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Simple Summary: People with glioblastoma (GBM) universally have poor survival despite under-
going aggressive treatments. In this study, we aimed to determine genetic biomarkers of GBM that
exhibit prognostic implications and examine their role in the tumor microenvironment. To this end,
we performed differential gene expression analysis in three independent GBM datasets, followed by
establishing a risk model for disease progression. Containing eight genes, this model demonstrated
robustness in identifying patient subgroups with poor survival outcome in independent datasets.

Abstract: Glioblastoma (GBM) is one of the most progressive and prevalent cancers of the central
nervous system. Identifying genetic markers is therefore crucial to predict prognosis and enhance
treatment effectiveness in GBM. To this end, we obtained gene expression data of GBM from TCGA
and GEO datasets and identified differentially expressed genes (DEGs), which were overlapped and
used for survival analysis with univariate Cox regression. Next, the genes’ biological significance and
potential as immunotherapy candidates were examined using functional enrichment and immune
infiltration analysis. Eight prognostic-related DEGs in GBM were identified, namely CRNDE, NRXN3,
POPDC3, PTPRN, PTPRN2, SLC46A2, TIMP1, and TNFSF9. The derived risk model showed robust-
ness in identifying patient subgroups with significantly poorer overall survival, as well as those with
distinct GBM molecular subtypes and MGMT status. Furthermore, several correlations between
the expression of the prognostic genes and immune infiltration cells were discovered. Overall, we
propose a survival-derived risk score that can provide prognostic significance and guide therapeutic
strategies for patients with GBM.

Keywords: differentially expressed genes; genetic biomarkers; glioblastoma; prognosis-related genes;
survival analysis; univariate cox regression
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1. Introduction

Glioblastoma (GBM) is one of the most common central nervous system cancers, ac-
counting for nearly half of all malignant tumors [1]. The prognosis of GBM is especially
poor, with median overall survival of only 16 months. Most patients relapse even after
undergoing aggressive therapies, including surgical resection, radiation, and systemic
therapy [2,3]. Ongoing and past clinical trials for recurrent GBM have used a wide range of
novel treatments, from cytotoxic chemotherapeutic agents to immunotherapy and gene
therapy [4]. However, the substantial heterogeneity of patients in these trials could ar-
guably preclude the generalizability of the interventions, and a better understanding of the
molecular features of GBM is needed [2].

Gene expression profiling is one of the most important tools in cancer research [5].
With the identification of patterns of genes expressed at the transcriptional level, it has
been leveraged to discover novel prognostic markers and treatment targets. A number of
gene expression profiling-derived models has been recently developed for GBM [6–10]. For
example, Kawaguchi et al. used random survival forests, a machine learning algorithm,
to develop a 25-gene signature that was consistently correlated with overall survival in
GBM [8]. Similarly, Cao et al. obtained gene expression data of GBM patients from public
datasets and found four significant overlapped differentially expressed genes (DEGs),
which was further validated using cell cultures and Western blots of in-house GBM speci-
mens [6]. More recently, Wen et al. built a seven-gene, hypoxia-based prognostic signature
that showed high sensitivity and specificity in predicting overall survival and chemothera-
peutic response in GBM patients [9].

While these models have been successful in assessing prognosis, their clinical applica-
tion faces multiple challenges. Our study aims to extend their approach by developing a
gene signature with implications in the prognosis of GBM, integrating multiple databases
and analyses. We further examined its biological significance and signaling pathways, with
the purpose of clarifying how the model can serve as a biomarker in the prognosis and
progression of GBM.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

First, we obtained gene expression from GBM specimens from three publicly available
datasets, the TCGA-GBM (The Cancer Genome Atlas) and the gene expression profiles
GSE4290 and GSE68848, from the Gene Expression Omnibus (GEO) database [11–14]. The
GSE4290 contained 81 samples of GBM and 23 samples from epilepsy patients as non-tumor
samples, detected by the Affymetrix Human Genome U133 Plus 2.0 Array based on the
GPL570 platform [14]. Data of astrocytoma and oligodendroglioma samples in GSE4290
were not included in this study. The GSE68848 expression profile contained 580 samples,
including 228 GBM and 28 control tissues, detected by the same platform as GSE4290 [12].
Data for other disease types (oligodendroglioma, astrocytoma, mixed, unclassified and
unknown) in GSE68848 were also not included in this study. We further included gene
expression RNAseq data of normal brain frontal cortex samples (BA9) from the Genotype-
Tissue Expression (GTEx) database. The characteristics of the included datasets are given in
Table 1. For the TCGA-GBM data, we only included the data of participants with isocitrate
dehydrogenase (IDH)-wildtype and omitted those of IDH-mutant patients. This was to
accommodate the 2021 WHO classification of tumors of the central nervous system, which
defined GBM as strictly IDH-wildtype [15]. IDH mutation status was not available in the
GSE4290 and GSE68848 datasets.
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Table 1. Characteristics of the included datasets for model construction.

Dataset Sample Size Clinical Information Platform Application

TCGA-GBM 142 GBM Female 50 (35.2%)
Age 61.6 ± 11.9 (range 24–89) Illumina

Differential expression
analysis, risk score
construction

GTEx (BA9) 209 normal frontal
cortex samples

Female 56 (26.8%)
Age group 60–70 (57.4%),
50–59 (30.1%), 40–49 (8.1%),
30–39 (2%), 20–29 (2.4%)

Illumina TruSeq Differential expression
analysis

GSE4290 81 GBM vs. 23
non-tumor (epilepsy) Not available Affymetrix

HG-U133Plus2
Differential expression
analysis

GSE68848 228 GBM vs. 28
non-tumor Not available Affymetrix

HG-U133Plus2
Differential expression
analysis

CGGA 79 GBM Not applicable Not applicable Risk score validation

GSE43378 32 GBM Not applicable Not applicable Risk score validation

Prior to conducting further analyses, we performed data preprocessing to ensure
the quality and reliability of the gene expression profiles. This involved the application
of principal component analysis (PCA) to identify and remove potential outliers in the
datasets. PCA is a dimensionality reduction technique commonly used in gene expression
analysis to identify patterns and variability within high-dimensional datasets [16]. Outliers
could arise due to various factors such as technical artifacts or experimental variability.
These outliers can have a significant impact on downstream analyses and may lead to
erroneous interpretations. By performing PCA, we aimed to identify any extreme or deviant
samples that might introduce noise or bias into subsequent analyses.

2.2. Analysis of Differentially Expressed Genes (DEGs)

To determine the molecular alterations associated with GBM, we performed a differen-
tial gene expression analysis. Specifically, genes expressed differentially between GBM and
the control samples were identified, using the R package DESeq2 for TCGA-GBM versus
GTEx, and the R package limma for two GEO datasets, GSE4290 and GSE68848 [17,18].
The limma package is a widely used tool in genomics research due to its robustness and
flexibility in detecting DEGs. Genes were considered significant if they showed an absolute
log fold change greater than 1, indicating a substantial change in expression levels, and an
adjusted p-value less than 0.05, reflecting statistical significance after correcting for multiple
testing. Then, we overlapped the DEGs lists from three comparisons to identify common
genes for further exploration.

2.3. Functional Enrichment Analysis of the DEGs

Functional annotation and enrichment analysis are commonly used bioinformatic
tools to help attribute biological information and significance to a group of genes. With the
common DEGs determined, we performed Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analyses using the R package gProfiler
to identify the DEGs pathways [19]. GO is the standardized vocabularies of genes and
their products, consisting of three independent semantics: biological processes, cellular
components, and molecular functions [20]. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) is a knowledge hub for gene function analysis, linking genes to higher-order
functional information [21]. p < 0.05 was considered the statistically significant threshold.

2.4. Risk Score Construction and Validation

We next obtained survival data of GBM patients and used univariate Cox regression
analysis on the 1934 DEGs. This was performed using the TCGA-GBM dataset with
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IDH-wildtype participants, as survival data were not available in GSE4290 and GSE68848.
Genes significantly correlated with overall survival with p < 0.001 were selected. Next, we
calculated the risk score for each participant as follows:

∑ Gene Expression ∗ Coe f f icient (1)

Participants were subsequently classified into the high- and low-risk group based
on their risk score being higher or lower than the median cutoff value. To validate the
predictive power of this prognostic model beyond the TCGA-GBM dataset, we applied
Formula (1) for GBM patients from the Chinese Glioma Genome Atlas (CGGA) database
and from the GEO dataset GSE43378 [8,22]. The GSE43378 dataset contains gene expression
and survival data of 32 patients with GBM. Furthermore, using the R package timeROC, we
tested the performance of the risk model as a marker for GBM over time in the TCGA-GBM
dataset [23]. In contrast to the standard receiver operating characteristic (ROC) curve
analysis which regards the marker value and disease status of a person as fixed for the
whole study period, time-dependent ROC allows these variables to change over time,
which better reflects conditions in real life [24].

2.5. Characterization of the Risk Model-Based Subgroups

We next investigated the relationship between the risk score and clinical characteristics,
including MGMT status and between tumor-intrinsic gene expression subtypes of GBM [25].
MGMT encodes the enzyme O6-alkylguanine DNA alkyltransferase that is responsible for
DNA repair following alkylating agent chemotherapy. As such, methylation of the MGMT
promoter leads to loss of expression of the MGMT DNA repair protein, which predicts a
benefit from chemotherapy and improved survival in GBM [26]. It is considered to be a
highly recommended key molecular diagnostic test in GBM. Tumor-intrinsic subtypes of
GBM included the proneural, classical, mesenchymal, and neural subtypes, which were
previously identified from data of 200 GBM samples [27]. This classification model has
since been used extensively to find distinct responses to treatment options and revised to
ensure that all subtypes contain actual tumor cells [28].

We then predicted the upstream regulators (transcription factors, TFs) of the risk-
related gene candidates using NetworkAnalyst (version 3.0, http://www.networkanalyst.ca,
accessed on 24 June 2023) [29]. TF–gene interaction analysis was performed with the ChIP
Enrichment Analysis (ChEA) database [30].

Next, we performed gene set variation analysis (GSVA) to compare metabolic signa-
tures between the high and low risk groups. GSVA is a computational method that can
estimate pathway and bioprocess activity scores from gene expression data [31]. Specifi-
cally, we employed the GSVA R package GSVA, implementing the single-sample gene set
enrichment analysis (ssGSEA) method [31–33].

2.6. Relationship between the Prognostic Genes and Immune Infiltration in GBM

Finally, we performed immune cell infiltration analysis using the CIBERSORT and
MCP-counter (Microenvironment cell populations-counter) methods. In the TCGA dataset,
CIBERSORT was used to estimate the proportion of 22 immune cell types, and the corre-
lation between the expression level of genes in the risk score and the abundance of the
immune cells was calculated [34]. Similarly, MCP-counter enables the quantification of
the absolute abundance of eight immune and two stromal cell populations in GBM tissues
from transcriptomic data [35].

3. Results
3.1. Identification of DEGs from GBM Datasets

Our study obtained microarray data of GBM and control specimens from four datasets:
TCGA-GBM, GTEx, GSE4290 and GSE68848. Data preprocessing with PCA identified
six potential outliers in the GSE4290 dataset, which were removed from subsequent anal-
yses (Supplementary Material Figure S1). Using the cutoff criteria of absolute log fold

http://www.networkanalyst.ca
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change greater than 1 and adjusted p value less than 0.05, we identified 11,769 DEGs from
TCGA-GBM versus GTEx, including 7121 upregulated and 4648 downregulated genes.
GSE4290 had 3860 DEGs, with 2031 upregulated and 1829 downregulated ones. There
were 3277 DEGs in GSE68848, including 1544 upregulated and 1733 downregulated genes.
By overlapping these DEGs, we found 1934 genes that were significantly differentially
expressed among the four datasets (Figure 1, Supplementary Table S1).
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Figure 1. Summary of the DEGs. Volcano plot showing differential expression analysis of genes
between GBM and control samples in (A) TCGA-GBM versus GTEx, (B) GSE4290 and (C) GSE68848.
Red and blue (or green) points indicate genes with significantly increased or decreased expression,
respectively, in GBM specimens compared to controls. The Log2-fold differences between GBM and
controls are plotted on the horizontal axis, while the −Log10 p-value differences are plotted on the
vertical axis. The horizontal dashed line represents the significance threshold (p value < 0.05 after
correcting for multiple comparisons).

3.2. Functional Enrichment Analysis of DEGs

We performed GO enrichment analysis to explore the biological processes (BP), cellular
components (CC), and molecular functions (MF) associated with the DEGs, separately for
those that were consistently upregulated (939 DEGs) or downregulated across the three
comparisons of DEG analysis (733 DEGs).
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The ten most enriched GO terms for the upregulated DEGs are shown in Figure 2A–C.
We found that they were mostly involved in the extracellular matrix (ECM), as evident
from the most significant GO terms (BP: extracellular matrix and structure organization,
CC: collagen-containing ECM, MF: ECM structural constituent). This is consistent with
KEGG results, which showed extracellular matrix–receptor interaction as one of the most
significantly enriched pathways (Figure 2D).
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Figure 2. GO and KEGG pathway enrichment analysis of the upregulated DEGs. Dot plot of
enriched GO terms: (A) biological processes, (B) cellular components and (C) molecular functions.
GO processes are ordered according to the enrichment score. Dot size represents the number of
genes in the significant gene list associated with the GO term. Dot color represents the adjusted
p values. (D) Pathway enrichment analysis in the KEGG database. Pathways significantly enriched
by DEGs are ordered by adjusted p values. Abbreviations: DEGs, differentially expressed genes;
ECM, extracellular matrix; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Downregulated DEGs, on the other hand, were mostly enriched in the regulation of
synaptic structure and function, as seen from the GO terms (BP: modulation of chemi-
cal synaptic transmission, regulation of trans–synaptic signaling and synaptic plasticity;
CC: synaptic membrane, glutamatergic synapse; MF: gated and ion channel activity)
(Figure 3A–C). This is also in line with the KEGG results, which revealed GABAergic
synapse, synaptic vesicle cycle, and calcium signaling pathway as the three most significant
pathways (Figure 3D).
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3.3. Identification of Prognosis-Related Genes and Construction of Risk Model

To investigate the prognostic value of the DEGs, we applied univariate Cox regression
analysis using overall survival data from the TCGA-GBM dataset with a cutoff of a p-value
less than 0.001. This results in eight genes, namely CRNDE, NRXN3, POPDC3, PTPRN,
PTPRN2, SLC46A2, TIMP1, and TNFSF9 (Table 2). Statistical values of all 1934 DEGs are
provided in Supplementary Table S2. Next, a risk score of disease progression for each
patient was calculated using the gene expression and coefficient of the eight genes as the
following formula:

Risk score = (0.00047 × CRNDE) + (0.00067 × NRXN3) + (0.00202 × POPDC3) +
(0.00017 × PTPRN) + (0.00012 × PTPRN2) + (0.06594 × SLC46A2) +

(9.03 × 10−6 × TIMP1) + (0.00361 × TNFSF9)

Patients were subsequently categorized into the high- and low-risk groups based on their
risk score greater or less than the median value, respectively. As shown in Figure 4A, the
Kaplan–Meier plot of the eight-gene risk model reveals that the high-risk group had signifi-
cantly poorer overall survival compared to the low-risk group (p < 0.0001). To further validate
the predictive value of the model, a similar analysis was performed on two independent
datasets, CGGA and GSE43378, which interestingly showed consistent results with those from



Cancers 2023, 15, 3899 8 of 15

TCGA-GBM (p < 0.005 for all two datasets, Figure 4B,C). In addition, the time-dependent
ROC curve of the risk model to predict 1-, 3-, and 5-year overall survival of GBM patients in
TCGA-GBM is presented in Figure 4D. It can be seen from the reported area under the ROC
(AUC) curve that the model performed increasingly better over the years, with 1-, 3-, and
5-year AUCs of 0.76, 0.65, and 0.7, respectively. This signifies that our eight-gene risk model
could be a reliable tool to assess prognosis in GBM.

Table 2. Univariate Cox regression analysis of DEGs with overall survival in the TCGA-GBM dataset.

Gene Coefficient Hazard Ratio 95% Confidence Interval p Value

CRNDE 0.00047 1.00047 1.00021–1.000739 0.0004
NRXN3 0.00067 1.00067 1.000294–1.001064 0.0005
POPDC3 0.00202 1.00202 1.000876–1.003172 0.0005
PTPRN 0.00017 1.00017 1.000106–1.000246 8.8 × 10−7

PTPRN2 0.00012 1.00012 1.000054–1.000205 0.0007
SLC46A2 0.06594 1.06816 1.037777–1.098549 2.1 × 10−5

TIMP1 9.03 × 10−6 1.000009 1.000004–1.000014 0.0004
TNFSF9 0.00361 1.00362 1.001559–1.005691 0.0005
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3.4. Characteristics of the Eight-Gene Risk Model

As our eight-gene risk model was able to prognostically classify patients with GBM, we
next sought to examine its correlation with other clinical characteristics of GBM, including
molecular subtypes and MGMT status. Figure 5A,B show that the risk score in MGMT-
methylated GBM patients was significantly lower than that of MGMT-unmethylated pa-
tients in both the TCGA and CGGA datasets (p value 0.03 and 0.007, respectively), which
is consistent with the fact that patients with MGMT-unmethylated tumors have poorer
prognosis and are less responsive to standard therapies [36]. This suggests that while
MGMT was not among the genes in our risk model, it could partly explain the model’s
prognostic role. We further compared the risk score in different molecular subtypes of
GBM, in which we excluded data for the neural subtype, as this subtype was found to have
a high content of non-tumor cells [25,28]. Figure 5C shows that the risk score did not differ
significantly between the proneural, mesenchymal and classical tumors, consistent with
previous reports that there were no significant differences in survival outcome between
these three subgroups [25].
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Using NetworkAnalyst, we observed a TF–gene biomarker regulatory network includ-
ing 143 interaction pairs among 7 seed genes (in red) and 86 TFs (in purple) (Supplementary
Figure S2). Specifically, PTPRN2 was regulated by the most TFs (38 TFs), followed by
NRXN3 and TNFSF9 (27 and 21 TFs, respectively).

Finally, we investigated the tumor-infiltrating immune cell profile of our risk model.
Using the CIBERSORT method, we found that the expression of 4 out of the 22 immune cells
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was significantly different between the low- and high-risk groups, including the regulatory
T cells, activated natural killer cells, activated dendritic cells, and neutrophils (Figure 6A).
Remarkably, analysis of immune infiltration using the MCP-counter method showed that 9
out of 10 tissue-infiltrating immune and stromal cell populations were more abundant in the
high-risk group (Figure 6B). Similarly, nearly all tumor microenvironment, tumor signature
and epithelial–mesenchymal transition (EMT) signatures were significantly higher in the
high-risk group than the low-risk group (Figure 6C–E). This suggests that our eight-gene
prognostic signature is considerably correlated with measures of tumor immune infiltrates
in GBM.
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4. Discussion

GBM is the most prevalent and progressive brain malignancy. People with GBM
reportedly have a median overall survival of only 16 months, despite undergoing an
aggressive array of treatments, including surgery, radiotherapy and chemotherapy [2]. In
this study, we performed differential gene expression analysis in three independent GBM
datasets, followed by establishing a risk model for disease progression using clinical data
obtained from the TCGA database. This risk model contained eight genes and was further
validated in two other GBM datasets, which demonstrated its robustness in identifying
patient subgroups with prognostic implications. Furthermore, significant differences in
the risk score were also identified in patients with distinct GBM molecular subtypes and
MGMT status.

Our study aims to determine prognostic markers of GBM, with the identification of
DEGs followed by survival analysis. The concept of DEGs stems from the availability
of the expression of mRNA transcripts, which allows the identification of genes that are
significantly differentially expressed across two or more conditions—in this context, GBM
and normal controls. It is one of the most common steps in analyzing microarray and RNA-
seq data [37]. However, critics have argued that while DEGs can help to serve as clinical
biomarkers or obtain mechanistic insights into diseases, they do not necessarily represent
causes between gene expression and phenotypes, and rather could be consequences or
simply correlations [38]. There are a few approaches to circumvent this issue. For instance,
baseline characteristics of participants, such as age, sex, and treatment status, are known to
be a significant source of variations in differential expression testing [38,39]. Incorporating
them into the DEG analytical workflow was unfortunately not possible in our study due to
the lack of clinical data in the GEO datasets. Alternatively, one could start with a hypothesis
about a gene or set of genes of interest, e.g., whether they are related to a pathway known
to drive cancers, as was performed in our previous publications [40,41].

Our risk model was constructed based on eight genes which have been individually
revealed to play a wide range of roles in the development and prognosis of GBM. CRNDE
(colorectal neoplasia differentially expressed), whose transcripts were categorized as long
non-coding RNAs, was significantly overexpressed in glioma tissues compared to control
brain tissues [42,43]. Zhao et al. further reported that knockdown of CRNDE improves
sensitivity to temozolomide, a first-line chemotherapy treatment for GBM, by regulating
autophagy [44]. NRXN3 (neurexins 3) belongs to the Neurexins family, which are neuronal
cell surface proteins, and play roles in cell adhesion and recognition [45]. It was shown to
be downregulated in gliomas and inhibited the invasion and migration of tumor cells [46].
NRXN3 expression is directly regulated by Forkhead box Q1, a member of the Fox tran-
scription factor family that regulates the cell cycle, leading to promotion proliferation and
the migration of GBM cells in vitro [45]. PTPRN (tyrosine phosphatase receptor type N) is
highly expressed in endocrine cells and neuroendocrine neurons, including the pituitary,
amygdala and hypothalamus. Wang et al. demonstrated that PTPRN overexpression
promoted the migration and proliferation of glioma cells via activating the PI3K/AKT
pathway, an intracellular signaling pathway known for regulating the cell cycle.

TIMP1 (tissue inhibitor of matrix metalloproteinase 1) was shown to be correlated
with cancer progression, specifically in GBM, and is significantly overexpressed in tumor-
infiltrating lymphocytes [47]. As its name suggests, TIMP1 protein could inhibit the
proteolytic activity of matrix metalloproteinases, which are endopeptidases that degrade
the extracellular matrix, thus explaining its role in metastasis [48]. TNFRSF9 (tumor
necrosis factor receptor superfamily member 9, also known as CD137) is a costimulatory
transmembrane protein expressed on leukocytes that stimulates B cell antibody secretion
and T-cell proliferation [49]. Thus, its role as a possible immunotherapy option for GBM
has been explored, with Blank et al. reporting a novel TNFRSF9-positive reactive astrocytic
phenotype in human gliomas [50]. In another study, TNFRSF9 was included in three
immune-related genes’ signatures that could serve as independent prognostic factors for
GBM patients [51]. The role of the remaining genes in the risk model, POPDC3 (Popeye
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Domain Containing 3), PTPRN2 (Protein Tyrosine Phosphatase Receptor Type N2), and
SLC46A2 (Solute Carrier Family 46 Member 2,) in GBM remains largely unknown, though
each has been found to be potential biomarkers in other types of cancer [52,53].

The main limitation of this study is that data were largely procured from online
databases. Part of the DEG analysis was performed using microarray data from GEO
datasets, which are known to be inferior in the quality of transcriptome profiling com-
pared to RNA-Seq data [54]. Nonetheless, the important steps in our analytical pipeline,
specifically the DEG analysis and inquiry of prognostic implications of the model, were
constructed using multiple independent datasets, hoping to offset the likelihood of false
discoveries. Importantly, the preliminary nature of the findings encourages further ex-
perimental validations to confirm them. One other relevant implication is to consider
the application of public databases in light of the latest WHO classification of tumors of
the central nervous system in 2021. The entity that was previously IDH-mutant GBM is
now referred to as IDH-mutant astrocytoma WHO grade 4, owing to the discovery of
the significance of IDH mutations in the prognosis of diffuse gliomas [15]. Specifically,
IDH-mutant tumors have a better prognosis than that of IDH-wildtype tumors, across all
histologic grades [55]. Understandably, IDH status is not available in all GEO datasets
of GBM patients, and thus the derived analysis would unavoidably include a subset of
participants with its mutations. While it would take time for datasets collected after the
2021 WHO classification to include only those with IDH-wildtype status as GBM and be in-
creasingly available, for the current study we strived to include data of only IDH-wildtype
GBM patients where applicable.

5. Conclusions

Our study proposed a prognosis-derived risk score that can have prognostic impli-
cations for patients with GBM, which was validated in three independent datasets. The
findings could possibly shed light on future treatment strategies for this progressive disease.
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