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Simple Summary: Lung cancer is the leading cause of mortality in cancer patients, causing an
estimated 1.8 million deaths in the year 2020. However, the available therapeutic options exert
numerous adverse effects and adequate therapeutic activity is still to be achieved. Therefore, there
is a need for the development of safe and effective treatment for lung cancer. Phytochemicals are
well documented for their anticancer potential against lung cancer and have a strong rationale
for further investigation as a potential chemotherapeutic agent. Notably, phytochemicals act by
modulating several signaling pathways, promoting apoptosis, oxidative stress, and disruption of the
mitochondrial membrane, inhibiting angiogenesis, and regulating transcription factors. Therefore, an
exhaustive and detailed review was carried out to establish the potential role of phytochemicals by
conducting a critical analysis of in vitro, in vivo, and clinical evidence in mitigating lung cancer, with
emphasis on their impact on signaling pathways.

Abstract: Lung cancer is a heterogeneous group of malignancies with high incidence worldwide.
It is the most frequently occurring cancer in men and the second most common in women. Due
to its frequent diagnosis and variable response to treatment, lung cancer was reported as the top
cause of cancer-related deaths worldwide in 2020. Many aberrant signaling cascades are implicated
in the pathogenesis of lung cancer, including those involved in apoptosis (B cell lymphoma pro-
tein, Bcl-2-associated X protein, first apoptosis signal ligand), growth inhibition (tumor suppressor
protein or gene and serine/threonine kinase 11), and growth promotion (epidermal growth factor
receptor/proto-oncogenes/phosphatidylinositol-3 kinase). Accordingly, these pathways and their
signaling molecules have become promising targets for chemopreventive and chemotherapeutic
agents. Recent research provides compelling evidence for the use of plant-based compounds, known
collectively as phytochemicals, as anticancer agents. This review discusses major contributing sig-
naling pathways involved in the pathophysiology of lung cancer, as well as currently available
treatments and prospective drug candidates. The anticancer potential of naturally occurring bioactive
compounds in the context of lung cancer is also discussed, with critical analysis of their mechanistic
actions presented by preclinical and clinical studies.
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1. Introduction

Lung cancer represents one of the most frequently diagnosed malignancies globally,
falling behind only prostate cancer in males and breast cancer in females [1,2]. As most
cases are discovered as locally advanced or metastatic disease, lung cancer has a notoriously
poor five-year survival rate (18.6%) compared with other cancers, such as colorectal (64.5%),
breast (89.6%), and prostate (98.2%) [2–4]. Depending on disease progression and patient
goals, several treatment options may be used against lung cancer, including chemotherapy,
radiotherapy, immunotherapy, and surgical intervention [5]. Historically, broad-spectrum
chemotherapy has been the mainstay of treatment, but targeted therapies have begun to
emerge as highly efficacious options, thereby shifting focus towards personalized medicine.
This advancement is made possible by extensive and ongoing research on the cellular signal
transduction pathways disrupted in lung malignancies [6].

Despite new therapies and ongoing developments, cancer of the lung was deemed the
number one cause of cancer-related deaths worldwide in 2020, claiming an estimated 1.8
million lives [7]. Unfortunately, current therapeutic options are not providing adequate
response and are frequently accompanied by significant adverse effects [2]. Approved
agents routinely used in medical oncology for the treatment of lung cancer are notorious
for their toxic effects. Many first-line drugs are documented to have toxicity such as
celecoxib [8], carboplatin, or cisplatin in combination with oxaliplatin [9] and docetaxel [10].
The need for novel, safe, and effective treatments for lung cancer is further underscored
in the setting of recurrent and drug-resistant cancers [3,4]. Ultimately, the high mortality
and frequent adverse effects of classic treatments serve as an impetus to explore medicinal
plants for their pharmacological beneficence.

Plant-based metabolites have been shown to possess anticancer activity in the context
of lung malignancies [11]. Furthermore, various challenges associated with the effective
and safe use of plant metabolites have been overcome due to the new approaches used
in the pharmaceutical industry [12–14]. Specialized plant-derived metabolites are strong
contenders as anticancer drugs due to their reduced toxicity and high efficacy against
lung cancer [15]. Plant metabolites exert their anticancer activity via different mechanisms
in lung cancer but act primarily by inhibiting cellular metabolism, thereby preventing
tumor cell proliferation [16,17]. Previous reviews have attempted to capture the broad
scope of phytochemicals in the context of lung cancer. One review highlights the structure–
activity relationship of various bioactive compounds in regard to non-small cell lung cancer
(NSCLC) only and failed to provide significant insight on mechanisms of action [18]. In
another review, the role of natural products was discussed in the context of lung cancer,
but this study’s discussion of phytochemicals was limited to their targeting of the tumor
microenvironment [17]. Another article discusses the anticancer effects of various phyto-
chemicals in lung cancer stem cells but was limited in scope by its selection of only nine
phytochemicals and emphasis on stem cells [19]. In one more publication, the roles of a
few phytochemicals were discussed against lung cancer biomarkers [20]. Still, limitations
in scope are seen in other publications by narrowing inclusion criteria to only one group
of phytochemicals, e.g., phenolics [21]. Numerous phytochemicals were recognized, and
their mechanisms of action were explained. However, the review was not utterly com-
prehensive, and since then, several in vitro, in vivo, and clinical studies were conducted
in the past few years, which have identified numerous additional phytochemicals that
displayed anticancer effects in lung cancer [16]. An exhaustive and detailed review of
the role of phytochemicals against lung cancer, including a focused discussion of their
mechanistic action as presented in preclinical and clinical studies, is still lacking. There-
fore, this review is an attempt to provide an up-to-date discussion of all phytochemicals
relevant to the treatment or prevention of lung cancer, with emphasis on their impact on
signaling pathways.
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2. Pathophysiology of Lung Cancer

The World Health Organization (WHO) broadly divides lung cancers into two major
categories: small cell lung cancer (SCLC) and NSCLC [22]. Of the two, NSCLC is more
prevalent and constitutes approximately 80% of lung cancers. SCLC, however, is more
aggressive, develops rapidly, and is more prone to metastasis compared to NSCLC [23,24].
Whereas SCLC is more central in location with its common site of origin in the bronchial
epithelium [22], NSCLC is more peripheral and essentially originates in the epithelium of
either bronchioles or alveoli [25]. Moreover, SCLC originates from neuroendocrine cells,
whereas NSCLC originates from various types of epithelial cells [26]. NSCLC is further
divided into three histological groups, including centrally located squamous cell carcinoma,
distally located adenocarcinoma, and large cell lung cancer, which is variable in its loca-
tion [3,26,27]. Similarly, SCLC is categorized into limited and extensive types based on if
the confined borders of SCLC are limited to the ipsilateral hemithorax and the associated
lymph nodes or if there is any spread of the malignancy to areas beyond the thorax [24,28]
(Figure 1). Regardless of the varying subtypes, all lung cancers follow a similar course
of events stemming from genetic mutations which usually occur following exposure to
carcinogens, eventually followed by clonal expansion of the implicated cells [29].
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Figure 1. Various types of lung cancer. Lung cancer is categorized into small cell lung cancer (SCLC)
which accounts for 15% of all lung cancers and non-small cell lung cancer (NSCLC) which accounts for
the remaining 85%. SCLC originates from pulmonary neuroendocrine cells and is further categorized
into limited SCLC, characterized by involvement of the ipsilateral hemithorax, and extensive SCLC,
which extends to the contralateral hemithorax or beyond. NSCLC is subdivided into squamous cell
carcinoma (SCC), which comprises 30% of all NSCLC cases and originates from lung basal cells,
and non-squamous cell carcinoma (NSCC) that encompasses 70% of all NSCLC incidences. Ninety
percent of cases of NSCC are those of adenocarcinoma that originates from alveolar epithelial cells;
only 10% of cases of NSCC are those of large cell carcinoma which exhibits tremendous heterogenicity
in its origin.

Two major hypotheses have been put forth to best describe the pathogenesis of lung
cancer, namely “the field of cancerization” and “the field of injury” theories (Figure 2) [27].
Field of cancerization is based upon observations made by Slaughter in the year 1944 [30],
later expanded upon by Auerbach et al. [31] who reported serious histological changes in
the bronchial epithelium as a result of cigarette smoking in 1957. According to this theory,
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carcinogens induce extensive genetic aberrations that can be seen in the regions with a
neoplasm and immediately adjoining respiratory epithelium, more like involving a patch
or field of histological changes that develop into cancer [29]. Although there may be no
apparent morphological changes, the normal cells in a field of cancerization are replaced
by tumorigenic cells owing to carcinogen-induced genetic mutations long before an actual
cancerous lesion develops [32]. Therefore, even after the tumor develops and is surgically
removed, the field of cancerization remains, resulting in secondary tumorigenesis [33].
The field of injury describes extensive histological changes that occur throughout the
carcinogen-exposed areas of the respiratory tract, including the epithelial tissues in the
airway, as well as the lungs, suggesting host response upon carcinogen encounter [34]. This
host response is responsible for inflammation and genetic aberrations which may result in
the genesis of a neoplasm [30].
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Figure 2. Field of cancerization and field of injury theories of lung cancer development. Field
of cancerization is based upon the replacement of normal pulmonary cells by tumorigenic cells
upon exposure to carcinogens. These cells go on to produce genetic aberrations, ultimately leading
to carcinogenesis in the exposed areas of the lungs. Field of injury-mediated tumorigenesis is an
outcome of carcinogen-induced genetic mutations and tissue injury as a result of extensive host
response. These carcinogen-induced tumorigenic lesions are not restricted to a particular region or
field (as in field of cancerization) but are widespread in the entire respiratory tract and lungs.

NSCLC is majorly an outcome of Kirsten rat sarcoma viral oncogene (KRAS) muta-
tions and epidermal growth factor receptor (EGFR) mutations. Other genes which may
harbor mutations and contribute to NSCLC in some capacity include anaplastic lymphoma
kinase (ALK), mesenchymal epithelial transition factor (MET), V-Raf murine sarcoma viral
oncogene homolog B (BRAF), mitogen-activated protein kinase (MAPK) or extracellular
signal-related kinase (ERK) kinase (MEK), and rearranged during transfection (RET) muta-
tions. In contrast, gene alterations most typically seen in the setting of SCLC include muta-
tions of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA),
fibroblast growth factor receptor 1 (FGFR1), and phosphatase and TENsin homolog gene
(PTEN) [35], which are addressed in subsequent sections. Inactivating mutations in the
tumor suppressor TP53 and retinoblastoma (RB) 1 genes are witnessed ubiquitously in
approximately 90% of the cases of SCLC [36,37]. Similarly, inactivation of RB tumor sup-
pressor gene is also a very common finding in SCLC [38]. These genetic mutations in
NSCLC and SCLC are considered to be the major oncogenic drivers due to their ability
to affect various upstream and downstream signaling molecules of numerous pathways,
including the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian
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target of rapamycin (mTOR) pathway (PI3K/Akt/mTOR pathway); rat sarcoma virus gene
(RAS)/rapidly accelerated fibrosarcoma (RAF)/MAPK or ERK kinase (MEK)/ERK path-
way (RAF/MEK/ERK pathway); and Janus kinase (JAK)/signal transducer and activator
of transcription (STAT) transduction pathway (JAK/STAT pathway) [35].

3. Cell Signaling Pathways in Lung Cancer

Lung cancer is a product of aberrations in normal cell function, including oxidative
stress, genetics, and multiple signaling pathways [39,40]. Of the signaling pathways im-
plicated in lung cancer, receptor tyrosine kinases (RTKs) are most frequently involved
in carcinogenesis. These transmembrane receptors are further involved in triggering a
multitude of signaling cascades that ultimately result in activation of prosurvival onco-
genes, such as X-linked inhibitor of apoptosis protein (XIAP), myeloid cell leukemia se-
quence 1 (Mcl-1), survivin, and B cell lymphoma protein-2 (Bcl-2). Additionally, RTKs
promote the inactivation of the proapoptotic genes, such as Forkhead box O (FOXO), fur-
ther promoting cell proliferation, survival, and cell cycle progression [41,42]. The major
signaling pathways implicated in the pathogenesis of lung cancer include RAF/MEK/ERK,
PI3K/Akt/mTOR, and JAK/STAT signaling. The detailed role of these pathways is pre-
sented in the present section.

3.1. RAS/RAF/MEK/ERK Pathway

The RAF/MEK/ERK signal transduction pathway is a major player involved in cell
proliferation, apoptosis, and senescence [43,44] and has been shown to be an active par-
ticipant in both NSCLC [45] and SCLC [46]. RAS encodes a G protein with guanosine
triphosphatase activity [47] and acts as a crucial scaffold between the cell surface recep-
tors and various downstream signaling pathways responsible for cell survival and cell
proliferation. These cell surface receptors include EGFR and fibroblast growth factor re-
ceptor (FGFR). Downstream signaling cascades include the PI3K/Akt/mTOR pathway;
RAS/RAF/MEK/ERK pathway [48]; and Ras-like (Ral) guanine nucleotide exchange fac-
tors (GEFs)/Ral [49]. Upon binding of growth factors to their respective receptors, RAS is
activated with the aid of the growth factor receptor-bound protein 2 (Grb2)/son of sevenless
(SOS) coupling complex [50]. RAS then undergoes a conformational change, binds GTP,
and further recruits RAF (A-RAF, B-RAF, or RAF-1). Upon binding to the cell membrane,
RAF undergoes dimerization, allowing removal of the inhibitory actions of RAF kinase.
RAF further associates with proteins such as heat shock protein 90 (HSP90) which aids in
stabilizing the RAF dimer [49]. RAF dimer then triggers phosphorylation–activation of
downstream MEK (MEK1 or MEK2), which activates ERK (ERK1 or ERK2). ERK undergoes
dimerization and translocates to the nucleus to regulate the transcription of genes like
c-Fos, c-Jun, c-Myc, CREB, MSK, and ELK-1. These genes are crucial regulators of cell cycle
progression and proliferation.

Mutations in KRAS, Harvey rat sarcoma virus (HRAS), and neuroblastoma rat sarcoma
viral oncogene homolog (NRAS) oncoproteins of the RAS superfamily have been reported
in various cases of NSCLC. Amongst these genes, KRAS is the most frequently mutated,
primarily in adenocarcinomas and to a lesser extent in squamous cell carcinoma [48].
Contrarily, KRAS mutations are a rare finding in SCLC [38]. Missense mutation resulting
in replacement of glycine with cysteine at codon 12 (KRAS G12C mutation) is the most
commonly recorded mutation of KRAS in NSCLC. KRAS mutations are strongly associated
with smoking [47]. Unlike KRAS mutations, mutations in BRAF are less frequent and
usually found in NSCLC patients who are non-smokers [51].

3.2. PI3K/Akt/mTOR Pathway

The PI3K/Akt/mTOR pathway is chiefly responsible for the development and exac-
erbation of lung cancers. PI3K/Akt/mTOR signal transduction is initiated upon binding
of growth factors to the cell surface receptor tyrosine kinases (RTKs). These RTKs include
vascular endothelial growth factor receptor (VEGFR), human epidermal growth factor
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receptor-2 (HER2), insulin-like growth factor receptor (IGFR), epidermal growth factor re-
ceptor (EGFR), and platelet-derived growth factor receptor (PDGFR). This ligand–receptor
binding triggers localization of PI3K to the plasma membrane via the p85 (regulatory) sub-
unit of PI3K, which binds to the RTK. This is followed by phosphorylation and dimerization
of PI3K. Upon binding of the regulatory p85 subunit, the p110 (catalytic) subunit of PI3K
is exposed. This p110 subunit then catalyzes the formation of phosphatidylinositol 3,4,5-
trisphosphate (PIP3) upon phosphorylation of phosphatidylinositol 4,5-bisphosphate (PIP2).
PIP3 serves as a secondary messenger and commences the recruitment of Akt to plasma
membrane and its phosphorylation and activation by 3-phosphoinositide-dependent kinase
1 (PDK1) and subsequently by mTOR complex-2. This phosphorylation and activation
of Akt results in the dissociation of Akt from the plasma membrane into the cytoplasm
where it serves as a crucial mediator of cell proliferation, growth, and survival. Akt pro-
duces these effects by phosphorylating and activating downstream effector proteins like
mTOR complex-1, 4E-binding protein 1 (4EBP1), and p70S6 kinase 1 (p70S6K). Akt also
upregulates prosurvival proteins like X-linked inhibitor of apoptosis protein (XIAP) and
Bcl-2 and downregulates proapoptotic proteins, fostering cancer progression and exacerba-
tion. Normally, this is kept in check by phosphatase and tensin homolog (PTEN) tumor
suppressor protein in healthy cells, which inhibits the activation of Akt by negatively
regulating PIP3, thus halting the PI3K/Akt/mTOR signaling cascade [41,52,53]. But, the
PI3K/Akt/mTOR signaling pathway has been reported to be majorly dysregulated in
NSCLC [54,55]. This has been witnessed to be the outcome of inactivating mutations of
PTEN [56,57]. Also, overexpression of PIK3CA has been reported to be a major driving
event in NSCLC development and progression [58–61]. Over activity of the p110α catalytic
subunit of PIP3 as a result of activating mutations majorly in the helical and kinase domain
of the PIK3CA gene was found to be a main culprit in lung cancer progression [62].

3.3. JAK-STAT Pathway

Janus kinase of the JAK-STAT pathway is constitutively present intracellularly in
association with the transmembrane receptors such as interleukin-6 receptor, granulo-
cyte colony-stimulating factor receptor, and erythropoietin receptor [63]. JAK proteins
(JAK1-3, tyrosine kinase-2) possess four functional domains, including the FERM do-
main which serves as a binding site to bind to the receptors; the SH2 unit to bind to
phosphorylated tyrosine residues; a phosphorylating JH1 domain; and a regulatory JH2
unit [63,64]. STAT proteins (STAT1-4, STAT5A, STAT5B, and STAT6) possess an N-terminal
domain that promotes dimerization for binding to transcription factors; a regulatory coiled-
coil domain; DNA-binding domain; an SH2 domain to bind to phosphorylated tyrosine
residues; a linker domain that links the DNA-binding domain to the SH2 domain; and a
transcription–activation domain [64]. Upon binding of a ligand to the extracellular domain
of the JAK-associated receptor, receptor dimerization and conformational changes lead to
phosphorylation and activation of JAK. Activated JAK then phosphorylates the tyrosine
residues in the intracellular domains of the bound receptor that recruits STAT and induces
its phosphorylative activation. STAT, upon activation, dissociates and dimerizes through
its SH2 domain and translocate to the nucleus where it regulates the transcription of nu-
merous target genes [63,64] involved in cell proliferation, differentiation, inflammation,
and apoptosis [65,66].

The JAK-STAT pathway is kept under check by regulatory proteins. Protein inhibitor
of activated STAT (PIAS) blocks STAT-mediated transcription of target genes by inhibiting
STAT–DNA interaction. Protein tyrosine phosphatase (PTP) promotes dephosphorylation
inactivation of the tyrosine residues of the receptor, JAK, and STAT, whereas suppressor of
cytokine signaling (SOCS) is involved in blocking binding sites for STAT at the receptor, in
addition to promoting proteasomal degradation of STAT via ubiquitination [63–65,67].
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3.4. NRF2-KEAP1-ARE Pathway

The nuclear factor erythroid 2-related factor 2 (NRF2)–Kelch-like ECH-associated
protein 1 (KEAP1)–antioxidant responsive elements (AREs) pathway is basically a pro-
tective measure of the cells against reactive oxygen species (ROS) and electrophilic stress
signals [68]. NRF2 is a redox regulator from the basic leucine zipper protein family, whereas
KEAP1 is an adaptor protein. Under normal conditions, NRF2 undergoes ubiquitination
through interaction with Cullin-3 carrying a ubiquitin E3 ligase complex mediated through
a KEAP1 scaffold. This marks NRF2 for proteasomic degradation. Under conditions of
oxidative and electrophilic stress, KEAP1 sequestration of NRF2 is halted, and released
NRF2 then translocates to the nucleus [68,69]. In the nucleus, NRF2 mediates the upregu-
lation of antioxidant and cytoprotective genes by binding to AREs [68–70]. Constitutive
activation of NRF2 leads to oncogenesis via activation of Myc, KRAS, PI3K, and BRAF
oncogenes [69]. Moreover, NRF2-regulated production of antioxidants, such as glutathione
reductase, glutathione S-transferase, and glutathione and glutathione peroxidase, con-
fers chemoresistance to cancer cells [71] against anticancer drugs, including cisplatin via
thiol-cisplatin adduct-mediated inactivation of cisplatin [72]. Apart from cell prolifera-
tion, NRF2 also mediates cellular motility and invasion by dysregulating the mediator
of cellular contractility RhoA/Rho-associated coiled-coil-forming kinase (ROCK1) signal-
ing [73]. Mutations resulting in gain of function of NRF2 [26,74] and loss of functions of
KEAP1 resulting in higher levels of free NRF2 have been witnessed in NSCLC and mediate
metastasis [74,75] and metabolic remodeling in lung cancer cells [76].

3.5. PD-1/PD-L1 Pathway

The programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1)
signaling pathway in lung cancer cells is a form of immunosuppressive signaling which
helps to null the T cell response against lung cancer cells [77]. The PD-1 receptor and its
ligand, PD-L1, are transmembrane proteins expressed on the surface of immune cells, such
as T cells, B cells, and antigen-presenting cells [78,79]. PD-L1 is frequently expressed on the
surface of malignant cells. Physiological binding of PD-L1 to PD-1 on an activated T cell
results in phosphorylative activation of the PD-1, which causes suppression of PI3/Akt
signaling in T cells [80]. This inactivation of the PI3K/Akt signaling pathway further
downregulates prosurvival proteins, such as Bcl-xL, and results in apoptosis of T cells, thus
sparing cancer cells from immune intervention [81].

4. Potential Therapeutic Targets for Lung Cancer

A surge of potential therapeutic targets of lung cancer such as ALK, EGFR, BRAF,
c-Ros oncogene 1 (ROS1) [82], MET, and RET came to light in the last decade [83]. EGFR is
a receptor tyrosine kinase which possesses an extracellular ligand-binding domain [84,85],
with its major ligands being epidermal growth factor and transforming growth factor
alpha [84], and a cytoplasmic domain rich in tyrosine residues. These two domains are
linked by a transmembrane scaffold. Upon ligand-mediated stimulation, EGFR undergoes
dimerization and a conformational change conferring autophosphorylation of its intracellu-
lar tyrosine residues. This triggers signal transduction through the RAS/RAF/MEK/ERK
pathway, or PI3K/Akt/mTOR pathway, or through stimulation of STAT [86,87] which
is implicated in cell proliferation and inhibition of apoptosis [86]. After discovering the
link between NSCLC and mutations in EGFR, small molecule tyrosine kinase inhibitors
were developed and are currently being utilized for targeted therapy in EGFR mutant-
positive cases [84]. The most frequently encountered EGFR mutations in NSCLC include
substitution of leucine for arginine at codon 858 of exon 21 (L858R), as well as exon
19 deletions [87,88]. A wide repertoire of receptor, signaling, and effector proteins in these
pathways serve as potential targets in the treatment of lung cancer [89].

Yet another valuable target for lung cancer is ALK. Like EGFR, ALK is also a tyrosine
kinase receptor belonging to the insulin receptor family [90]. In NSCLC, ALK is basically
present as a fusion kinase, with ALK being the cytoplasmic domain of the transmembrane
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receptor rich in tyrosine residues. The extracellular domain consists of the echinoderm
microtubule-associated protein-like 4 (EML4) [91–93]. Even without stimulation by ligands,
this fusion complex undergoes dimerization and autophosphorylation in a manner iden-
tical to receptor-bound EGFR. This phosphorylation activation then triggers a signaling
cascade through either the RAS/RAF/MEK/ERK pathway, PI3K/Akt/mTOR pathway, or
JAK-STAT pathways, or by phospholipase C-γ stimulation which mediates ALK-triggered
cell proliferation and survival [90]. Similar ligand-independent signaling in NSCLC tu-
morigenesis has been witnessed with RET mutations, another tyrosine kinase receptor and
novel target for NSCLC treatment. RET is reported to be associated with chimeric kinase
protein resulting in an auto-triggering fusion complex, alike to that witnessed with ALK
in NSCLC [94].

Another potential target for lung cancer treatment is MET. This oncogene encodes for
receptor tyrosine kinase (RTK), which triggers a multitude of signaling cascades, includ-
ing the PI3K/Akt/mTOR pathway, MAPK/ERK pathway, and JAK/STAT transduction
pathway. Although these signaling cascades require ligand-mediated stimulation of the
RTK receptor under normal conditions, activating mutations such as METex-14 abolish
this prerequisite [82]. Accordingly, MET inhibitors are currently being explored as targeted
therapies mitigating lung cancer.

In addition to signaling molecules, microRNAs are emerging as mediators of either tu-
morigenesis or tumor suppression. They serve as crucial biomarkers as well as therapeutic
targets for lung cancers [95]. Certain microRNAs, like microRNA-148a-3p, microRNA-129-
5p, and microRNA-218-5p, have been shown to be associated with the radiosensitivity of
NSCLC cells. MicroRNA-148a-3p has emerged as a crucial target in catering to patients
with radiation-resistant NSCLC; upregulation of microRNA-148a-3p is proposed to en-
hance radiosensitivity [96]. Also, microRNA-148a-3p acts as a tumor suppressor. It inhibits
salt overly sensitive2 (SOS2) and thus prevents the activation of RAS, further obstructing
tumor progression [95].

5. Current Therapeutic Strategies for Mitigating Lung Cancer and Associated Adversities

The choice of treatment for NSCLC is surgical resection in patients without comor-
bidities or radiation therapy in patients with existing comorbidities [97]. Additionally,
surgery is limited to early-stage lung cancer patients and the majority of the advanced
cases are treated either with chemotherapy or radiotherapy or concurrent chemo- and ra-
diotherapy. Radiation therapy, however, is damaging to non-cancerous cells in the vicinity,
which may result in side effects like esophagitis, pneumonitis [98], and compromised lung
functionality [99]. Surgical options like pneumonectomy are associated with postopera-
tive pulmonary hypertension, acute respiratory distress syndrome (ARDS), and mortality,
which was reported to be 8.5% amongst the 294 patients of malignant lung cancer subjected
to pneumonectomy in a study carried out by Daffrè and colleagues [100]. For both lim-
ited and extensive SCLC, platinum-based combination chemotherapy is the first line of
treatment [97,101], although lobectomy and radiotherapy are also employed in mitigating
limited SCLC [102]. However, given the associated risks and limited response, benefits of
surgical resection in the management of SCLC are subject to debate [101].

A multitude of chemotherapeutic agents are available for treating lung cancer (Table 1).
The drug combinations cisplatin and paclitaxel, cisplatin and docetaxel, cisplatin and
gemcitabine, and carboplatin and paclitaxel are commonly employed for the treatment
of NSCLC. Each of these combinations has similar efficacy against NSCLC and is proven
to enhance life expectancy by as much as 1 to 2 years. The combination carboplatin and
paclitaxel, however, is generally preferred over other options due to its relatively low
toxicity [103]. For SCLC, etoposide in combination with either carboplatin or cisplatin
is preferred [104].
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Table 1. Currently available drugs for lung cancer treatment.

Drug/Chemical Moiety Mechanism of Action Dose, Frequency, and Route References

Gemcitabine Inhibits ribonucleotide reductase resulting in inhibition of DNA synthesis 1000 mg/m2, weekly, i.v. [105–107]

Docetaxel Binds to tubulin protein of microtubules, promotes its polymerization and
stabilization, resulting in cell arrest in G2/M phase 75 mg/m2, daily, i.v. [108,109]

Carboplatin Forms adducts with purine bases, resulting in inhibition of DNA replication and
subsequent apoptosis of cancer cells owing to damaged DNA 25 mg/m2, daily, i.v. [110,111]

Cisplatin Forms adducts with purine, resulting in inhibition of DNA replication and
subsequent apoptosis of cancer cells owing to damaged DNA 75 mg/m2, daily, i.v. [108,110]

Trametinib Inhibits MEK 1/2, resulting in obstruction of the RAS/RAF/MEK/ERK oncogenic
pathway and cell cycle arrest 2 mg, daily, orally [112,113]

Dabrafenib Inhibits of RAF, resulting in obstruction of the RAS/RAF/MEK/ERK oncogenic
pathway and cell cycle arrest 150 mg, twice daily, orally [112,113]

Atezolizumab Reverses immunosuppression within the tumor by blocking PD-L1 by binding to
its receptor 1200 mg, every 3 weeks, orally [114,115]

Pembrolizumab Reverses immunosuppression within the tumor by blocking PD-L1 by binding to
its receptor 250 mg, every 3 weeks, orally [116]

Nivolumab Reverses immunosuppression within the tumor by blocking PD-L1 by binding to
its receptor 240 mg, every 2 weeks, orally [117]

Selumitinib Inhibits MEK 1/2, resulting in obstruction of the RAS/RAF/MEK/ERK oncogenic
pathway and cell cycle arrest 75 mg, twice daily, orally [118,119]

Navitoclax (ABT-263) Blocks binding of Bcl-2 and BCL-XL to BIM, halting the antiapoptotic outcome 150 mg, daily, orally [37,118,120]

Selpercatinib Inhibits multiple altered RET kinase isoforms, thus inhibiting oncogenic signaling 20 mg, twice daily, orally [94,121]

Crizotinib Induces apoptosis in tumor cells and produces G1/S phase arrest by inhibiting
ALK, MET, and ROS1 and downregulating JAK and STAT 250 mg, twice daily, orally [66,122,123]

Alectinib Induces apoptosis in tumor cells by inhibiting ALK 300 mg, twice daily, orally [124]

Ceritinib Inhibits ALK tyrosine kinase 400 mg, daily orally [125,126]

Ensartinib Inhibits ALK tyrosine kinase and oncogenic triggers from MET, ROS1, SLK, ABL,
LTK, anexelekto (Axl), and EPHA2 225 mg, daily orally [127–129]

Bevacizumab Inhibits VEGF, resulting in angiogenesis 15 mg/kg, every three weeks, i.v. [130,131]
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Table 1. Cont.

Drug/Chemical Moiety Mechanism of Action Dose, Frequency, and Route References

Buparlisib Inhibits PI3K, resulting in downregulation of PI3K/Akt/mTOR signaling and
downstream cancer cell proliferation and angiogenesis 100 mg/day, orally [132,133]

Cabozantinib
Inhibits c-MET, RET, and VEGFR2 tyrosine kinase receptors, thus obstructing the
stimulation of downstream signaling molecules involved in tumor proliferation
and angiogenesis

60 mg, daily, orally [134,135]

Capmatinib Inhibits c-MET, thus obstructing the stimulation of downstream signaling
molecules involved in tumor proliferation 400 mg, twice daily, orally [136]

Erlotinib Inhibits EGFR tyrosine kinase, resulting in obstruction of cancer cell proliferation
by arresting cells in G0/G1 phase of cell cycle 150 mg, daily, orally [84,137]

Gefitinib Inhibits EGFR tyrosine kinase blocking oncogenic signals from
EGFR-activating mutations 250 mg, daily, orally [137]

Afatinib Inhibits EGFR tyrosine kinase blocking oncogenic signals from
EGFR-activating mutations 40 mg, daily, orally [138]

Rociletinib Inhibits EGFR tyrosine kinase blocking oncogenic signals from
EGFR-activating mutations 625 mg, twice daily, orally [139,140]

Cetuximab EGFR inhibition and downregulation, antibody-mediated and
complement-mediated cytotoxicity in lung cancer cells

400 mg/m2 loading dose followed by
250 mg/m2 dose weekly, i.v.

[141]

Emibetuzumab Inhibits ligand-dependent and ligand-independent MET oncogenic signaling 750 mg, every two weeks, orally [88]

Napabucasin Inhibits STAT3 and promotes its downregulation, resulting in the inhibition of
oncogenic transducer signaling and triggering apoptosis 240 mg, twice daily, orally [142,143]

Abbreviations: ABL, Abelson murine leukemia viral oncogene; ALK, anaplastic lymphoma kinase; Axl, anexelekto; Bcl-2, B cell lymphoma 2; BCL-XL, B cell lymphoma-extra-large;
BIM, Bcl-2-interacting mediator of cell death; c-MET, c-mesenchymal–epithelial transition factor; EGFR, epidermal growth factor receptor; EPHA2, ephrin type-A receptor 2; ERK,
extracellular signal-related kinase; JAK, Janus kinase; LTK, leukocyte receptor tyrosine kinase; MEK, mitogen-activated protein kinase; MET, mesenchymal–epithelial transition factor;
mTOR, mammalian target of rapamycin; PD-L1, programmed death ligand-1; PI3K, phosphatidylinositol-3-kinase; RAS, rat sarcoma virus gene; RAF, rapidly accelerated fibrosarcoma;
RET, rearranged during transfection; ROS1, c-Ros oncogene 1; SLK, Ste20-like kinase; STAT, signal transducer and activator of transcription; STAT3, signal transducer and activator of
transcription 3; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor 2.
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Chemotherapy with platinum coordination complexes, such as cisplatin, has been
proven to be efficacious in completely resected and excision repair cross-complementation
group 1 (ERCC1) protein-negative NSCLC [144]. ERCC1 is a major player involved in
repairing cisplatin–DNA complexes [145]. A prolonged survival rate was witnessed when
cisplatin plus gemcitabine was given in ERCC1-negative advanced NSCLC. As mentioned
above, platinum coordination complexes such as carboplatin and cisplatin, as well as
etoposide, are mainstay treatments of SCLC [146]. These compounds have been shown to
be highly efficacious in mitigating limited SCLC when combined with thoracic radiation.
Despite being first-line treatment against SCLC, a high relapse rate and high overall
mortality are seen [147]. Apart from this, all platinum-based anticancer agents pose a
risk of causing adverse effects ranging from anorexia, vomiting, diarrhea, alopecia, and
stomatitis to ototoxicity [110,148], as well as hepatotoxicity, nephrotoxicity, cardiotoxicity,
neurotoxicity, myelosuppression [149], and anaphylaxis [150].

Bevacizumab, a recombinant humanized monoclonal antibody targeting vascular en-
dothelial growth factor (VEGF), has shown promising outcomes in the survival of patients
with non-squamous NSCLC when given alone or in combination with platinum-based
chemotherapy [151,152]. Bevacizumab is associated with increased risk of developing
hypertension, pulmonary hemorrhage, and thromboembolism [35,130]. Cetuximab, a
chimeric monoclonal antibody against EGFR, not only blocks EGFR–ligand interaction,
but also promotes the internalization and degradation of EGFR, resulting in its downregu-
lation [141]. It is employed for the treatment of advanced NSCLC. Yet another category
of drugs that target EGFR include gefitinib, erlotinib, and rociletinib. These drugs act
by inhibiting EGFR tyrosine kinase [85]. All agents within this class of EGFR-targeting
drugs have been reported to put patients at risk of skin rashes and diarrhea [141,153]. Gefi-
tinib is also known to cause appetite loss, anemia, and sensory neuropathy [154], whereas
rociletinib is prone to cause QT prolongation and hyperglycemia [139].

Targeted therapies for mitigating mutation-associated malignancies have been intro-
duced lately. Concurrent administration of dabrafenib (150 mg, twice daily, orally) and
trametinib (2 mg, daily, orally) have been approved by the United States Food and Drug
Administration (FDA) for treating BRAF V600E mutation-positive metastatic NSCLC. An
open-label, multicenter, and multicohort trial of 93 patients found this combination to be
effective, but not free of adverse effects. Dabrafenib–trametinib combination therapy has
been reported to cause vomiting, diarrhea, pyrexia, dyspnea, edema, and hemorrhage [112].
It is also associated with an increase in alanine aminotransferase and aspartate amino-
transferase, as witnessed in phase II trials [155]. In addition to trametinib, other MEK1/2
inhibitors are undergoing trials for the treatment of lung cancer. One of these compounds
is selumetinib (75 mg, twice daily, orally), which was reported to be efficacious in treat-
ing KRAS mutation-positive advanced NSCLC when paired with docetaxel but failed to
promote survival in lung cancer patients in phase III trials [119,156].

Sotorasib recently received FDA approval in May 2021 for use in KRAS G12C mutation-
associated NSCLC [157]. It has been reported to be clinically effective and safe at a tested
dose of 960 mg, daily in phase II trials carried out on 126 patients with KRAS G12C mutation-
positive NSCLC [158]. Atezolizumab, a monoclonal antibody against programmed death
ligand-1 (PD-L1), has shown highly promising outcomes in enhancing survival rates in
patients with metastatic lung cancer with EGFR or ALK aberrations and PD-L1 expression,
as well as in resected patients diagnosed with stage II or IIIA NSCLC [114]. Similar
survival outcomes have also been witnessed for pembrolizumab, yet another approved
monoclonal antibody against PD-L1 [116]. Adversities encountered with atezolizumab and
pembrolizumab range from pruritis, cough, pyrexia, and gastrointestinal disturbances like
vomiting and diarrhea to peripheral edema, dyspnea, and anemia [116,159].

ALK inhibitors like alectinib, brigatinib, ceritinib, and lorlatinib are first-line therapies in
advanced ALK-positive NSCLC [160]. Crizotinib is another an inhibitor of ALK phosphorylation
which also inhibits c-MET [123] and ROS1 [122]. Crizotinib has received “breakthrough”
designation for its remarkable outcomes in NSCLC with METex-14 mutations [161] but has also
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been reported to cause serious visual impairment [162], hepatotoxicity [163], bradycardia [164],
hypogonadism in males [165], and gastrointestinal disturbances [123].

Other treatment options for lung cancer exist, including chemotherapeutic and radio-
therapeutic options. A STAT3 inhibitor, napabucasin, has been shown to exhibit synergism
with paclitaxel in promoting tumor regression and patient survival in extensively pretreated
NSCLC. Reported side effect include diarrhea and hyponatremia [142]. Lung cancer is often
treated using a combination of external beam radiation therapy with adjuvant chemother-
apy. However, brachytherapy has emerged as a better therapeutic strategy compared to
external beam radiation due to its ability to deliver a higher dose of radiation with greater
precision, thereby sparing more healthy tissue [166,167].

6. Literature Search and Selection Process

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
criteria [168,169] for methodical reviews were employed when evaluating literature. Searches
were conducted in PubMed using keywords and phrases to identify relevant articles. Search
criteria consisted of combinations of the following words and phrases: lung cancer; lung carci-
noma; phytochemicals; cell metabolism; phenolics; terpenoids; alkaloids; sulfur-containing
compounds; secondary metabolites; prevention; treatment. Following identification, articles
were evaluated for their content. Reviews and letters, articles not in English, and those con-
cerning phytochemicals outside the context of lung cancer were excluded. Additionally, weak
methodology articles and those with little relevance or limited presentation of findings were
excluded. A breakdown of the article selection process according to the PRISMA guidelines is
represented in Figure 3.
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7. Anticancer Potential of Bioactive Phytocompounds in Lung Cancer
7.1. Preclinical Studies

Plant secondary metabolites are considered safe and effective in the treatment of
cancer [170] and act primarily by modulation of numerous signaling pathways [171] Phyto-
chemicals may be classified into four broad groups, such as alkaloids, phenolics, sulfur-
containing compounds, and terpenoids. In the recent past, various in vitro and in vivo
studies were conducted to elucidate the role of plant phytocompounds in the context lung
cancer which are presented in the following subsections.

7.1.1. Alkaloids

Alkaloids represent a large group of organic compounds distinguished by their
nitrogen-containing structures. They are present in a wide variety of plants and are known
for their cancer preventive and anticancer activities [172]. Their wide-ranging biological
activities have prompted extensive research into their potential therapeutic applications in
drug discovery and development [173].

Acutiaporberine

Acutiaporberine (Figure 4) is a bisalkaloid derived from Thalictrum acutifolium. Very
limited research has been conducted on acutiaporberine since its discovery approximately
20 years ago. In one such study, researchers determined that application of acutiaporberine
to 95-D lung cancer cells resulted in upregulation of apoptosis (Table 2). The researchers
reported these effects to be mediated by enhancing the Bak/Bcl-2 ratio [174].
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Table 2. In vitro studies of plant-based bioactive compounds in lung cancer.

Phytochemicals Cell Lines Conc. IC50 Anticancer Effect Mechanisms References

Alkaloids

Acutiaporberine 95-D 0.003 µM Not reported Increased cell death ↑Bak/Bcl-2 ratio [174]

β-Carboline A549 1.80 µM Not reported Showed cytotoxic activity ↑ERK1/2;
↓Akt/mTOR [175]

Berberine A549 and H1299 25, 50, 75, and 100 µM Not reported Suppressed tumor cell growth and
increased cell death ↓Bcl-2; ↑caspase-3; ↑Bax [176]

Homoharringtonine
A549 and H1975 2–4 µM 3.7µM(A549) and 0.7µM

(H1975) Inhibited tumor cell metastasis ↓JAK1/STAT3 [177]

A549 and H1299 2µM Not reported Inhibited tumor cell growth and
metastasis

↓KRAS; ↓ERK; ↓Akt; ↓STAT3; ↓CDK4;
↓CDK6; ↓p21; ↓RB [178]

Indole-3-carbinol H1299 400 µM 449.5 µM Increased cell death and oxidative stress ↑ROS; ↑caspase-3; ↑caspase-7;
↑caspase-9; ↓Bcl-2 [179]

Melosine B A549 0.064, 0.32, 1.6, 8, and 40 µM 8.1 µM Exhibited cytotoxicity and increased cell
death Not reported [180]

Piperine

A549 50, 100, and 200 µg/mL 122 µg/mL Inhibited tumor cell growth ↑Bax/Bcl-2 ratio; ↑caspase-3;
↑caspase-9 [181]

A549 20, 40, 80, 160, and 320 µM 198 µM Inhibited tumor cell migration and
invasion ↓ERK 1/2; ↓SMAD 2; ↓TGF-β [182]

Solamargine H1650, H1975, PC9, A549, and
H1299 2, 4, and 6 µM Not reported Reduced tumor cell growth and

increased DNA damage
↑ERK1/2; ↓prostaglandin E2;

↓DNMT1; ↓c-Jun [183]

Vallesiachotamine
and iso-vallesiachotamine H1299 12.5, 25, 50, 100, and 200 µM

4.24 µM (vallesiachotamine)
and 3.79 µM

(iso-vallesiachotamine)

Suppressed tumor cell growth and
caused DNA damage ↑Apoptosis [184]

Phenolics

Acacetin A549 1–5 µM Not reported Decreased tumor cell growth and
viability

↓Activator protein-1; ↓NF-κB;
↓MLK3; ↓MAPK3/6; ↓p38a; ↓MAPK [185]

Apocynin A549 50–1000 µM 890 µM Decreased tumor cell growth and
enhanced cell death ↓Cellular microtubule network [186]

Baicalein A549 and H1299 2.5, 10, and 40 µM Not reported Reduced tumor cell growth, metastasis,
and invasion ↓Cellular ezrin S-nitrosylation [187]

Batatasin III H460 25–100 µM Not reported Inhibited tumor cell migration and
invasion

↓EMT; ↓N-cadherin; ↓vimentin; ↓Akt;
↑E-cadherin [188]

Caffeic acid A549 50–1000 µM Not reported Reduced tumor cell growth ↓Superoxide level [189]

Cardamonin A549 and H460 40 µM Not reported Decreased tumor cell growth and
increased cell death

↑Caspase-3; ↑Bcl-2; ↑Bax; ↑cyclin D1;
↓CDK4; ↓PI3K; ↓Akt; ↓mTOR [190]

Cardamonin A549 0.1, 1, 10, and 30 µM Not reported Reduced tumor cell growth and
enhanced cell death ↓mTOR; ↓DNA synthesis; ↓p70S6K [191]
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Table 2. Cont.

Phytochemicals Cell Lines Conc. IC50 Anticancer Effect Mechanisms References

Cardamonin analogs A549 and NCI-H460 0.05–100 µM 0.445 µM (DHC) and 0.166 µM
(DHMC) Inhibited tumor cell growth ↓NF-κB [192]

Casticin A549 1, 5, 10 µM 14.3 µM Suppressed tumor cell growth and
enhanced cell death

↓IL-6; ↓COX-2; ↓MAPK; ↓NF-κB;
↓p65; ↓chemokine gene [193,194]

Chrysin A549 25, 50, and 75µg/mL 55.72 µg/mL Inhibited tumor cell growth and
increased cell death ↑Bax; ↓Bcl-2; ↑caspase-3 [195]

Curcumin

A549 10 µM Not reported Decreased tumor cell growth and
enhanced cell death

↓Prosurvival antiapoptotic factors;
↓EGFR [196]

A-549 10–50 µM Not reported Caused DNA damage and G2/M phase
cell cycle arrest

↑Caspase-3-induced apoptosis; ↑DNA
damage; ↑ER stress [197]

NCI-H460 30 µM Not reported Suppressed tumor cell growth and
enhanced cell death

↑Caspase-3; ↑caspase-8;
↓cyclin-dependent kinase 1 [198]

CL1–5 1–20 µM Not reported Inhibited tumor cell growth and
metastasis ↑Activator protein-1; ↓E-cadherin; [199]

PC-9 50 µM Not reported Enhanced DNA damage, cell death and
suppressed tumor cell growth

↑DNA damage; ↓Bcl-2; ↓cyclin D1;
↓CDK2; ↓CDK4; ↓CDK6 [200]

NCI-H292 5–40 µM 15 µM Increased cell death and inhibited tumor
cell growth ↑Bax; ↑caspase-3; ↑caspase-7 [201]

p-Coumaric acid
A549, NCI-H1299, and HCC827 10–100 µg/mL

37.73 µg/mL (A549);
50.6 µg/mL (H1299);

62.0 µg/mL (HCC827)
Increased cell death ↑Bax; ↓Bcl-2; ↑caspase-3; ↑caspase-9 [202]

H1993 50–100 µM Not reported Reduced tumor cell growth and viability ↓Resistance of tyrosine kinase
inhibitor [203]

EGCG

A549 and H1299 20–300 µM 86.4 µM (A549) and 80.6 µM
(H1299)

Inhibited tumor cell proliferation and
induced apoptosis ↓NF-κB [204]

H1299 and CL-13 10–100 µM 174.9 µM(H1299) and
181.5 µM (CL-13) Reduced tumor cell proliferation ↑ROS; ↓ NF-κB [205]

A549 10, 25, 50, and 100 µM Not reported Decreased tumor cell growth ↓Nicotine-induced Akt; ↓ERK1/2 [206]

A549 12.5, 25, and 50 µM 25 µM
Suppressed tumor cell growth, invasion,

migration and increased G2/M phase
cell cycle arrest

↑Bax/Bcl-2 ratio [207]

A549 0.5 µM Not reported Decreased tumor cell growth and
increased oxidative stress ↑ Nrf2; ↑ROS [208]

A549 and NCI-H23 0.05–500 µM Not reported Reduced etoposide resistance and tumor
cell growth ↑Nrf2; ↑ROS; [209]

H1299, H460 and A549 40 µM Not reported Decreased tumor cell growth ↑miR-210 [210]

H1299 and A549 10, 20, and 40 µM Not reported Induced apoptosis ↓PI3K/Akt [211]

EGCG and luteolin A549 and H460 30 µM (EGCG) and 10 µM
(luteolin) Not reported Induced apoptosis ↑p53 mitochondrial translocation;

↑DNA damage [212]
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Table 2. Cont.

Phytochemicals Cell Lines Conc. IC50 Anticancer Effect Mechanisms References

EGCG and theaflavins NCI-H460 100µM Not reported Inhibited tumor cell proliferation and
promoted apoptosis ↑p53; ↓Bcl-2 [213]

Ferulic acid A549 50–1000 µM Not reported Enhanced oxidative stress and decreased
cell viability ↓Superoxide anion [189]

Fisetin

A549 5–20 µM Not reported Decreased cell viability and increased
cell death ↓PI3K/Akt; ↓mTOR [214]

NCI-H460 75 µg/mL Not reported Inhibited tumor cell growth and viability ↓β-cell lymphoma-2; ↑Bcl-2;
↑caspase-9; ↑caspase-3 [215,216]

HCC827-ER 10, 20, 40, 60, 80, 100, 120 µM Not reported Inhibited tumor cell growth, viability
and increased cell death ↓Axl; ↓MAPK; ↓Akt [217]

Gallic acid
Calu-6 and A549 10–200 µM 10–50 µM (Calu-6);

100–200 µM (A549)
Inhibited tumor cell growth and

enhanced oxidative stress ↓GSH; ↑ROS [218]

H1975 and H1993 50 µM Not reported Increased cell death ↓Src-mediated STAT3; ↓Bcl-2; ↓cyclin
D; ↓NF-κB; ↓IL-6 [219]

Genistein

A549 10 µM Not reported Inhibited tumor cell growth and
enhanced cell death ↑Caspase-3 [220]

H3255, H1650, and H1781 25 µM Not reported Decreased tumor cell growth and
increased cell death

↓DNA binding of NF-κB; ↓COX-2;
↓pAkt; ↓EGFR; ↓PGE2 [221]

SPC-A-1 20–40 µM Not reported Reduced tumor cell growth and
increased cell death ↓Bcl-2 [222]

H460 15–30 µM Not reported Suppressed tumor cell growth and
increased cell death ↓NF-κB [223]

Gigantol

A549 25, 50, and 100 µM Not reported Inhibited tumor cell growth and
increased cell death ↓Ki-67; ↓Bcl-2; ↑Bax; ↑Wnt/β-catenin [224]

H460 50 µM Not reported Increased tumor cell death ↓EMT [225]

H460 20–200 µM Not reported Reduced tumor cell proliferation,
migration, and invasion ↓PI3K/Akt/mTOR; ↓JAK/STAT [226]

Hesperidin

A549 and NCI-H358 5–50 µM 50 µM Increased cell death ↑Apoptosis; ↑mitochondrial
disruption; ↑caspase-3; ↑NF-κB [227]

H1993 5–100 µM Not reported Decreased cell viability and enhanced
cell death

↓Resistance of tyrosine kinase
inhibitor [203]

Honokiol
A549 and 95-D 5, 10, or 20 µM Not reported Increased cell death ↑Bax; ↑caspase-9; ↑PERK; ↑ER stress;

↓Bcl-2 [228,229]

A549 and LL/2 10–50 µM 21.1 µM Reduced tumor cell growth and
increased cell death ↓VEGF-A [230]

Mono-demethylated
polymethoxyflavones H1299 1–30 µM 16.5 µM Increased cell death ↓iNOS; ↓COX-2; ↓Mcl-1;

↑caspase-3; ↑PARP cleavage [231]

Indolyl-chalcone derivatives A549 2.5µM and 5µM 2.46 µM Suppressed tumor cell growth ↑Nrf-2/HO-1 [232]
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Table 2. Cont.

Phytochemicals Cell Lines Conc. IC50 Anticancer Effect Mechanisms References

Isorhamnetin

A549 8 µM and 16 µM Not reported Increased cell death and mitochondrial
dysfunction ↑Caspase-3 [233]

A549 25 µM Not reported
Enhanced mitochondrial dysfunction,
cell death and decreased tumor cell

growth
↑Caspase-3; ↑PARP [234]

Kaempferol

A549 10–140 µM 72 µM Inhibited epithelial–mesenchymal
transition and increased cell death ↑EMT; ↓E-cadherin; ↓vimentin [235]

A549 25 µM Not reported Inhibited tumor cell growth and viability
↓E-Cadherin; ↓vimentin

↓Akt1-mediated phosphorylation;
↓TGF-β1

[236]

H460 30, 50, and 80 µM 50 µM Enhanced oxidative stress and cell death ↑Caspase-3; ↑AIF [237]

Kurarinone
H460 2 µg/mL 5.8 µg/mL Inhibited tumor cell growth ↓NF-κB; ↓tyrosine kinase [238]

H1688 and H146 6.25, 12.5, and 25 µM 12.5 µM (H1688) and 30.4 µM
(H146) Enhanced cell death ↓EMT; ↓MMP-2 [239]

Luteolin

A549 20–80 µM 40.2 µM Increased G2/M phase cell cycle arrest
and cell death

↑Bax; ↑procaspase-9; ↑caspase-3;
↓NF-κB; ↑JNK [240]

A549 25–100 µM 42.8 µM Decreased cell viability and increased
cell death

↑Bax; ↑caspase-3; ↑caspase-9;
↑MEK/ERK; ↓Bcl-2 [241]

A549 and
H460 10–100 µM 40 µM Inhibited tumor cell growth and

increased cell death ↑miR-34a-5p via targeting MDM4 [242,243]

NCI-H460 20–160 µM Not reported Decreased cell viability and increased
cell death

↓Bad; ↓Bcl-2;
↑caspase-3; ↓Sirt1 [244]

Moscatilin H460 1 µM Not reported Reduced tumor cell growth ↓ERK; ↓EMT; ↓Akt; ↓Cav-1 [245]

Naringenin A549 25, 50, 100, 200, and 300 µM Not reported Reduced tumor cell growth ↓MMP-2; ↓MMP-9; ↓Akt [246]

A549 10, 100, and 200 µM Not reported Decreased tumor cell growth and
enhanced cell death ↑Caspase-3; ↓MMP-3; ↓MMP-9; ↑p38 [247]

Nobiletin A549 (adriamycin resistant) 50 µM Not reported Enhanced cell death ↑Caspase-3; ↓Akt; ↓GSK-3β;
↓β-catenin; ↓MRP1 [248]

Osthol

A549 25, 50, 100, 150, and 200 µM Not reported Increased G2/M phase cell cycle arrest
and cell death

↑Bax; ↓cyclin B1; ↓p-Cdc2 ↓Bcl-2;
↓PI3K/Akt [249]

A549 40 and 80 µM Not reported Inhibited tumor cell growth, migration,
and invasion ↓MMP-2; ↓MMP-9 [250,251]

A549 5–80 µM Not reported Inhibited tumor cell growth and
metastasis

↓TGF-β-induced EMT;
↓NF-κB; ↓Snail [252]

Phloretin

A549, Calu-1
H838, and H520 25–75 µg/mL Not reported Enhanced cell death ↓Bcl-2; ↓MMP-2; ↓MMP-9; ↑caspase-3;

↑caspase-9 [253]

A549 25, 50, 100, and
200 µM Not reported Inhibited tumor cell growth and

increased cell death

↑Bax; ↓Bcl-2; ↑caspase-3; ↑caspase-9;
↑ERK; ↑JNK; ↑p38; ↑MAPK; ↑JNK1/2;

↓NF-κB
[254]
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Table 2. Cont.

Phytochemicals Cell Lines Conc. IC50 Anticancer Effect Mechanisms References

Polydatin A549 and NCI-H1975 50 µM 2.95 µM (A549) and 3.23 µM
(NCI-H1975)

Reduced tumor cell growth and
increased cell cycle arrest ↑Bak/Bcl-2 ratio [255]

Pterostilbene NCI-H460 and SK-MES-1 10–100 µM Not reported Decreased cell viability and increased
cell death ↑Caspase-3; ↑caspase-7 [256]

Quercetin A549 0.74–4.40 µM 1.41 µM Decreased cell growth and increased cell
death ↑Bax; ↓Bc1-2 [257]

Resveratrol

A549 20 µM Not reported Inhibited tumor cell growth and invasion ↓TGF-β1-induced EMT [258]

A549 4–64 µM 8.9 µM Reduced tumor cell growth and
increased cell death ↑Caspase-3 [259]

H1993 1–10 µM Not reported Decreased cell viability and increased
cell death

↓Resistance of tyrosine kinase
inhibitor [203]

Salicylic acid A549 1.5–9.5 mM 6.0 mM Showed cytotoxicity and suppressed
tumor cell growth Not reported [260]

Tangeretin derivative CL1-5, H1299, H226, and A549 2.5 and 5 µM
3.2 µM (CL1-5), 6.7 µM

(H1299), 10.2 µM (H226), and
9.8 µM (A549)

Enhanced G2/M phase cell cycle arrest,
cell death, mitochondrial dysfunction

and reduced tumor cell growth

↑Caspase-3; ↓Bcl-2; ↓survivin;
↓PI3K/Akt/mTOR [261]

Tatariside B, C, and D A549 0.001, 0.01, 0.1, 1, 10, and
100 µg/mL

18.31 µg/mL (Tatariside B),
6.44–7.49 µg/mL (Tatariside C),
and 2.83 µg/mL (Tatariside D)

Enhanced cytotoxicity, oxidative stress,
cell death and reduced tumor cell growth Not reported [262]

Sulfur-containing compounds

Allicin A549 and NCI-H460 10–60 µg/mL 25 µg/mL (A549) and
15 µg/mL (NCI-H460) Inhibited tumor cell growth ↓Cadherin 2; ↑cadherin 1 [263]

Sulforaphane

H1299, 95-C and 95-D 1–5 µM 9.52 µM (H1299), 9.04 µM
(95-C), and 17.35 µM (95-D)

Reduced tumor cell growth and
increased S/G2–M phase cell cycle arrest

↓miR-616-5p levels;
↓GSK3β/β-catenin [264]

A549 and H1299 0, 5, 10, and 15 mM Not reported Inhibited tumor cell growth and
enhanced G2/M cell cycle arrest ↑Apoptosis; ↓histone deacetylase [265]

A549 2.5 and 5 µM Not reported Suppressed tumor cell growth and
increased G1/S cell cycle arrest ↓miR-21; ↓CDH1; ↓DNMTs [266]

Terpenoids

Abietane diterpene NCI-H460, and A549 10 and 30 µg/mL 14 µM (NCI-H460) and 30 µM
(A549) Enhanced cell death ↑Caspase-3; ↓caspase-9 [267]

β-Sitosterol A549 50–200 µg/mL 95.19 µg/mL Enhanced G2/M phase cell cycle arrest ↑Apoptosis [268]

Cucurbitacin B A549 10 µM Not reported Reduced tumor cell growth and
increased cell death

↓CDK2; ↓CDK4; ↓cyclin D; ↓cyclin E;
↓mortalin; ↓hnRNP-K; ↓MMP-2;
↓fibronectin; ↑p53; ↑CARF

[269]

Dihydroartemisinin

PC-14 1 µg/mL Not reported Increased cell death ↑p38 MAPK; ↑Ca2+ [270]

LLC cells 5, 10, 20, and 40 µg/mL 26.98 µg/mL Enhanced G0/G1 phase cell cycle arrest ↑p38 MAPK [271]

A549 and H1299 0.23–749.90 µM 80.89 uM Reduced tumor cell growth ↓Transferrin receptor [272]
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Table 2. Cont.

Phytochemicals Cell Lines Conc. IC50 Anticancer Effect Mechanisms References

Oridonin H1975 10 µM Not reported Decreased tumor cell metastasis and
angiogenesis

↓Mesenchymal transition;
↑proapoptotic activity [273]

A549 10, 20, and 30 µM Not reported Reduced tumor cell metastasis and
angiogenesis

↑Bax; ↑cisplatin-induced apoptosis via
AMPK/Akt/mTOR; ↑PARP

expression
[274]

Soyasapogenol H-1299 2–10 µM 6 µM Reduced tumor cell growth, metastasis
and increased cell death

↓CDK2; ↓CDK4; ↓cyclin A; ↓cyclin D1;
↓pATR-Chk1

↓catenin/vimentin/hnRNPK-
mediated

EMT

[275]

Thymoquinone LNM35 1–100 µM 50–78 µM Suppressed tumor cell growth and
increased cell death ↑Caspase-3 [276]

Ursolic acid

A549 11, 22, 44, and 88 µM Not reported Decreased cell viability and enhanced
autophagy

↑LC3-II/LC3-I ratio; ↑p62; ↑PINK1;
↑Nrf2; ↑ROS; ↓p-Akt/mTOR [277]

H1975 0.001–0.1 µM Not reported Reduced tumor cell growth and
angiogenesis

↓N-cadherin; ↓MMP-2; ↓MMP-9;
↓TGF-β1; ↑E-cadherin [278]

A549, H460, H1975, H1299,
H520, H82, LLC, and H446 5–40 µM Not reported Inhibited tumor cell growth and

angiogenesis
↓Bcl-2; ↑cleaved PARP; ↑LC3-II;

↓p-S6K T389; ↓p-Akt [279]

Withaferin A A549 10 µM Not reported Increased cell death, oxidative stress and
decreased cell viability ↑ROS [280]

Miscellaneous compounds

Cannabidiol
A549 and H460 3 µM Not reported Increased cell death ↑ICAM-1 [281,282]

A549 and
H460 1–10 µM 3.47 µM (A549) and 2.80 µM

(H460) Increased cell death ↑ICAM-1; ↑COX-2; ↑PPAR-γ [283]

A549 3 µM Not reported Enhanced cell death and reduced tumor
cell growth ↑MMP-1 [284]

Cypripedin H23 50 µM Not reported Suppressed tumor cell growth ↓N-cadherin; ↓vimentin;
↓Akt/GSK-3β [285]

H460 50 µM Not reported Inhibited tumor cell growth ↓Bcl-2 [286]

Daucosterol A549 50–200 µg/mL 17.46 µg/mL Reduced tumor cell growth and
enhanced G2/M phase cell cycle arrest ↓Bcl-2; ↑Bax; ↑caspase-3 [268]

Emodin A549 and H1299 20, 40, 60, and 80 µM Not reported Enhanced cell death ↑ER stress; ↑TRIB3/NF-κB [287]

Glossogin A549 12.5 µg/mL Not reported Suppressed tumor cell growth ↑Cyt c; ↑caspase-9; ↑caspase-3;
↑Bak/Bcl-2 ratio [288]

Ouabain A549 and H1975 25 nM Not reported Inhibited tumor cell growth ↑JNK; ↓Bcl-2 [289]

Physalin A H292, H358, and H1975 5, 10, and 15 µM Not reported Decreased tumor cell growth and
enhanced cell death ↓JAK/STAT3 [290]
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Table 2. Cont.

Phytochemicals Cell Lines Conc. IC50 Anticancer Effect Mechanisms References

Rhein

A549 25, 50, and 100 µM 45 µM Enhanced G0/G1 phase cell cycle arrest
and cell death

↑ER stress; ↑p53; ↑p21; ↑Bax; ↓Bcl-2;
↓GADD153; ↓cyt c [291,292]

A549 25, 50, and 100 µM 100 µM Inhibited tumor cell growth ↓Bcl-2; ↓p-PI3K; ↓Akt; ↓mTOR [293]

PC-9, H460, and A549 30, 60, and 100 µM
24.59 µM (PC-9),

52.88 µM(H460), and 23.9 µM
(A549)

Increased G2/M phase cell cycle arrest
and cell death ↓Bcl-2; ↑Bax; ↓STAT3 [294]

Withanone A549 2.5–10 µM Not reported Reduced tumor cell growth and
increased cell death

↓CDK2; ↓CDK4; ↓cyclin D; ↓cyclin E
↓mortalin; ↓hnRNP-K; ↓MMP-2;
↓fibronectin; ↑p53; ↑CARF

[269]

Symbols and abbreviations: ↑, increased or upregulated; ↓, decreased or downregulated; AIF, apoptosis-inducing factor; Bax, Bcl-2-associated X protein; Bcl-2, B cell lymphoma-2;
CARF, calcium-response factor; CDK, cyclin-dependent kinase; COX, cyclooxygenase; DNMT, DNA methyltransferase; EGFR, epidermal growth factor receptor; EMT, epithelial to
mesenchymal transition; ERK, extracellular signal-related kinase; GSH, glutathione; GSK3β, glycogen synthase kinase 3β; HO-1, heme oxygenase-1; ICAM-1, intercellular adhesion
molecule-1; IL, interleukin; iNOS, inducible nitric oxide synthase; JAK, Janus kinase; MAPK, mitogen-activated protein kinase; Mcl-1, myeloid cell leukemia-1; MEK, mitogen-activated
protein kinase; MLK3, mixed lineage kinase 3; MMP-3, matrix metalloproteinase-3; MRP1, multidrug resistance protein 1; mTOR, mammalian target of rapamycin; NF-κB, nuclear
factor-κB; PARP, poly (ADP-ribose) polymerase; PERK, protein kinase RNA-like endoplasmic reticulum kinase; PGE2, prostaglandin E2; PI3K, phosphatidylinositol-3-kinase; PPAR-γ,
peroxisome proliferator-activated receptor-γ; ROS, reactive oxygen species; STAT, signal transducer and activator of transcription; TGF-β, transforming growth factor-β; VEGF-A,
vascular endothelial growth factor-A.



Cancers 2023, 15, 3980 21 of 60

β-Carboline

β-Carboline is an indole alkaloid (Figure 4) derived from Peganum harmala and Nico-
tiana tobacum and has been reported to be effective in the treatment of neurodegenerative
diseases, such as Parkinson’s and Alzheimer’s [295]. Investigators observed the role of
β-carboline in A549 lung cancer cells and reported cytotoxic effects at a concentration of
1.80 µM. Researchers attributed these anticancer effects to an increase in the expression of
ERK1/2 and Akt/mTOR signaling pathways [175].

Berberine

Berberine (Figure 4) is a quaternary alkaloid derived from various plants, including
Oregon grape, European barberry, goldenseal, phellodendron, goldthread, and tree turmeric,
which is reported to inhibit the cell cycle and induce apoptosis in cancer cells [296,297].
Berberine exerts its anticancer activity against A549 and H1299 lung cancer cell lines by
promoting Bcl-2-associated X protein (Bax) and caspase-3 Bcl-2-associated X protein (Bax) and
caspase-3-mediated apoptosis [176]. In vivo study furthered these results by demonstrating a
reduction of Bcl-2 expression and enhanced the Bax- and caspase-3-mediated apoptosis of
cancerous cells in the xenografts of athymic nude mice [176].

Evodiamine

Evodiamine (Figure 4) is a quinolone alkaloid derived from tetradium fruit that is
commonly used for its weight management, analgesic, and neuroprotective effects [298–300].
Documented anticancer effects of evodiamine include its ability to inhibit various signaling
molecules, such as mTOR, NF-κB, PI3K/Akt, and JAK-STAT [301]. In vivo analysis utilizing
nude mice with Lewis lung carcinoma xenografts demonstrated evodiamine’s ability to
improve host immune response against tumor cells at doses of 10, 20, and 30 mg/kg (Table 3).
Mechanistically, evodiamine was found to reduce the transmembrane glycoprotein mucin 1-C
(MUC-1)/PD-L1 expression and increase CD8+ T cells [302].
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Table 3. In vivo studies of plant-based bioactive compounds in lung cancer.

Phytochemicals Anticancer Model Dose (Route) Anticancer Effects Mechanisms References

Alkaloids

Berberine Xenograft athymic nude mouse model 50, 100, and 200 mg/kg (p.o.) Increased cell death and decreased
tumor weight ↓Bcl-2; ↑Bax; ↑caspase-3 [176]

Evodiamine Xenograft nude mouse model and Lewis lung
carcinoma model 10, 20, and 30 mg/kg (p.o.) Reduction in tumor volume ↑CD8+ T cells; ↓MUC1-C/PD-L1 [302]

Hirsutine Lung metastasis model in BALB/c mice 25 µM (i.p.) Decreased tumor weight ↓NF-κB [303]

Homoharringtonine Xenograft tumor mouse model 10 mg/kg (p.o.) Suppressed tumor growth ↓IL-6; ↓JAK1/STAT3 [177]

Xenograft tumor mouse mode and transgenic
carrying the KRAS mutation model 1.25 and 2.5 mg/kg (i.p.) Inhibited tumor growth ↓Bcl-2; ↑caspase-3; ↑caspase-9 [178]

Solamargine Xenograft mouse model 4 and 8 mg/kg (p.o.) Decreased tumor growth ↑ERK1/2; ↓prostaglandin E2; ↓DNMT1;
↓c-Jun [183]

Phenolics

Apocynin Xenograft BALB/c mouse model 50 and 100 mg/kg (i.p.) Suppressed tumor growth ↓Microtubule network [186]

Baicalein Xenograft BALB/c nude mice 2.5, 10, and 40 mg/kg (i.g.) Reduction in tumor volume ↓Cellular ezrin S-nitrosylation [187]

Cardamonin Xenograft nude mouse model 5 mg/kg (i.p.) Enhanced cell death and inhibited
tumor cell metastasis

↑Bax; ↓Bcl-2; ↑caspase-3; ↓cyclin D1; ↓CDK4;
↓PI3K; ↓Akt/mTOR [304]

Chrysin Tumor reduction model in BALB/c mice 1.3 mg/kg (p.o.) Increased cell death Caspase-3 [195]

Curcumin + neoadjuvant
radiotherapy Lung carcinoma model in C57BL/6J mice 100 µg (i.v.) Inhibited angiogenesis and increased

cell death ↓Prosurvival antiapoptotic factors [196]

p-Coumaric acid Xenograft model in nude mice 50 mg/kg (i.p.) Enhanced cell death ↑Bax; ↓Bcl-2; ↑caspase-3; ↑caspase-9 [202]

EGCG

Xenograft BALB/c athymic nude mouse model 20 mg/kg (i.p.) Inhibited tumor size and induced
apoptosis ↓NF-κB [305]

Xenograft BALB/c athymic nude mouse model 100 µM (s.c.) Inhibited tumor number ↓Nicotine-induced Akt; ↓ERK1/2; ↓ HIF-1α;
↓VEGF [206]

Xenograft nude mouse model 1.62 mg/kg (i.p.) Inhibited tumor number and size ↓Cisplatin-induced lung tumorigenesis [306]

EGCG and luteolin Xenograft nude mouse model 125 mg/kg (EGCG) and 10 mg/kg
(luteolin) (p.o.)

Decreased tumor size, volume and
induced tumor cell apoptosis

↑p53 mitochondrial translocation; ↑DNA
damage [212]

Gallic acid Xenograft tumor mouse model 200 mg/kg (i.p.) Increased cell death and G2/M phase
cell cycle arrest ↓Src-mediated STAT3; ↓Bcl-2; ↓cyclin D [219]

Gigantol Xenograft tumor mouse model Pretreated 20 µM (i.p.) Inhibited tumor cell growth,
migration, and invasion ↓PI3K/Akt/mTOR; ↓JAK/STAT [226]

Honokiol Orthotopic model of lung cancer in
NOD/SCID mice 7.5, 37.5, and 75 µmol/kg (p.o.) Decrease in tumor volume ↑ ROS; ↑mitochondrial Prx3 oxidation;

↑AMPK; ↓STAT3 [307]

Kurarinone Xenograft in BALB/c nude mouse model 100 mg/kg (i.p.) Increased cell death ↓Bcl-2; ↑caspase-8; ↑caspase-3 [238]

Nobiletin Xenograft in athymic BALB/c nude mouse
model 40 mg/kg (s.c.) Inhibited tumor growth and

enhanced cell death
↑Caspase-3; ↓Akt; ↓GSK3β, β-catenin;

↓MRP1 [248]
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Table 3. Cont.

Phytochemicals Anticancer Model Dose (Route) Anticancer Effects Mechanisms References

Quercetin Xenograft BALB/c nude mouse model 8 mg/kg (i.v.) Decreased tumor growth, viability
and promoted cell death ↑Bax; ↓Bc1-2 [257]

Resveratrol Xenograft BALB/c nude mouse model 15, 30, and 60 mg/kg (i.v.) Inhibited tumor growth and
increased cell death ↑Caspase-3 [259]

Tangeretin derivatives Xenograft BALB/c athymic nude mouse model 20 mg/kg (i.p.)
Increased G2/M cell cycle arrest,

mitochondrial disruption, cell death
and decreased tumor growth

↓Bcl-2; ↑caspase-3; ↓phophoatidylinositol
3-kinase/Akt/mTOR [261]

Sulfur-containing compounds

Sulforaphane Xenograft nude mouse model 9 µM (p.o.) Suppressed tumor growth and
enhanced G2/M cell cycle arrest ↑Apoptosis; ↓histone deacetylase [265]

Sulforaphane Xenograft nude mouse model 25 and 50 mg/kg (i.p.) Reduction in tumor volume ↑E-cadherin; ↑ZO-1; ↑ERK5; ↓N-cadherin;
↓Snail 1 [308]

Terpenoids

Thymoquinone Xenograft nude mouse model 10 mg/kg (i.p.) Inhibited tumor growth ↑Caspase-3 [276]

Betulinic acid Xenograft nude mouse model 50 and 75 mg/kg (i.p.) Suppressed tumor growth ↓Skp2; ↑p27; ↑E-cadherin [309]

Scabertopin Xenograft nude mouse model 20 mg/kg (i.p.) Inhibited tumor growth ↑Apoptosis ↑Bax; ↑ROS [310]

Soyasapogenol Xenograft immune-deficient mouse model 15 mg/kg (i.v.) Suppressed tumor growth and
metastasis

↓CDK2; ↓CDK4; ↓cyclin A; ↓cyclin D1;
↓catenin/vimentin/hnRNPK [275]

Miscellaneous compounds

Cannabidiol Xenograft nude mouse model 5 mg/kg (i.p.) Increased cell death and inhibited
tumor proliferation ↑ICAM-1; ↑COX-2; ↑PPAR-γ [283]

Emodin Xenograft model in nude mice 20 and 50 mg/kg (i.p.) Induced cell death ↑ER stress; ↑TRIB3/NF-κB [287]

Hypericin Rodent tumor model in BALB/c nude mice 0.1 mg/kg (i.p.) Displayed antiproliferative effects ↑siRNA; ↓HIF-1α [168,311]

Rodent tumor model/W256 tumor rats
and mice 2 mg/kg (intra tumor) Inhibited tumor proliferation and

induced cell death ↑Apoptosis [168,312]

Physalin A Xenograft mouse model 40 and 80 mg/kg (i.p.) Decreased tumor growth and
increased cell death ↓STAT3; ↓JAK/STAT3 [290]

Rhein Xenograft mouse model 60 and 100 mg/kg (i.p.)
Increased G2/M phase cell cycle
arrest, cell death and reduction in

tumor volume
↓Bcl-2; ↑Bax; ↓STAT3 [294]

Symbols and abbreviations: ↑, increased or upregulated; ↓, decreased or downregulated; Bax, Bcl-2-associated X protein; Bcl-2, B cell lymphoma-2; CDK, cyclin-dependent kinase; DNMT,
DNA methyltransferase; ERK, extracellular signal-related kinase; GSK3β, glycogen synthase kinase 3β; JAK, Janus kinase; MRP1, multidrug resistance protein 1; mTOR, mammalian
target of rapamycin; MUC1, mucin 1; NF-κB, nuclear factor-κB; PI3K, phosphatidylinositol-3-kinase; ROS, reactive oxygen species; STAT, signal transducer and activator of transcription;
ZO-1, zonula occludens-1 epithelial marker.



Cancers 2023, 15, 3980 24 of 60

Hirsutine

Hirsutine (Figure 4), an indole alkaloid, is derived from the bark of Uncaria and has
been shown to possess antiviral and neuroprotective properties [313]. Hirsutine has proven
efficacy against various cancer models, including T cell leukemia and lung cancer [314,315].
In an in vivo lung metastasis model using female BALB/c mice, hirsutine was found to
reduce cell invasion and metastasis at an intravenous dose of 25 µM by targeting the NF-κB
signaling pathway [303].

Homoharringtonine

Homoharringtonine (Figure 4) is an ester of the cephalotaxine alkaloid that is present
in Cephalotaxus harringtonia belonging to the family Cephalotaxaceae and has displayed
antiviral properties [316] and breast anticancer activity by suppression of the miR-18a-
3p/Akt/mTOR signaling pathway [317]. In lung cancer, specifically, homoharringtonine
has been reported to decrease JAK1/STAT3 signaling at a concentration of 2–4 µM in A549
cells [177]. In another study, at a concentration of 2µM, homoharringtonine inhibited
the expression of KRAS, ERK, Akt, STAT3, CDK4, and CDK6 in A549 and H1299 lung
cancer cells. Somewhat paradoxically, researchers also noted a decrease in the expression
of tumor suppressor protein p21 and RB-treated cells [178]. These findings are, in part, sup-
ported by in vivo experiments. Utilizing a xenograft tumor mouse model, Cao et al. [177]
demonstrated the ability of 10 mg/kg homoharringtonine to reduce the cell proliferation
by suppressing IL-6/JAK1/STAT3 signaling. Later, Weng et al. [178] also conducted an
experiment investigated the effects of 2.5 mg/kg homoharringtonine on mice bearing
KRAS mutation-positive xenograft tumors. The researchers determined that treatment with
homoharringtonine elevated the expression of caspase-3 and caspase-9 and downregulated
Bcl-2 expression.

Indole-3-Carbinol

Indole-3-carbinol (Figure 4) is an indole alkaloid and glucosinolate derivative, derived
from broccoli, cauliflower, cabbage, and other cruciferous vegetables. In vitro analyses
have been conducted to evaluate the anticancer effects of indole-3-carbinol. Dadashpour
and Emami [318] report the ability of indole-3-carbinol to cause G1/S cell cycle arrest and
apoptosis in several cancer models. More specifically, indole-3-carbinol increased oxidative
stress and expression of caspase-3, caspase-7, and caspase-9 to ultimately induce apoptosis
in H1299 lung cancer cells at a concentration of 400 µM [179].

Melosine B

Melosine B (Figure 4), an indole alkaloid derived from Melodinus cochinchinensis, has
been demonstrated to be cytotoxic to various cancer cell lines [319]. Researchers report
the ability of melosine B to induce apoptosis in A549 lung cancer cells at concentrations of
0.064, 0.32, 1.6, 8, and 40 µM. The investigators did not report any mechanism of action to
explain these findings [180].

Piperine

Piperine (Figure 4) is an amide alkaloid, commonly found in black pepper. It has
several biological activities, such as hepatoprotective, immunomodulatory, antioxidant,
antitumor, antidiabetic, and cardioprotective effects [320]. Piperine was reported to induce
cell cycle arrest in the A549 lung cancer cell line at a concentration of 50, 100, and 200 µg/mL
by upregulating caspase-3 and caspase-9 cascades and the Bax/Bcl-2 ratio [181]. In another
in vitro analysis, piperine demonstrated the ability to suppress A549 cell viability and
migration at a concentration of 20, 40, 80, 160, and 320 µM by inhibiting ERK 1/2, SMAD 2
phosphorylation, and the transforming growth factor-β (TGF-β) signaling pathway [182].



Cancers 2023, 15, 3980 25 of 60

Solamargine

Solamargine (Figure 4) is a steroidal alkaloid and cytotoxic compound derived from
Solanum incanum, a member of the Solanaceae family, and acts by disrupting the growth of
cancer cells [321]. Solamargine was found to inhibit the actions of prostaglandin E2 (PGE2),
restrict DNA protein expression, and enhance ERK1/2 phosphorylation in H1650, H1975,
PC9, A549, and H1299 lung cancer cell lines at a concentration of 2, 4, and 6 µM [183].
In a xenograft mouse model, solamargine again decreased the PGE2 and DNA protein
expression at doses of 4 and 8 mg/kg [183].

Vallesiachotamine and Iso-Vallesiachotamine

Vallesiachotamine and iso-vallesiachotamine (Figure 4) are indole alkaloids derived
from Anthocephalus cadamba which act by promoting apoptosis in cancer cells [322]. In vitro
analysis performed by Mishra et al. [184] demonstrated efficacy against the lung cancer
cell line H1299 at concentrations of 12.5, 25, 50, 100, and 200 µM. The researchers attribute
these anticancer effects to an increase in DNA damage and upregulation of apoptosis.

7.1.2. Phenolics

Phenolics are a diverse group of natural compounds widely distributed in plants.
These compounds are characterized by their inclusion of at least one aromatic ring within
their chemical structure, which contributes to their antioxidant properties. Plant-derived
phenolics play essential roles in numerous biological processes, including defense against
pathogens, UV protection, and cell signaling. Based on structural differences, phenolics
may be subcategorized primarily into flavonoids and non-flavonoids. Flavonoids are
further divided into six major groups: anthocyanidins, flavanols, flavanones, flavones,
flavonols, and isoflavonoids. The non-flavonoids may be further subdivided into phenolic
acids, stilbenes, and lignans, amongst others. These bioactive compounds have garnered
significant interest due to their broad-spectrum biological and pharmacological activities,
such as antioxidant, anti-inflammatory, and antineoplastic properties [323–325].

Acacetin

Acacetin (Figure 5) is a flavonoid derived from Tunera diffusa, Dracocephalum mol-
davica propolis, Betula pendula, Flos chrysanthemi indici, Robinia pseudoacacia chrysanthemum,
Calamintha, safflower, and Linaria species. Generally, anticancer effects of acacetin include
inhibition of tumor cell migration and invasion [326]. In lung cancer specifically, acacetin
has been shown to inhibit cell viability, invasion, migration, and inflammation and accel-
erate apoptosis in A549 NSCLC cells. Researchers report these effects to be mediated by
suppression of the p38α MAPK signaling pathway [185].

Apocynin

Apocynin (4-hydroxy-3-methoxy-acetophenone (Figure 5), a phenolic compound
derived from Apocynum cannabinum and Picrorhiza kurroa, has been reported to possess
anti-inflammatory, antioxidant, and anticancer effects [327]. Paul et al. [186] investigated
the role of apocynin against A549 lung cancer cells and observed decrease in the micro-
tubule network of cells, as well as reductions in proliferation, colony formation, and cell
invasion. The same group of investigators further studied these effects by conducting
an in vivo study using BALB/c mice with xenograft tumors. They found that treatment
with apocynin at doses of 50 and 100 mg/kg inhibited cell growth, invasion, colony for-
mation, and microtubule network. They attribute these findings to cellular microtubule
depolymerization, resulting in tumor cell apoptosis.

Baicalein

Baicalein (5,6,7-trihydroxyflavone, Figure 5) is a flavonoid derived from the root of
Scutellaria baicalensis that is known to modulate cardiovascular health [328]. Biacalein has
displayed broad anticancer effects by initiating apoptosis via mitochondria and receptor-
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mediated pathways [329]. In lung cancer cell lines A549 and H1299, baicalein has been
shown to suppress the cytoskeleton linker protein ezrin, resulting in decreased cell invasion
and metastasis [187]. Researchers validated these findings in an in vivo experiment utilizing
BALB/c nude mice with tumor xenografts. Baicalein was also found to inhibit cancer
invasion and metastasis at doses of 2.5, 10, and 40 mg/kg [187].
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Batatasin

Batatasin III (Figure 5) is a stilbenoid compound derived from Dendrobium draconi,
Bulbophyllum reptans, and Cymbidium aloifolium. It has numerous pharmacological ac-
tions, including antioxidant, anticancer, anti-inflammatory, antidiabetic, antiapoptotic,
anticholinesterase, antioxidant, antiherpetic, and antimalarial activities [330]. In vitro anal-
ysis of batatasin against H460 lung cancer cells demonstrated its ability to decrease cell
proliferation, invasion, and metastasis. Researchers attribute these findings to a decrease
in epithelial–mesenchymal transition (EMT) through downregulation of N-cadherin and
vimentin and the Akt pathway and upregulation of E-cadherin [188].



Cancers 2023, 15, 3980 27 of 60

Caffeic Acid

Caffeic acid (Figure 5) is a polyphenol derived from coffee beans, olives, fruits, carrots,
potatoes, and propolis. In hepatocellular carcinoma, caffeic acid has been demonstrated to
increase reactive oxygen species and DNA oxidation, as well as decrease angiogenesis [331].
In A549 lung cancer cells, caffeic acid was shown to reduce cell proliferation, adhesion, and
migration by inhibition of superoxide production [189].

Cardamonin

Cardamonin (Figure 5) is a chalcone compound that is present in cardamom, a spice
belonging to the Zingiberaceae family. Anticancer effects displayed by cardamonin include
inhibition of the PI3K/Akt pathway in various cancer models [190]. In A549 and H460 lung
cancer cells, cardamonin was reported to inhibit the PI3K/Akt pathway and increase the
expression of caspase-3, Bcl-2, and Bax at a concentration of 40 µM [190]. In another study,
at a concentration of 30 µM, cardamonin inhibited DNA synthesis and promoted apoptosis
in A549 cells [191]. Cardamonin analogs, including 4,40-dihydroxylchalcone (DHC) and
4,40-dihydroxy-20-methoxychalcone (DHMC), reduce cell growth and expression of NF-
κB at concentrations of 0.445 µM and 0.166 µM, respectively, in A549 and NCI-H460
cell lines [192]. In vivo analysis of the effects of cardamonin demonstrated its ability to
inhibit cell proliferation, migration, and angiogenesis in nude mice with xenograft tumors
of lung origin. Researchers noted an increase in caspase-3 and Bax expression, with
concurrent decreases in the expression of Bcl-2, cyclin D1, CDK4, and PI3K and Akt and
mTOR signaling [304].

Casticin

Casticin (Figure 5) is a methoxylated flavonol derived from Vites trifolia, Vites agnus-
castus, and Vites negundo. Casticin has been demonstrated to possess antiproliferative
and proapoptotic effects in numerous types of cancer, including breast, colon, liver, and
others [332]. These anticancer effects have been validated in the setting of lung cancer using
A549 cells. Researchers demonstrated the ability of casticin to decrease inflammatory medi-
ators such as IL-6, cyclooxygenase-2 (COX-2), and NF-κB, in addition to downregulating
chemokine gene expression [193,194].

Chrysin

Chrysin (5,7-dihydroxyflavone) (Figure 5) is present in propolis, honey, Passiflora
caerulea, Passiflora incarnata, Alpinia galangal, and Oroxylum indicum and has been reported
to exert its anticancer effects by caspase activation and inactivation of Akt signaling [333].
In A549 lung cancer cells, chrysin has been shown to increase apoptosis by elevating
caspase-3, Bcl-2, and Bax expression. Investigators also noted decreased cell proliferation
following the application of chrysin. In a follow-up in vivo study, researchers treated
tumor-bearing BALB/c mice with chrysin at a dose of 1.3 mg/kg and observed an increase
in caspase-3-mediated apoptosis [195].

Curcumin

Curcumin (Figure 5) is a spice derived from Curcuma longa L. with substantial evidence
for its use as a chemotherapeutic agent. Some of the well-established anticancer applications
of curcumin include its ability to induce apoptosis and inhibit proliferation of tumor cells
by numerous cellular signaling pathways [334]. In A549 lung cancer cells, 10 µM of
radiosensitized curcumin was shown to reduce the migration and invasion of tumor cells,
likely by suppression of antiapoptotic factors [196]. In another study utilizing A549 cells,
curcumin at 10–50 µM increased caspase-3-induced apoptosis by promoting G2/M phase
cell cycle arrest and DNA damage and caused stress to the endoplasmic reticulum, resulting
in activation of the unfolded protein response and eventual apoptosis in tumor cells [197].
Additional in vitro analysis using HCI-H460 cells also showed that, at a concentration of
30 µM, curcumin induced apoptosis by reducing expression of CDK1 and upregulating
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caspase-3 and caspase-8 [198]. Moreover, 1–20 µM of curcumin was documented to increase
activator protein-1 in the CL1–5 cell lines, thereby reducing cancer cell invasion and
metastasis [199]. Curcumin was also shown to cause DNA damage and promote apoptosis
in PC-9 cells at a concentration of 50 µM. Researchers attribute these findings to curcumin’s
role in reducing the expression of Bcl-2 and cyclin D1 and CDK2, CDK4, and CDK6 gene
expression [200]. Furthermore, 5–40 µM of curcumin contributed to apoptosis in NCI-H292
cells with measured reductions in the expression of CDK1 and enhanced expression of
caspase-3 and caspase-8 [201].

Limited in vivo experimentation has been conducted with curcumin in the context of
lung cancer. Sak [196] utilized a C57BL/6J lung carcinoma mouse model to demonstrate
that, at a dose of 100 mg/kg, curcumin effectively reduced angiogenesis and cancer cell
proliferation and initiated apoptosis by suppression of prosurvival factors.

p-Coumaric Acid

p-Coumaric acid (Figure 5), a hydroxycinnamic acid, belongs to a class of polyphe-
nols found in various edible plants such as tomatoes, carrots, and cereals. It has several
biological activities, including anti-inflammatory, analgesic, antioxidant, and antimicrobial
properties [335]. p-Coumaric acid was reported to increase apoptosis in A549, NCI-H1299,
and HCC827 lung cancer cell lines at a concentration of 10–100 µg/mL by upregulating
caspase-3 and caspase-9 [202]. Separate in vitro analysis by Jeong et al. [203] demon-
strated the ability of p-coumaric acid to suppress H1993 cell viability at a concentration
of 50–100 µM by overcoming the resistance of epidermal growth factor receptor tyrosine
kinase inhibitor. Despite promising in vitro studies, the anticancer effect of p-coumaric
acid has been relatively understudied in animal models of lung cancer. One available
report further describes the proapoptotic effects of p-coumaric acid against a xenograft lung
cancer model in nude mice. Researchers found that, at a dose of 50 mg/kg, p-coumaric
acid enhanced caspase-3- and caspase-9-mediated apoptosis in xenograft tumors [202].

Epigallocatechin Gallate

Epigallocatechin gallate (EGCG, Figure 5), a green tea-derived polyphenol, has been
reported to be effective against several types of cancers, including kidney, colon, lung,
brain, and breast, as well as in leukemia [336,337]. In A549 and H1299 lung cancer cells,
20–300 µM of EGCG was shown to decrease the tumor cell proliferation likely by sup-
pression of the NF-κB signaling pathway [204]. In another study, at a concentration of
10–100 µM, EGCG decreased the A549 cell proliferation by inhibiting the NF-κB signal-
ing pathway and increasing oxidative stress [205]. EGCG was also shown to reduce
the tumor cell proliferation at a concentration of 10, 25, 50, and 100 µM. Researchers at-
tributed these findings to EGCG’s role in reducing nicotine-induced Akt, ERK1/2 signaling,
hypoxia-inducible factor-1α (HIF-1α), and vascular endothelial growth factor (VEGF) ex-
pression [206]. Moreover, 12.5, 25, and 50 µM of EGCG suppressed tumor cell growth,
invasion, and migration with measured reductions in the Bax/Bcl-2 ratio [207]. Datta and
Sinha [208] investigated the role of EGCG against A549 lung cancer cells and observed
inhibition of tumor cell growth by a decrease in the Nrf2 signaling pathway and increase
in the oxidative stress in tumor cells at a concentration of 20–300 µM. The same group of
investigators further reported that EGCG reduced the etoposide resistance in A549 and
NCI-H23 cells at a concentration of 0.05–500 µM [209]. Moreover, 40 µM of EGCG sup-
pressed the growth of H1299, H460, and A549 cells with measured reductions in miR-210
expressions [210]. Later, in vitro analysis using H1299 and A549 cells also showed that
EGCG at a concentration of 10, 20, and 40 µM induced apoptosis by reducing expression of
the PI3K/Akt signaling pathway [211]. Additionally, the combination of EGCG (30 µM)
and luteolin (10 µM) was documented to induce apoptosis, likely by enhancing p53 mi-
tochondrial translocation and DNA damage, in A549 and H460 cells [212]. Furthermore,
theaflavins and EGCG at a concentration of 100 µM suppressed the tumor cell proliferation
by enhancing expressions of p53 and inhibiting Bcl-2 expression [213].
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In vivo analysis of the effects of EGCG demonstrated its ability to inhibit cell pro-
liferation and promote apoptosis in nude mice with xenograft tumors of lung origin.
Researchers noted a simultaneous decrease in nicotine-induced Akt and ERK1/2 signal-
ing [305]. Shi et al. (2015) utilized a xenograft BALB/c athymic nude mouse model to
demonstrate that pretreatment of animals with EGCG subcutaneously at 100 µM effectively
reduced cancer cell proliferation by suppression of nicotine-induced Akt and ERK1/2 sig-
naling [206]. Researchers validated these findings in an in vivo experiment utilizing a nude
mouse model with tumor xenografts. EGCG was also found to inhibit cisplatin-induced
lung tumorigenesis at doses of 1.62 mg/kg [306].

Ferulic Acid

Ferulic acid (Figure 5) is a hydroxycinnamic acid derived from fruits and vegetables
such as sweet corn, tomatoes, and rice bran, and has been found to have antioxidant and
anticancer activity [338,339]. In an in vitro study carried out utilizing A549 lung cancer cells,
200 µM of ferulic acid decreased cell proliferation, adhesion, and migration. Researchers
believe these results to be mediated by inhibition of superoxide production [189].

Fisetin

Fisetin (Figure 5) is a flavone present in numerous vegetables and fruit, such as ap-
ples, strawberries, grapes, persimmons, cucumbers, and onions. Fisetin is reported to be
efficacious in the treatment of numerous malignancies, including breast, cervical, prostate,
lung, skin, colon, and gastric cancers, as well as hepatocellular carcinoma, leukemia, and
myeloma. Fisetin has displayed anticancer effects by modulating multiple signaling path-
ways such as Akt/mTOR, Axl, MAPK, PARP, PI3K, and ERK1/2 [340]. In A549 lung cancer
cells, fisetin has been shown to induce apoptosis, likely due to its ability to downregulate
PI3K/Akt/mTOR signaling [214]. In two studies, Kang et al. [215,216] demonstrated the
ability of 75µg/mL of fisetin to decrease cell proliferation in NCI-H460 cells. The investi-
gators believe these results to be mediated by a reduction in the expression of Bcl-2, with
increases in the expression of caspase-9 and caspase-3. In a separate study, fisetin was
noted to reverse acquired erlotinib resistance of HCC827-ER lung adenocarcinoma cells
at concentrations ranging from 10–120 µM. The researchers attributed these findings to
fisetin’s role in suppressing the Axl, MAPK, and Akt signaling pathways [217].

Gallic Acid

Gallic acid is a phenolic acid (Figure 5), commonly found in bearberry, pomegranate,
gallnuts, oak bark, and several other plants, and is well known for its gastrointestinal,
cardiovascular, and neuropsychological medicinal properties as well as antioxidant, anti-
inflammatory, and antineoplastic properties [341]. In Calu-6 and A549 lung cancer cell lines,
gallic acid enhances oxidative stress, decreases the glutathione (GSH) levels, and inhibits
cell growth [218]. Researchers attribute these findings to be due to gallic acid’s ability to
downregulate STAT3-regulated tumor-promoting gene expression, resulting in cell cycle
arrest and apoptosis. Furthermore, gallic acid has been shown to induce cell cycle arrest
and upregulate apoptosis in H1975 and H1993 cell lines, likely due to its role in decreasing
STAT3 phosphorylation but also due to reduced expression of Bcl-2, cyclin D, NF-κB, and
IL-6 [219]. In an in vivo study, gallic acid reduced Src-mediated phosphorylation of STAT3,
thereby promoting cell cycle arrest and apoptosis in a mouse xenograft tumor model [219].

Genistein

Genistein (Figure 5) is a phytoestrogen primarily derived from legumes and has been
proven effective against numerous types of malignancies including liver, breast, prostate,
pancreatic, lung, skin, and cervical cancer [342]. In A549 lung cancer cells, genistein has
been demonstrated to accelerate trichostatin A-induced caspase-3 activity, thereby causing
cell apoptosis [220]. Genistein was also reported to inhibit NF-κB DNA-binding affinity
and downregulate expression of COX-2, p-Akt, EGFR, and PGE2, resulting in decreased
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cell proliferation and upregulation of apoptosis in H3255, H1650, and H1781 lung cancer
cell lines [221]. These results have been further validated in two additional studies in
which genistein increased apoptosis and cell cycle arrest in the SPC-A-1 line [222] and H460
cell lines [223].

Gigantol

Gigantol (Figure 5) is a bibenzyl phenolic compound derived from orchids and is
known to have antioxidative, antinociceptive, antispasmodic, anti-inflammatory, and anti-
cancer activity [343]. In lung cancer cell line A549, gigantol has been shown to suppress
cell proliferation and enhance apoptosis in tumor cells at a concentration of 25, 50, and
100 µM. Investigators report these effects to be mediated by inhibition of Bcl-2 expres-
sion and upregulation of Bax expression and Wnt/β-catenin signaling [224]. In another
study, gigantol has been shown to inhibit cell proliferation in H460 lung cancer cells at
a concentration of 50 µM. The investigators noted these findings to be associated with
inhibition of EMT transcription factor expression [225]. In H460 lung cancer cells, gigantol
was shown to destabilize tumor integrity via suppression of the PI3K/Akt/mTOR and
JAK/STAT pathways at concentrations of 20–200 µM [226]. To validate these findings,
in vivo experimentation has been conducted with lung cancer utilizing a xenograft tumor
mouse model. Researchers found that, pretreated at a dose of 20 µM, gigantol reduced cell
proliferation by suppressing PI3K/Akt/mTOR and JAK/STAT pathways [226].

Hesperidin

Hesperidin (Figure 5) is a flavanone glycoside present in citrus fruits with documented
antioxidative, anti-inflammatory, cardiovascular, antiobesity, and anticancer activities [344].
Specifically, hesperidin was reported to promote apoptosis in A549 and NCI-H358 lung
cancer cells at concentrations of 5–50 µM. Researchers suggest these results are due to
hesperidin’s ability to promote mitochondrial membrane disruption and production of
caspase-3, while also enhancing NF-κB signal transduction pathways [227]. A separate
study conducted by Jeong et al. [203] demonstrated that, at a concentration of 100 µM,
hesperidin reduced cell proliferation and growth in H1993 cell lines. They believe these
results to be mediated by overcoming the resistance of EGFR tyrosine kinase inhibitor.

Honokiol

Honokiol (Figure 5), a lignan belonging to the genus Magnolia, has been revealed
to exhibit antiproliferative effects against several cancer cells, including bladder, bone,
brain, blood, breast, and colon cancer [345]. When 5, 10, or 20 µM of honokiol was applied
to A549 and 95-D lung cancer cell lines, researchers observed inhibited cell proliferation
and migration, which they attributed to resultant increases in Bax, caspase-9, and PERK
phosphorylation [228,229]. Separate analysis using A549 and LL/2 cell lines further demon-
strates the anticancer potential of honokiol as researchers found that application of honokiol
to these cell lines promoted apoptosis and regulated vascular endothelial growth factor-A
(VEGF-A) expression [230]. In an in vivo analysis, honokiol administered at doses of 7.5,
37.5, and 75 µM/kg led to apoptosis of lung cancer cells in an orthotopic model using
NOD/SCID mice. The researchers believed that honokiol exerted anticancer effects by
enhancing oxidative stress, mitochondrial Prx3 oxidation, and AMPK pathway activation
and inhibition of STAT3 phosphorylation [307].

Isorhamnetin

Isorhamnetin (Figure 5), a bioflavonoid that is derived from Hippophae rhamnoides L.
and Ginkgo biloba L., is reported to be efficacious in the management of cerebrovascular and
cardiovascular diseases [346]. At a concentration of 16 µM, isorhamnetin was shown to
reduce cancer cell proliferation and colony formation and increase apoptosis via caspase
activation in A549 cells [233]. In a separate study, 25 µM of isorhamnetin also caused an
increase in mitochondrial disruption and caspase-induced apoptosis of A549 cells [234].
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Kaempferol

Kaempferol (Figure 5) is a flavonol found abundantly in broccoli, yellow fruits, and
grapes. In addition to its documented anticancer activities, kaempferol is said to possess
neuroprotective, antimicrobial, antioxidant, and anti-inflammatory properties [347]. In lung
cancer, 10–140 µM of kaempferol increased expression of EMT-related protein E-cadherin
and reduced expression of vimentin, resulting in reduced cell growth and proliferation
of A549 cells [235]. In another study utilizing identical cells, kaempferol was shown
to decrease cell proliferation, migration, and invasion at a concentration of 25 µM. The
researchers noted the role of kaempferol in reducing Akt1-mediated phosphorylation and
expression of transforming growth factor-β1 in treated A549 cells [236]. A separate study
found that, at concentrations of 30, 50, and 80 µM, kaempferol was able to increase the
oxidative stress and caspase-3-induced apoptosis of H460 cells [237].

Kurarinone

Kurarinone (Figure 5) is a flavanone derived from Sophora alopecuroides and is reported
to have immunosuppressive effects and antioxidant activity [348]. When 5.8 µg/mL of
kurarinone was applied to H460 cells, investigators observed its ability to cause G2/M
blockade and enhance apoptosis. These findings are supported by measurable decreases in
NF-κB signaling and tyrosine kinase activity [238]. In another in vitro analysis, researchers
reported that kurarinone decreased the expression of EMT-related proteins and MMP-2
in H1688 and H146 cell lines at IC50 values of 12.5 and 30.4 µM, respectively, thereby
decreasing cell viability, invasion, and migration of tumor cells [239]. One in vivo study
of kurarinone demonstrated that a dose of 100 mg/kg increased the rate of apoptosis
in BALB/c nude mice with xenografted tumors. Researchers believe these effects to be
mediated by an increase in caspase-3 expression [238].

Luteolin

Luteolin (Figure 5) is a flavone present in several vegetables and fruits and is reported
to have several therapeutic activities, such as antioxidant, antimicrobial, anticancer, neuro-
protective, antiviral, cardioprotective, and anti-inflammatory properties [349,350]. Luteolin
has been observed to promote apoptosis in A549 cells at a concentration of 20–80 µM.
Researchers also noted an increase in G2/M phase cell cycle arrest, Janus kinase (JNK) and
Bax expression, procaspase-9 cleavage, and caspase-3 [240]. In another study utilizing A549
cells, 25–100 µM of luteolin decreased cell motility and migration and upregulated apop-
tosis. The researchers attribute these findings to luteolin’s ability to enhance MEK/ERK
signaling and upregulate expression of caspase-3 and caspase-9 [241]. Moreover, additional
in vitro analysis supported luteolin’s role as a proapoptic regulator by its action on A549
and H460 cell lines. At a concentration of 10–100 µM, luteolin enhanced miR-34a-5p via
targeting MDM4 expression and induced apoptosis in these cancer cell lines [242,243].
Interestingly, luteolin was discovered to downregulate Bad expression in NCI-H460 cells
at concentrations of 20–160 µM. Despite this finding, application of luteolin caused in-
creased apoptosis, which was attributable to more significant upregulation of caspase-3
and suppression of Bcl-2 [244].

Moscatilin

Moscatilin (Figure 5) is a bibenzyl phenolic compound, derived from stems of the
orchid Dendrobium loddigesii, which is reported to have antimetastatic properties in hepato-
cellular carcinoma by targeting the Akt/NF-κB signaling pathway [351]. In the H460 lung
cancer cell line, moscatilin was shown to possess antiproliferative properties. Researchers
noted that application of moscatlin caused decreased expression of ERK, EMT, Akt, and
Cav-1 [245].
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Naringenin

Naringenin (Figure 5), a flavanone derived from citrus fruits and grapes, has displayed
antioxidant, antiviral, antitumor, antibacterial, antiadipogenic, anti-inflammatory, and
cardioprotective effects [352]. When applied to A549 cells, naringenin was shown to
decrease cell proliferation, invasion, and metastasis via suppression of MMP-2, MMP-9,
and the Akt pathway [246]. In another study, naringenin inhibited tumor cell migration
and invasion and promoted apoptosis. Researchers again found reduced expression of
MMP-2 and MMP-9 but enhanced caspase-3 and p38 MAPK [247].

Nobiletin

Nobiletin (Figure 5) is a flavonoid derived from citrus peels that causes tumor cell
apoptosis and prevents myocardial injury via the PI3K/Akt signaling pathway [353]. In
A549 lung cancer cells, nobiletin decreased the expression of Akt, GSK3β, β-catenin, and
multidrug resistance-associated protein (MRP1) expression, while it increased caspase-
3-mediated apoptosis and polymerase cleavage [248]. Researchers expanded upon this
study by performing in vivo experiments utilizing a xenografted BALB/c nude mouse
model. Again, nobiletin was found to enhance caspase-3-mediated apoptosis and DNA
polymerase cleavage, with concurrent downregulation of Akt signaling and MRP1 at a
dose of 40 mg/kg [248].

Osthol

Osthol (Figure 5), a coumarin derivative derived from Angelica pubescens and Cnidium
monnieri, is reported to exert antitumor, neuroprotective, anti-inflammatory, osteogenic,
antimicrobial, cardiovascular protective, and antiparasitic effects [354]. In A549 lung
cancer cells, osthol was shown to decrease cell proliferation, invasion, and metastasis at
concentrations of 25, 50, 100, 150, and 200 µM. Researchers credit these anticancer effects to
a reduction in the expression of cyclin B1, p-Cdc2, and Bcl-2, with accompanying inhibition
of PI3K/Akt signaling [249]. In another study, 80 µM of osthol decreased cell invasion
and migration by reducing the MMP-2 and MMP-9 expression in A549 cells [250,251]. In
another in vitro study, osthol decreased TGF-β-induced EMT, NF-κB, and Snail signaling
pathways, resulting in decreased cell invasion, migration, and metastasis in A549 cells at
5–80 µM concentrations [252].

Phloretin

Phloretin (Figure 5) is a dihydrochalcone derivative present abundantly in strawberries
and apples. Reported pharmaceutical applications of phloretin include antioxidant, anticar-
cinogenic, antidiabetic, and hepatoprotective effects [355]. In lung cancer, 25–75 µg/mL
of phloretin was demonstrated to induce apoptosis in several cell lines, including A549,
Calu-1, H838, and H520 cells. Researchers report a reduction in Bcl-2, MMP-2, and MMP-9
expression, as well as upregulation of caspase-3 and caspase-9 following treatment [253].
Separate in vitro analysis of phloretin utilizing A549 cells indicated that, at concentrations
of 25, 50, 100, or 200 µM, cancer cell migration, invasion, and metastasis were reduced.
The investigators noted an increased phosphorylation of p38 MAPK and upregulation of
JNK1/2, caspase-3, and caspase-9, with concurrent reductions in the expression of Bcl-2
and NF-κB [254].

Polydatin

Polydatin (Figure 5) is a glycosylated form of resveratrol derived from Polygonum
cuspidatum and is reported to be an efficacious antioxidant and anti-inflammatory agent.
Furthermore, polydatin possesses greater capacity to modify the gut microbiota and en-
hance lipid metabolism in comparison to resveratrol [356]. At a concentration of 50 µM,
polydatin was shown to reduce tumor cell proliferation and colony formation via enhancing
the Bak/Bcl-2 ratio in A549 and NCI-H1975 cell lines [255].
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Polymethoxyflavones

Monodemethylated polymethoxyflavones derived from the peels of Citrus sinensis
have been reported to have numerous therapeutic applications, including anticancer, anti-
inflammatory, and antiatherogenic properties [357]. In vitro analysis utilizing H1299 cells
demonstrated the ability of polymethoxyflavones to induce apoptosis and regulate cancer
cell metabolism. Researchers attribute these effects to a reduction in the expression of
iNOS, COX-2, and myeloid leukemia cell differentiation protein (Mcl-1), with increased
expression of caspase-3 [231].

Pterostilbene

Pterostilbene (Figure 5), a stilbenoid bearing chemical resemblance to resveratrol, is
present in Pterocarpus marsupium and blueberries. Anticancer applications of pterostilbene
are well documented and include discussions of its roles in inhibition of tumor growth,
angiogenesis, and metastasis [358]. Application of pterostilbene to NCI-H460 and SK-MES-
1 lung cancer cells resulted in increased apoptosis and diminished cell viability, likely due
to an upregulation of caspase-3- and caspase-7-induced cell death [256].

Quercetin

Quercetin (Figure 5) is a vastly abundant natural flavonoid, present in berries, ap-
ples, vegetables, grapes, onions, tomatoes, red wine, and tea [359]. Medicinal appli-
cations of quercetin have been researched greatly and include applications as an anti-
inflammatory, antioxidant, and anticancer agent, in addition to a regulator of cardiovas-
cular disease [360,361]. When applied to A549 cells, quercetin was shown to reduce cell
growth and promote apoptosis. Researchers also noted an increase in the Bc1-2 gene
in treated cells [257]. In an in vivo study, quercetin was shown to enhance cancer cell
apoptosis in the xenografts of BALB/c nude mice at a dose of 8 mg/kg. The researchers
attributed these findings to quercetin’s role in reducing Bcl-2 expression and augmenting
Bax gene expression [257].

Resveratrol

Resveratrol (Figure 5) is a stilbenoid compound found in grapes, blueberries, plums,
apples, and peanuts which has been reported to exhibit antiproliferative activities against
various cancer cells and animal tumor models [362–364]. In lung cancer, resveratrol inhibits
TGF-β1-induced EMT at a concentration of 20 µM in A549 cells, thereby preventing cell
invasion and metastasis [258]. Another study determined that resveratrol also initiates
caspase-3-mediated apoptosis when applied at a concentration of 8.9 µM to A549 cells [259].
Apoptosis was also observed when a lower concentration of resveratrol (1–10 µM) was
applied to the H1993 cell line, presumably by disabling the resistance of EGFR tyrosine
kinase inhibitor [203]. Limited in vivo data support the proapoptotic effects of resveratrol.
Researchers observed an increase in apoptosis of the xenograft tumor cells of BALB/c
nude mice when they were treated with 15, 30, or 60 mg/kg resveratrol, probably due to
upregulation of caspase-3 [259].

Salicylic Acid

Salicylic acid (Figure 5) is a phenolic compound derived from the bark of the willow
tree. It is documented to have anti-inflammatory and analgesic activity, in addition to being
used to treat several skin disorders, such as acne, psoriasis, dandruff, seborrheic dermatitis,
corns, and warts [365]. When applied to A549 cells, salicylic acid was shown to increase
cell cytotoxicity and apoptosis at concentrations from 1.5–9.5 mM. No mechanism of action
is suggested by the investigators to explain these findings [260].

Tangeretin Derivative

Tangeretin derivative (5-acetyloxy-6,7,8,4′-tetramethoxyflavone, Figure 5) belongs to
the class of flavonoids and is present in citrus peels. This compound possesses various
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therapeutic activities, such as hepatoprotective, antioxidant, antitumor, anti-inflammatory,
and neuroprotective effects [366]. With regard to lung cancer, tangeretin derivative has
been shown to decrease tumor cell proliferation, metastasis, and angiogenesis in CL1-
5, H1299, H226, and A549 cell lines. Researchers believe these effects to be mediated
by an increase in G2/M phase arrest and mitochondrial membrane disruption and by
inhibition of the PI3K/Akt/mTOR signaling pathway [261]. In an in vivo study, tangeretin
derivative also led to disruption of the mitochondrial membrane and suppressed the
Akt/mTOR signaling pathway, resulting in decreased cell proliferation, migration, and
angiogenesis in the xenograft tumor cells of BALB/c athymic nude mice. Furthermore, the
researchers observed an enhancement of caspase-mediated apoptosis at the given dose of
20 mg/kg [261].

Tatariside

Tatarisides B, C, and D (Figure 5) are flavonoids derived from the roots of Tartary buck-
wheat. Collectively, these phytochemicals are reported to have antitumor, anti-inflammatory,
antioxidant, antidiabetic, and hepatoprotective activities [367]. Concerning lung cancer, Tatari-
sides B, C, and D have been shown to increase apoptosis and cell cytotoxicity in A549 cells.
However, Tatariside C was found to be most potent against A549 cells [262]. Additional efforts
are required to elucidate the mechanistic action of these compounds.

7.1.3. Sulfur-Containing Compounds

Sulfur-containing compounds in plants are a diverse group of chemical substances
that contain sulfur atoms within their molecular structures. These compounds are essential
for the growth, development, and defense mechanisms of plants. Glutathione, for example,
plays a crucial role in cellular detoxification and antioxidant defense in both humans and
plants. Another important sulfurous group of natural compounds are the glucosinolates,
which contribute to the characteristic flavors and odors of certain plants, such as cruciferous
vegetables. The study of these compounds in plants is of considerable interest due to their
diverse biological functions and their potential applications in health promotion and disease
mitigation [368–372].

Allicin

Allicin (Figure 6) is an organosulfur compound derived from garlic and has various
biological activities such as anthelmintic, antimicrobial, nematocidal, antioxidant, anti-
cancer, and immunomodulatory actions [373]. In an in vitro study, allicin demonstrated
effectiveness against cisplatin-resistant A549 and NCI-H460 cells, evidenced by increased
ROS-mediated cell death and decreased proliferation. The researchers noted downreg-
ulation of cadherin 2 (N-cadherin) and upregulation of cadherin 1 (E-cadherin), with
concurrent suppression of hypoxia-inducible factors (HIF-1α and HIF-2α) [263].
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Sulforaphane

Sulforaphane (Figure 6) is an organosulfur compound, present in cruciferous vegeta-
bles such as broccoli and cabbage, and has displayed broad anticancer activity by inhibiting
phase I metabolic enzymes and accelerating cell cycle arrest in G2/M and G1 phases, ox-
idative stress, cell migration, and proliferation [372,374]. Sulforaphane has been shown to
decrease the levels of miR-616-5p and GSK3β/β-catenin signaling and to increase S/G2–M
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phase cell cycle arrest in lung cancer cell lines H1299, 95-C, and 95-D [264]. In another study,
sulforaphane downregulated histone deacetylase and enhanced apoptosis by causing cell
cycle arrest in G2/M phase in A549 and H1299 [265]. Additional research conducted on
sulforaphane demonstrated its ability to act as an epigenetic modulator of miR-21 and
decrease CDH1 and DNMT protein levels in A549 lung cancer cells [266]. In an in vivo
study, nude mice with xenograft tumors treated with sulforaphane experienced increased
apoptosis of tumor cells. The researchers suggest these effects to be a result of downregu-
lated histone deacetylase and promotion of G2/M phase cell cycle arrest [265]. In another
study, sulforaphane at a dose of 50 mg/kg was administered to nude mice with xenograft
tumors. The researchers observed decreased tumor cell invasion and migration, which
they attribute to sulforaphane’s role in enhancing the levels of E-cadherin and ZO-1 and
decreasing N-cadherin and Snail 1, thereby causing ERK5 activation [308].

7.1.4. Terpenoids

Terpenoids, also known as isoprenoids, form an extensive and diverse group of
compounds found abundantly in natural resources. These compounds are characterized by
their structural backbone which is comprised of isoprene units. Terpenoids play crucial
roles in various biological processes, including photosynthesis, pigmentation, and defense
mechanisms against herbivores and pathogens. Perhaps the most well-known terpenoids
include carotenoids, which are responsible for the vibrant colors of fruits and vegetables.
Other examples of naturally occurring terpenoids include those present in the essential
oils of plants utilized in aromatherapy and traditional medicines. Their historic uses
and wide range of purported biological activities have attracted significant interest in
pharmaceutical research; in fact, many terpenoids have been shown to exhibit potential
therapeutic properties with applications in cancer drug development [375–377].

Abietane Diterpene

Abietane diterpene (6,7-dehydroroyleanone, Figure 7) is derived from the essential
oil of Plectranthus madagascariensis and exerts several therapeutic properties, such as an-
timicrobial, antileishmaniasis, antimalarial, antiviral, antiulcer, antioxidant, and anticancer
effects [376]. Garcia et al. [267] demonstrated the ability of abietane to upregulate apoptosis
in NCI-H460 and A549 lung cancer cells. The researchers noted an increase in caspase
activation and metaphase arrest.

β-Sitosterol

β-Sitosterol (Figure 7) is a phytosterol belonging to the class of triterpenoids. De-
rived from Grewia tiliaefolia, β-sitosterol possesses several therapeutic activities, such as
antioxidant, antidiabetic, antimicrobial, anticancer, and immunomodulatory effects [377].
β-sitosterol was reported to inhibit the cell cycle at the G2/M phase and initiate apoptosis
when applied to A459 cells [268].

Betulinic Acid

Betulinic acid (Figure 7) is a pentacyclic triterpenoid primarily derived from the
bark of white birch trees and has been shown to promote mitochondrial oxidative stress,
regulate transcription factors, and inhibit STAT and activator of the NF-κB signaling
pathway in prostate, breast, colorectal, and lung cancers [378]. In an in vivo model of lung
cancer, betulinic acid at a dose of 50 or 75 mg/kg was shown to inhibit the migration and
proliferation of cancer cells in nude mice bearing xenograft tumors. The researchers noted
that betulinic acid acted as an Skp2-SCF E3 ligase inhibitor, thereby inhibiting cancer cell
metastasis and proliferation [309].

Cucurbitacin B

Cucurbitacin B (Figure 7) is a triterpene obtained from the Cucurbitaceae family which
possesses several bioactivities, such as anti-inflammatory, anticancer, and hepatoprotective
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properties [379]. In lung cancer, cucurbitacin B has been shown to reduce cell proliferation,
migration, invasion, and metastasis in A549 cells. Researchers report these findings to be
associated with reduced expression of CDK2, CDK4, cyclin D, cyclin E, and mortalin and
increased p53 and collaborator of ARF (CARF) proteins [269].
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Dihydroartemisinin

Dihydroartemisinin (Figure 7) is a semi-synthetic derivative of artemisinin derived
from Artemisia annua and is reported to have antimalarial, antiviral, anti-inflammatory,
and anticancer activity [380]. In the context of lung cancer, dihydroartemisinin is reported
to cause apoptosis by enhancing the p38 MAPK expression in the PC-14 cell line at a
concentration of 1 µg/mL [270]. In a similar in vitro analysis, researchers reported that
dihydroartemisinin increased the expression of p38 MAPK in LLC cells at concentrations
of 5, 10, 20, and 40 µg/mL [271]. Another study found that 0.23–749.90 µM of dihy-
droartemisinin also caused a decrease in transferrin receptor expression in the A549 and
H1299 lung cancer cell lines by causing cell cycle arrest in G1 phase [272].

Oridonin

Oridonin (Figure 7) is a diterpenoid derived from the Chinese herb Rabdosia rubescens
and has been reported to have antifibrotic, antibacterial, anti-inflammatory, and anticancer
effects [381]. In lung cancer, oridonin decreases cell migration, invasion, and metasta-
sis via mesenchymal transition in the H1975 cell line at a concentration of 10 µM [273].
Additional analysis reported that concentrations of 10, 20, and 30 µM of oridonin in-
creased Bax expression in A549 cells, thereby enhancing cisplatin-induced apoptosis by the
AMPK/Akt/mTOR pathway [274].
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Scabertopin

Scabertopin (Figure 7), a germacrane-type sesquiterpene lactone, is derived from
Elephantopus scaber. It has displayed an anticancer effect in bladder cancer by modulat-
ing ROS and intracellular signaling [382]. In a xenograft mouse model of lung cancer,
scabertopin was shown to promote cancer cell death through increased Bax expression and
ROS-mediated apoptosis at a dose of 20 mg/kg [310].

Soyasapogenol

Soyasapogenol (Figure 7) is a pentacyclic triterpenoid present in soy-based foods and
has been shown to reduce the proliferation, migration, and invasion of H1299 cancer cells,
with concurrent upregulation of caspase-mediated apoptosis. Researchers also noted a
reduction in CDK2, CDK4, cyclin A, and cyclin D1 expression, as well as suppression of
pATR-Chk1 signaling [275]. In an in vivo study, 15 mg/kg of soyasapogenol enhanced
apoptosis of xenografted tumor cells in a mouse model. Researchers also noted reduced mi-
gration and invasion of cancer cells, further confirming soyasapogenol’s role as a potential
anticancer pharmaceutical [275].

Thymoquinone

Thymoquinone (Figure 7), a monoterpene derived from the seeds of Nigella sativa,
is well documented for its role in the management and treatment of numerous types of
cancers, such as breast and colon cancers, in addition to osteosarcoma [383,384]. The
anticancer activities of thymoquinone are primarily exerted through alterations in several
oncogenic pathways, such as regulation of oxidative stress, inflammation, metastasis, and
angiogenesis [385,386]. In one in vitro study, thymoquinone was found to promote caspase-
3-induced apoptosis of LNM3 lung cancer cells. Building from their in vitro analysis,
the researchers believed that thymoquinone increased cell death via caspase-3-mediated
apoptosis in a xenografted nude mouse model at a dose of 10 mg/kg [276].

Ursolic Acid

Ursolic acid (Figure 7) is a pentacyclic terpenoid found abundantly in Ilex paraguarieni,
Mimusops caffra, and Glechoma hederacea. In addition to its documented anticancer activities,
ursolic acid is said to possess anti-inflammatory, antidiabetic, antibacterial, and antioxidant
effects [387,388]. At a concentration of 11, 22, 44, and 88 µM, ursolic acid decreased cell
viability and enhanced autophagy in A549 lung cancer cell lines. Researchers observed
these changes to be associated with augmented ratio of LC3–phosphatidylethanolamine
conjugates (LC3-II/LC3-I) and enhanced expression of ubiquitin-binding protein (p62),
PTEN-induced kinase 1 (PINK1), and Nrf2, with reductions in p-Akt and p-mTOR expres-
sion [277]. A separate study found that, at a concentration of 0.001–0.1 µM, ursolic acid
caused inhibition of tumor cell proliferation and angiogenesis in H1975 cells. Investiga-
tors found that application of ursolic acid resulted in decreased N-cadherin and TGF-β1
expression, with enhanced expression of E-cadherin, MMP-2, and MMP-9 [278]. In another
study utilizing A549, H460, H1975, H1299, H520, H82, LLC, and H446 cell lines, 5–40 µM of
ursolic acid decreased cell proliferation and angiogenesis. The researchers attributed these
findings to ursolic acid’s ability to upregulate LC3-II protein and cleaved PARP expression,
while downregulating Bcl-2, p-S6K T389, and p-Akt expression [279].

Withaferin A

Withaferin A (Figure 7), a terpenoid phytochemical historically used in Ayurvedic
medicine, is derived from Withania somnifera and has been purported to possess im-
munomodulatory, antibacterial, and cardioprotective effects [389,390]. General anticancer
activities of withaferin A include induction of apoptosis via p53 and suppression the activ-
ity of TASK-3 channels [391,392]. When studied in the context of lung cancer, withaferin
A was demonstrated to promote apoptosis and increase oxidative stress in A549 lung
cancer cells [280].
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7.1.5. Miscellaneous Compounds
Cannabidiol

Cannabidiol (Figure 8) is derived from the plant Cannabis sativa and is reported to have
several therapeutic benefits, such as anticonvulsant, analgesic, antipsychotic, neuroprotec-
tive, anxiolytic, anti-inflammatory, and antioxidant activities [393]. Cannabidiol has been
demonstrated to be effective in lung cancer. When 3 µM of cannabidiol was applied to A549
and H460 cells, researchers observed reduced lymphoid trafficking and increased apopto-
sis [281,282]. In another study, 1–10 µM of cannabidiol was reported to inhibit lymphoid
trafficking and enhance COX-2, thereby negatively regulating the growth of lung cancer in
A549 and H460 cells [283]. Moreover, a separate study validated these findings by showing
that, at a concentration of 3 µM, cannabidiol reduced cell invasion and promoted apoptosis
in the A549 cell line [284]. In vivo analysis of cannabidiol demonstrated decreased cell
proliferation and migration when cannabidiol at a dose of 5 mg/kg was administered to
nude mice with xenograft tumors. The researchers attribute these findings to an observed
increase in COX-2, peroxisome proliferator-activated receptor-γ (PPAR-γ), and intercellular
adhesion molecule-1 (ICAM-1) expression [283].
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Cypripedin

Cypripedin (Figure 8) is a phenanthrenequinone derived from the orchid Dendrobium
densiflorum and has been reported to have antiproliferative, anti-inflammatory, antimicro-
bial, and antioxidant effects [394]. In lung cancer, cypripedin has been shown to inhibit
proliferation of H23 cells at a concentration of 50 µM. The researchers reported these ef-
fects to be mediated by inhibiting N-cadherin, vimentin, and the Akt/GSK-3β signaling
pathway [285]. In lung cancer cell line H460, 50 µM of cypripedin decreased cell prolif-
eration. The investigators suggested these findings to be mediated by inhibition of Bcl-2
expression [286].

Daucosterol

Daucosterol (Figure 8) is a steroidal saponin derived from Grewia tiliaefolia and has
several pharmacological activities, such as antidiabetic, antioxidant, hypolipidemic, anti-
cancer, immunomodulatory, anti-inflammatory, and neuroprotective actions [395]. When
applied to A549 cells, daucosterol was found to increase apoptosis and inhibit the cell cycle
at the G2/M phase. The researchers believe these anticancer effects to be mediated by
downregulation of Bcl-2 expression, with concurrent upregulation of Bax and caspase-3
cleavage [268].

Emodin

Emodin (Figure 8) is a natural compound belonging to the anthraquinone family that
can be derived from Polygonum cuspidatum, Rheum palmatum, and Polygonum multiflorum; it
acts as a tyrosine kinase inhibitor and suppresses tumor growth and cancer cell transforma-
tion [396]. Emodin demonstrates anticancer potential against lung neoplasias through its
actions on A549 and H1299 cells. Researchers observed that emodin caused endoplasmic
reticulum (ER) stress-mediated apoptosis by the tribbles homolog 3 (TRIB3)/NF-κB path-
way at concentrations of 20, 40, 60, and 80 µM [287]. Furthermore, te researchers went on
to analyze these effects in an in vivo model in nude mice with xenografted tumors, where
emodin was again found to initiate ER stress-mediated apoptosis when administrated at a
dose of 50 mg/kg [287].

Glossogin

Glossogin (Figure 8) is derived from Glossogyne tenuifolia and has shown anticancer
activity against breast and liver cancer cell lines [397]. In an in vitro analysis of glossogin
against A549 lung cancer cells, researchers demonstrated its ability to decrease cell prolifer-
ation at a concentration of 12.5 µg/mL. The investigators attributed these findings to an
increase in cytochrome c, caspase-3, caspase-9, and the Bak/Bcl-2 ratio [288].

Hypericin

Hypericin (Figure 8) is an anthraquinone derivative derived from Hypericum perforatum
and has been shown to possess anti-inflammatory effects and inhibit various oncogenic
signaling molecules, ultimately causing reduced angiogenesis, adhesion, and mitochondrial
thioredoxin [168]. In an in vivo study, hypericin enhanced siRNA transfection and reduced
HIF-1α, resulting in decreased cell proliferation and angiogenesis in a BALB/c nude mouse
tumor model at a dose of 0.1 mg/kg [168,311]. Additional research conducted in a W256
tumor rat and mouse model demonstrated the ability of hypericin to initiate apoptosis at a
dose of 2 mg/kg. The researchers did not report any mechanism of action [168,312].

Ouabain

Ouabain (Figure 8) is a cardiac glycoside derived from ripe seeds of Strophanthus
gratus and bark of Acokanthera ouabaio, having therapeutic potentials in the management of
hypertension, arrhythmia, and heart failure [398,399]. In A549 and H1975 lung cancer cells,
ouabain was shown to reduce cell proliferation at a concentration of 25 nM. The researchers
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believe these results to be mediated by inhibition of JNK and Bcl-2 expression in A549 lung
cancer cell lines [289].

Physalin A

Physalin A (Figure 8) is an active withanolide derived from Physalis alkekengi. It has
several biological activities, such as anticancer, antiparasitic, anti-inflammatory, antimi-
crobial, antiviral, and antinociceptive effects [400]. In lung cancer, physalin A was shown
to decrease cell migration, angiogenesis, migration, and proliferation via the JAK/STAT3
signaling pathway in H292, H358, and H1975 cell lines. Following their in vitro analy-
sis, the researchers evaluated the effects of 40 or 80 mg/kg of physalin A in a xenograft
mouse model and again found a reduced JAK/STAT3 signaling pathway, with associated
reductions in cell proliferation, migration, invasion, and angiogenesis [290].

Rhein

Rhein (4, 5-dihydroxyanthraquinone-2-carboxylic acid, Figure 8) is an anthraquinone
glycoside abundantly present in several plant species including Rheum palmatum, Polygonum
multiflorum Thunb, Cassia tora, and Aloe barbadensis Miller. Pharmacological properties of
rhein include its ability to cause cell cycle arrest and DNA damage to tumor cells in several
cancer models [401]. When applied to A549 cells at a concentration of 45 µM, rhein was
shown to inhibit cell proliferation, migration, and invasion. The researchers noted these
findings to be associated with an increase in G0/G1 phase cell cycle arrest and p53, p21,
and Bax expression [291,292]. In another study, rhein caused apoptosis by reduction of
p-PI3K, Akt, mTOR, and Bcl-2 expression at a 100 µM concentration in A549 cells [293].
Moreover, rhein was again demonstrated to inhibit cancer cell proliferation, angiogene-
sis, and metastasis when applied to PC-9, H460, and A549 cell lines at concentrations of
24.59 µM, 52.88 µM, and 23.9 µM, respectively. The researchers attribute these findings
to upregulation of G2/M phase cell cycle arrest and decreased STAT3 and Bcl-2 expres-
sion [294]. In a follow-up in vivo study, rhein was again shown to reduce the expression
of STAT3 and promote G2/M phase cell cycle arrest at a dose of 60 or 100 mg/kg in a
xenograft mouse model [294].

Withanone

Withanone (Figure 8) is a steroidal lactone also derived from Withania somnifera with
an array of therapeutic applications, including anticancer effects [402] and activity against
SARS-CoV-2 [403]. In one study utilizing A549 lung cancer cells, withanone was found to
decrease cell proliferation, migration, invasion, and metastasis. The researchers noted these
findings to be accompanied by reduced expression of CDK2, CDK4, cyclin D and cyclin E,
and mortalin and increased p53 and CARF expression [269].

7.2. Clinical Studies

While preclinical studies have sparked interest in phytochemicals as agents against
lung cancer, clinical trials are required to validate their effects and change the current prac-
tice of medical oncology. Most naturally derived agents, such as vincristine, vinblastine,
and camptothecin, against lung cancer represented in clinical studies are FDA approved for
at least one form of cancer. Two exceptions, however, are resveratrol and seliciclib. Resvera-
trol is a polyphenol found in berries, grapes, red wine, and peanuts that has been reported
to possess antioxidant, antidiabetic, anti-inflammatory, and anticancer effects [404]. In a
clinical trial carried out on 96 lung cancer patients, resveratrol suppressed tumor growth by
downregulating Forkhead box C2 (FOXC2) and upregulating miR-520h-mediated PP2A/C
expression, thereby causing apoptosis in lung cancer cells [405]. Seliciclib is a natural com-
pound present in radish (Raphnus sativus L.). Seliciclib (R-roscovitine), a drug in the family
of cyclin-dependent kinases, is reported to be effective in treating cancers, inflammation,
neurodegenerative diseases, viral infections, glomerulonephritis, and polycystic kidney
disease [406]. In a separate, phase II trial, seliciclib (R-roscovitine) was shown to cause
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decreased tumor growth in lung cancer cells. The researchers attribute this finding to its role
in inhibiting RNA-polymerase-II-dependent transcription, leading to the downregulation
of myeloid leukemia 1 (Mcl-1) protein [407].

Although use of camptothecin has not been directly approved by the FDA since its
isolation from Camptotheca acuminata, several of its analogs have received approval for
cancer therapy [408]. In a phase I study on cancer patients, camptothecin was documented
to synergize with topoisomerase I and DNA, resulting in hindered reassembly of single-
strand DNA by intercalating between its nitrogenous bases, leading to the inhibition of
bonds at the sites of nicks, thereby harming the structure of the double-stranded DNA chain.
Several vinca alkaloids have been approved by the FDA for cancer treatment. Members
of this family, including vincristine, vinblastine, vinorelbine, vindesine, and vinflunine,
are derived from the Madagascar periwinkle plant [409] and were shown to prevent the
polymerization of microtubules, leading to metaphase arrest and cell death in a phase II
clinical trial [410]. Paclitaxel and docetaxel were reported to bind with tubulin and disrupt
microtubule dynamics, thereby causing mitotic arrest and cell death [411]. In another
phase II clinical study, paclitaxel and docetaxel were documented to have response rates of
21–24% and 28–38%, respectively, in advanced non-small lung cancer cell patients, who
were first treated with cisplatin [412]. In another phase II clinical study, paclitaxel was
reported to promote G2/M phase cell cycle arrest in 37 patients with stage III lung cancer.
Paclitaxel was administrated at a concentration of 225 mg/m2 for three weeks and although
mild hematologic toxicity was observed, adverse events were well tolerated overall [413].

Despite strong support in favor of natural compounds against the development and
progression of lung cancer, there is an obvious need for additional clinical trials. Future
trials should strive to evaluate the effects of a phytochemical compared to current, first-
line treatments. Besides lack of data, other barriers exist before phytochemicals may
see widespread use. Taxol, in a phase II clinical study, exhibited cytotoxic symptoms
against healthy tissue [414]. Therefore, there is a need to better evaluate the safety profile
of phytochemicals, even if their toxicity profiles tend to be better than those of current
therapies. Ultimately, the success of these plant-derived anticancer agents as FDA-approved
therapies highlights the potential of future drug discovery. The review of the available
literature, however, underscores the need for additional studies of underinvestigated
compounds.

8. Conclusions and Future Perspectives

Lung cancer is the foremost reason for mortality in cancer patients [7]. Despite current
chemotherapeutic options, many patients are left without efficacious treatments and suffer
as a result. And for those receiving treatment, they must endure numerous side effects.
Accordingly, there is an obvious need for the development of safe and effective pharmacons
against lung cancer, and the evidence outlined in this review provides strong rationale for
further investigation into phytochemicals as potential chemotherapeutic agents. Previously
published reviews on phytochemicals targeting lung cancer involved fewer phytochemicals
and were not utterly comprehensive or did not incorporate all types of preclinical and
clinical studies. Furthermore, a detailed discussion of the preclinical and clinical studies,
and molecular mechanisms outlined therein, was previously lacking. Therefore, this
comprehensive review serves to explore the anticancer potential of bioactive compounds
in lung cancer, along with their molecular mechanisms, as a critical analysis of currently
available in vitro, in vivo, and clinical evidence for their role in mitigating lung cancer.

Phytochemicals are widely reported for their anticancer potential against lung cancer
and have been a robust area of research for many years. Several plant metabolites belong-
ing to the class of secondary metabolites such as alkaloids, sulfur-containing compounds,
phenolics, and terpenoids are well documented to have antitumor activity or decrease
cancer progression. These agents function by modulating various signaling pathways,
inducing apoptosis, inhibiting angiogenesis, promoting the disruption of the mitochon-
drial membrane, and regulating transcription factors and oxidative stress. Several cancer
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signaling pathways, such as ERK1/2, Akt/mTOR, TGF-β, MAPK, JAK/STAT, NF-κB,
and Akt/GSK-3β signaling pathways, have been affected by a range of phytochemicals
in various lung cancer models (summarized in Figure 9). Most of the phytochemicals
act through complex mechanisms, induce apoptosis and/or inhibit tumor growth, and
ultimately play an important role in the cell proliferation and survival. The present review
highlights the potential of phytochemicals as promising candidates for cancer prevention
and treatment. By targeting multiple cancer hallmarks through various signaling pathways,
phytochemicals demonstrate their ability to halt tumor growth and progression. However,
further research is needed to fully comprehend the mechanisms and optimize the clinical
applications of these natural compounds in cancer therapy.
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Figure 9. Reported therapeutic targets of select phytochemicals against lung cancer. Binding of ligand
to any RTK like EGFR, VEGFR, IGF-1R, HER2, c-MET, or RET results in activation of a multitude of
downstream signaling pathways. PI3K/Akt/mTOR pathway incites the activation of effector proteins
like 4EBP1 and p70S6K and prosurvival oncogenes including Bcl-2 and XIAP that inhibit the actions of
apoptotic caspases. The PI3K/Akt/mTOR pathway also blocks the actions of proapoptotic FOXO. The
RAS/RAF/MEK/ERK pathway results in the activation of proto-oncogenes like c-Myc and c-Jun. The
JAK/STAT pathway results in the activation of prosurvival oncogenes like Bcl-2, Mcl-1, and survivin.
Each of these pathways results in cell survival and proliferation in lung cancer. Signaling molecules and
effector proteins of these major pathways of lung cancer serve as targets for phytochemicals. Abbre-
viations: Bcl-2, B cell lymphoma protein-2; c-MET, c-mesenchymal–epithelial transition factor; 4EBP1,
4E-binding protein 1; EGFR, epidermal growth factor receptor; FOXO, Forkhead box O; HER2, human
epidermal growth factor receptor 2; IGF-1R, insulin-like growth factor-1 receptor; Mcl-1, myeloid cell
leukemia sequence 1; p70S6K, p70S6 kinase 1; RET, rearranged during transfection; RTK, receptor tyro-
sine kinase; VEGFR, vascular endothelial growth factor receptor; XIAP, X-linked inhibitor of apoptosis
protein (created with BioRender.com, accessed on 28 July 2023).
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Notably, the outcomes of the in vitro, in vivo, and clinical studies are promising, but
certain limitations are apparent. Numerous preclinical studies had contradictory outcomes,
while some studies did not explore the mechanisms of action of the phytochemicals. Fur-
thermore, several phytochemicals were restricted to one type of study (in vitro, in vivo, or
clinical). To overcome these limitations, additional preclinical and clinical studies should
be conducted to analyze the efficacy of each phytochemical and to explore the potential
role of various combinations of phytochemicals in the treatment of lung cancer. Moreover,
their potential as adjuvants or complementary agents alongside conventional cancer treat-
ments presents a compelling avenue for future investigation and development of effective
anticancer strategies against lung cancer.

Additional research may also address challenges faced by phytochemical-based treat-
ments. The major drawback associated with phytochemicals is their low bioavailability
and rapid metabolism in the human body. This may result in reduced effective uptake,
causing deficient targeting and undesirable toxicity when consumed in high enough quan-
tities to produce results. To overcome these problems, there is a need to explore a novel
delivery system for the effective delivery of plant metabolites. Some phytochemical stud-
ies were conducted outside of lung cancer which have observed beneficial results with
nanoparticles [415,416]. Moreover, large-scale, well-designed, high-quality, and multicenter
randomized clinical studies comparing phytochemicals to first-line treatments are necessary
to validate the safety and clinical efficacy of plant metabolites.

In conclusion, numerous phytochemicals exhibit promising outcomes for the preven-
tion and treatment of lung cancer. This review was constructed with hopes that it may open
the door for the development of more effective treatments for individuals suffering with
lung cancer. It is our anticipation that the information shared in this article will be useful
to researchers exploring unique and non-toxic therapeutic avenues for the management
of lung cancer. Notably, based on the available literature, several phytochemicals exhibit
remarkable and inspiring potential to meet the ever-growing need to prevent and treat
lung cancer.
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