considered. Research for lung cancer diagnosis, prognosis, and prediction
using DL methods is constantly improving to provide more accurate and reliable results.
Moreover, for quantitative tasks, such as PD-L1 TPS estimation, the need for AI-based
models is underlined because of their ability to provide reliable and objective assessment,
eliminating subjective estimations that lead to intra- and inter-observer variability. The
ongoing research and the efforts being made are at the forefront of transforming cancer
diagnosis and treatment.
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