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Simple Summary: Cancer cells alter their metabolisms to support growth, thus causing micro- and
macronutrient changes in the metabolite profile that promote an immunosuppressive tumor microen-
vironment. Immune cells and stromal cells contribute to an immunosuppressive microenvironment
by releasing metabolites, cytokines, and depositing extracellular matrix that prevents lymphocyte
activation and recruitment and promotes T-cell exhaustion. In recent years, new dietary interven-
tions such as calorie restriction and periodic fasting have been shown to have beneficial effects in
preventing cancer and extending life expectancy in mouse models through modulation of immune
system functions. In this review, we discuss how dietary interventions such as periodic fasting can
manipulate tumor metabolism, prevent the formation of an immunosuppressive microenvironment,
and enhance the efficacy of anti-tumor therapies.

Abstract: The remodeled cancer cell metabolism affects the tumor microenvironment and promotes
an immunosuppressive state by changing the levels of macro- and micronutrients and by releasing
hormones and cytokines that recruit immunosuppressive immune cells. Novel dietary interventions
such as amino acid restriction and periodic fasting mimicking diets can prevent or dampen the
formation of an immunosuppressive microenvironment by acting systemically on the release of
hormones and growth factors, inhibiting the release of proinflammatory cytokines, and remodeling
the tumor vasculature and extracellular matrix. Here, we discuss the latest research on the effects
of these therapeutic interventions on immunometabolism and tumor immune response and future
scenarios pertaining to how dietary interventions could contribute to cancer therapy.

Keywords: immune system; diets; metabolism

1. Introduction

The effectiveness of anti-tumor therapies is determined by cancer cell-intrinsic factors
such as the genomic landscape and cell signaling, as well as by the connective tissue,
vessels, fibroblasts, and immune cell infiltration that compose the tumor microenvironment
(TME) and contribute to the generation of immunosuppressive environment and immune
evasion [1–3].

Tumor cells determine TME cell composition through the release of chemokines and
cytokines that attract certain cell populations and manipulate TME cell function and
differentiation through direct cell–cell interactions or through the release of growth factors,
cytokine, and metabolic byproducts.

In recent decades, cancer metabolism has emerged to play an essential role in shaping
the TME composition and the properties and functions of its constituents [4]. Dietary
interventions such as calorie restriction (CR), fasting, and fasting mimicking diets (FMD)
have received much attention as several preclinical and clinical studies have shown their
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efficacy in modulating tumor metabolism, remodeling the tumor microenvironment, and
even enhancing the antitumor immune response [5–11].

This review focuses on the current knowledge regarding cancer metabolism and how
it will affect the TME. We will then examine how dietary interventions can affect cancer
metabolism, reverse immunosuppressive TME, and improve immune response.

2. Immunosuppressive TME

The TME contains mesenchymal stroma-/stem-like cells (MSCs), cancer-associated
fibroblasts (CAFs), cancer-associated adipocytes (CAAs), cancer-associated endothelial cells
(CAECs), immune cell populations, and extracellular matrix (ECM), which exert immuno-
suppressive activity and support tumor cell growth, survival, and spread [12–14] through
the secretion of signaling molecules and extracellular matrix (ECM) components [15].

MSCs are a heterogeneous population of multipotent stromal cells capable of self-
renewal and differentiation into various cell types which support the generation of immune
regulatory cells with tolerogenic properties through the production of immunomodulatory
factors [16]. Several chemokines secreted by MSC shape the immune cell composition in the
TME by influencing leucocytes recruitment, macrophages polarization [17], collagen deposi-
tion [18], cancer cell invasion [19], and drug resistance development [20]. Chemokines drive
leucocytes trafficking in TME and promote the selective recruitment of specific leucocytes
based on their chemokine receptor expression. Thus, chemokines may have both an antitu-
mor role by promoting the recruitment of NK cells, CD4+ Th1 cells, and CD8+ cytotoxic T
lymphocytes (CTLs) into the tumor [21–24], and a protumor role by promoting the recruit-
ment of immunosuppressive cells such as Tregs [25,26], tumor-associated macrophages
(TAMs), and MDSCs [27–29]. GRO-y (growth-regulated oncogene) chemokine released
from MSC drives monocyte-derived dendritic cells to differentiate into tolerogenic myeloid
derived suppressor cells (MDSC) [30]. The secretion of nitric oxide (NO), PGE2, IL-6, IL-10,
and kynurenine, generated from tryptophan by indoleamine 2,3-dioxygenase (IDO), induce
a switch from the Th1 anti-tumor effector response to Th2 suppressive mode [16], expand
immunosuppressive M2-polarized macrophages, tumor-associated macrophages (TAMs),
and also Tregs populations [31,32]. Furthermore, the natural killer (NK) activity is impaired
by MSC through downregulation of NKG2D-activating receptors expression [33]. MSCs
expressing PD-1 by interacting with PD-L1/PDL2 ligand on tumor infiltrating lymphocytes
(TILs) induce T cell anergy and exhaustion, thus allowing tumor progression [34].

CAFs are dysregulated fibroblasts which arise from differentiation of tumor stromal
cells and are involved in extracellular matrix (ECM) remodeling and immune-surveillance
evasion [35,36]. As the most abundant cell population of non-cancerous components in the
TME of solid tumors [37], CAFs effectively contribute to the generation of immunosuppres-
sive TME and tumor progression [38]. CAFs support tumor-promoting inflammation [39]
by recruiting immune cells to the TME through the release of cytokines and chemokines.
Secretion of chitinase-like protein 3 (Chi3L1) by CAFs increases macrophage infiltration,
promotes macrophage switch to the M2 immunosuppressive phenotype, and limits the
infiltration of cytotoxic CD8+ T cells into the breast TME [40]. The expression of fibrob-
last activation protein (FAP) on the surface of CAF promotes the recruitment of type M2
macrophages, MDSCs, and Tregs into the liver tumor bed and the switch from Th1 to Th2
immunity [41].

CAFs impair innate and adaptive immune responses by downregulating the expres-
sion of MHC class II (MHCII) molecules in antigen-presenting cells (APCs) [42], promoting
the differentiation of immature dendritic cells (DCs) into regulatory DCs (DCregs) in hep-
atic carcinoma [43], and stimulating the expression of immunosuppressive proteins such
as T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), CTLA-4, and
LAG-3 in active T lymphocytes in pancreatic carcinoma [44].

CAFs contribute to liver tumor cell growth and migration through the secretion of
various metabolites in the TME. Glutamine release in TME supports nucleotide synthesis
and oxidative phosphorylation (OXPHOS) activity [41]. CAF-secreting alanine is converted
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to pyruvate, an essential source to fuel OXPHOS when glucose is in short supply in
pancreatic tumor cells [45]. The secretion of aspartate and glutamate promotes the synthesis
of nucleotides and glutathione, respectively, which is required to reduce oxidative stress in
skin cancer cells [46]. The arginine released in the TME is instead utilized for the synthesis
of nitric oxide (NO), which is essential to alleviate oxidative stress and promote glycolysis
in ovarian and endometrial cancer cells [47]. Finally, CAFs promotepancreatic tumor
growth both through the production of lysophosphatidylcholine, essential for the synthesis
of cell membranes and of lysophosphatidic acid, a biomolecule with growth factor-like
activity [48]; and the deposition of collagen, which is degraded and used by pancreatic
cancer cells as a source for the production of proline, which is needed to support the
tricarboxylic acid (TCA) cycle [49].

CADs are aberrant adipocytes that promote breast and prostate tumor cell prolif-
eration, angiogenesis, dissemination, invasion and metastasis, and the generation of an
immunosuppressive microenvironment through the release of adipokines such as lep-
tin, adiponectin, interleukin (IL)-6, chemokine ligand 2 (CCL2), and chemokine ligand
5 (CCL5) [50–52]. Furthermore, tumor cells nourish themselves and support their growth by
absorbing lactic acid, fatty acids, and glutamine secreted by CADs in TME [53]. Adipokines
exert an immunomodulatory effect and remodel breast TME by favoring the infiltration
of immunosuppressive cells such as monocytes, macrophages, and neutrophils and by
inactivating the cytotoxic CD8 T lymphocyte [54–56].

CAECs support breast and melanoma tumor growth both by promoting tumor vas-
culature essential for nutrient and oxygen delivery and by favoring the recruitment of
immunosuppressive rather than effector immune cells through the downregulation of
adhesion molecules such as the ligands ICAM1 (intercellular adhesion molecule 1) and
VCAM1 (vascular cell adhesion protein 1), which promote T cell extravasation into the TME
by binding to LFA1 (antigen 1 associated with lymphocyte function) and VLA4 (very late
antigen 4) on T cells [57]. Furthermore, CAEC expressing PD-L1 binds PD-1 and inhibits
tumor infiltrating lymphocytes (TIL) activation, while the interaction of FASL, expressed on
CAEC, with FAS, present on T cell, induces lymphocyte apoptosis [58,59]. Tumor vessels
are dysfunctional, abnormal, and characterized by irregular blood flow, erratic branching,
and high permeability/leakiness, which lead to an accumulation of metabolic waste in the
TME that affects immune cell function [60] (Figure 1).

An immunosuppressive role in TME is exerted by both innate immune system cells
(MDSC, TAM, γδ T cells) and by the adaptive system (Bregs, Tregs, Th2, γδ T cells).

MDSCs are immunosuppressive cells that originate from neutrophils or monocytes
attracted to TME via the chemokine receptors CXCR2 and CXCR4 [30,34]. In fact, two
populations of MDSCs are distinguished: polymorphonuclear (PMN) of neutrophilic origin
and monocytic, which derive from monocytes (M). MDSC inhibit immune responses
mediated by T cells, B cells, and natural killer (NK) cells through upregulation of signal
transducer and activator of transcription 3 (STAT3) expression, induction of ER stress,
expression of arginase1, and expression of S100A8/A9 in gastric cancer [61]. However,
PMN-MDSCs exert immunosuppressive activity through the production of reactive oxygen
species (ROS), peroxynitrite, arginase 1, and prostaglandin E2 (PGE2), whereas M-MDSCs
preferentially utilize nitric oxide (NO), immunosuppressive cytokines such as IL-10 and
TGFβ, and the expression of immune regulatory molecules such as PDL1 [62].

TAMs originate from bone marrow-derived monocytic precursors recruited in TME by
migratory stimulating factors, such as VEGF, CCL2, CCL5, CSF-1, EMAP-II, endothelin-2,
SEMA3A, oncostatin M, and eotaxin, released by breast, pancreas, lung, and glioma tumor
cells [27,63–67]. According to TME stimuli, TAMs differentiate into M1 or M2 polarized
macrophages [68]. IFN-γ-, lipopolysaccharide-, IL-1β-, TNF-, and/or GM-CSF-activated
M1-like macrophages recognize and kill tumor cells via phagocytosis and the release
of proinflammatory factors that stimulate the immune system. M2-like macrophages,
activated by IL-4, IL-10, IL-13, and/or M-CSF, released by Th2, support breast, lung,
colorectal, thymomas, and melanoma tumor growth by secreting growth factors (FGF2,
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PDGF, and VEGF) [69,70], immunosuppressive factors (iNOS, oxygen radicals or nitrogen
species) [71–73], pro-angiogenic molecules (VEGF, FGF2, CXCL8, and IL-8), and proteases
(MMP2, MMP7, and MMP9) [74–76].
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Figure 1. Stromal cells contribute to generate an immunosuppressive tumor microenvironment.
(A) Mesenchymal stem cells (MSC). (B) Cancer associated fibroblasts (CAFs). (C) Cancer associated
adipocytes (CADs) and (D) Cancer associated endothelial cells (CAECs) promote immune suppressive
cells recruitment, proliferation and differentiation by releasing chemokines, cytokines and metabolites
in TME. Stromal cells induce T cells exhaustion by expressing immune checkpoint and prevents
T cell recruitment by reshaping tumor vasculature. IL6, IL10: interleukin 6, 10; PGE2: prostaglandin
E2; ID01: Indoleamine-pyrrole2,3-dioxygenase; AHR: Aryl Hydrocarbon Receptor; GRO-y: Growth-
regulated oncogene-Y chemokine; Chi3L1: chitinase-like protein 3; Gin: glutamine; Glu: glutamate;
Arg: arginine; Ala: alanine; Asp: aspartate; LPC: lysophosphatidylcholine; MDSCs: myeloid-derived
suppressor cells; CTLs: cytotoxic T lymphocytes; DCs: dendritic cells; DCregs: regulatory DCs.
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However, an important role in tumorigenesis and tumor progression could also be
played by tissue-specific macrophages responsible for maintaining tissue homeostasis. It
has emerged from recent studies that tissue-resident macrophages differ mainly in their
metabolism. In particular, OXPHOS-dependent macrophages are involved in the main-
tenance and handling of extracellular lipids and cholesterol. These OXPHOS-dependent
macrophages acquire a proinflammatory phenotype in obese people and contribute to
the generation of an inflammatory state which promotes immune evasion and tumor
development [77].

Regulatory B cells arise from the differentiation of B cells, attracted to the tumor upon
the release of chemoattractants, and suppress inflammatory responses through the secretion
of immunomodulatory cytokines and cell-to-cell contact interactions. Secreted factors such
as leukotriene B4 (breast cancer), glioma cell-derived placental growth factor (glioma),
TNF-α (tumor cells), and IL-21 (T cells), as well as cell contact-dependent mechanisms
(CD40-CD40L and PD-1-PD-L1 axis,), promote cell differentiation Bregs in the TME [78–83].

Inflammatory cues such as TLR ligands (CD40L, TLR9signals) and pro-inflammatory
cytokines (IL-21, IL-1b, and IL-6; B cell-activating factor and A proliferation-inducing
ligand) induce immune suppressor function of Bregs [84].

Bregs exert inhibitory activity mainly through the release of IL10, TGF-b, IL-35, and
granzyme B (GzmB), but also mediate immunosuppressive function through the expression
of PD-L1, FasL, and TIM-1. Tumors stimulate Bregs to secrete IL10 via CD40L signals or
tumor-derived exosome [85–88]. IL10+ Bregs promote immune evasion by suppressing
IFN-g release by effector CD8+ and CD4+ T cell and activated NK cells, by reducing GzmB
synthesis in CD8+ T cells, by inhibiting the secretion of pro-inflammatory cytokine by CD4+

T cells, and by hampering CD20-mediated lymphoma clearance by preventing macrophage
activation [85,87,89].

Bregs promote breast tumor progression and metastasis by producing and releasing
TGF-b in TME. TGF-b convert naïve CD4+ T cells into Tregs and inhibit CD4+ and CD8+ T
cell proliferation by inducing reactive oxygen species and NO production in MDSC [90,91].

Upon BCR and IL21 stimulation, Bregs produce GzmB which suppress CD4+T cell
proliferation and Th1 and Th17 response by degrading z-chain [81]. Furthermore, Bregs
support pancreas and gastric cancer by secreting IL35, which is a potent anti-inflammatory
cytokine produced mainly by Tregs cells [92,93].

In pancreatic breast and cervical cancer, the engagement of PD1 with PD-L1, ex-
pressed on Bregs cells surface, induces CD4+ and CD8+ T cell suppression and exhaustion,
IL-10-secreting type-1 regulatory CD4+T cells (Tr1) expansion, and reduced Th1/Th17
responses [94–96].

Bregs induce activated T cells anergy or apoptosis by expressing FasL on the cell
surface. The interaction of FasL with Fas expressed by activated T cells leads to activation-
induced cell death, a common apoptotic pathway [97,98]. Finally, Bregs promote tumor
immune escape by expressing TIM-1 receptor, which is involved in regulating suppressive
cytokines and ligands expression signaling pathways. The binging of TIM-1 with its ligand
(TIM-4) expressed by myeloid cells leads B cells to produce IL10, TGF-b, and promote Treg
and Tr1 generation, CD4+ and CD8+ T cell suppression, and inhibition of Th1 and Th17
differentiation [83,99,100].

Recently, it has been shown that Bregs mediate immunosuppressive function though
the release of adenosine, IDO, progesterone-induced blocking factor 1, and heat shock
protein-70 [101–105].

Treg and Th2 cells are derived from CD4 differentiation induced by tumor microenvi-
ronmental signals, such as tumor antigens, cytokines (such as TGF-β), and other soluble
molecules [106], and have strong immunosuppressive, antitumor immunity inhibitory
function [107–109].

Th2 cells contribute to fibrosarcoma and lung tumor progression by secreting IL-4, IL-5,
IL-10, IL-13, and IL-17 [69,70,110,111] and promoting the recruitment of M2 macrophages
and eosinophils via the expression of IL-5 and IL-13 [112]. Furthermore, Th2 cells promote
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tumor cell migration and invasion by releasing IL17, a pro-angiogenic factor, which induces
vascular leakage [113] and increases MDSC infiltration.

Tregs promote tumor progression by impairing the functions of effector T cells (Teff),
NK cells. and DCs by (1) secreting immunosuppressive cytokines, such as IL-10, TGF-β,
and IL-35 [114]; (2) killing effector T cell through the release of granzymes and perforin;
(3) regulating memory T cell quiescence through the expression of inhibitory receptor
CTLA-4 [115]; (4) expressing CD39 and CD73 nuclease which increase the production of
adenosine in TME, a molecule with antiproliferative effects [116]; and (5) hampering DC
activation through the expression of activation gene 3 (LAG3), CTLA-4, and IDO [117].

γδ T cells represent a small sub-population poised at the border between the innate
and adaptive immune system that can mediate an anti- or pro-tumor response based on
the differentiation status. γδ Tcells producing effector cytokines IFNγ kill tumor cells via
perforin and granzyme, whereas γδ T cells expressing IL17 support tumor growth and
metastasis by recruiting other immunosuppressive immune cells, such as MDSC [118].

ECM is composed primarily of collagens, hyaluronan, fibronectin, elastin, and laminins,
and constitutes 60% of tumor mass [119]. The tumor extracellular matrix is denser and
stiffer than that of normal tissue [120], a characteristic that supports tumor growth by
preventing drug diffusion and hindering the infiltration of T lymphocytes and NK cells
into the tumor [121]. Dense ECM affects tumor immunosurveillance by collapsing lymph
vessels and hindering migration of antigen-triggered DCs to draining lymph nodes and
consequently antigen presentation and T-cell activation [122].

Tumor cells select and recruit TME cells through the release of hormones and cy-
tokines and modulate their immunosuppressive activity through surface receptor–ligand
interaction or secretion of hormones and metabolites.

Myeloid derived suppressor cells (MDSCs) and immunosuppressive regulatory
T cells (Tregs) are recruited to the tumor region [123] by TGF-β1 (transforming growth
factor beta-1) and granulocyte–macrophage colony-stimulating factor (CSF) secreted by
tumor cells. CD47 expression on tumor cell membrane suppresses the antitumor activity of
macrophages by inhibiting the phagocytosis through the interaction with SIRPα (signal
regulatory protein α) [124]. The production of immunosuppressive metabolite kynurenine
due to the upregulation of indoleamine-2,3-dioxygenase (IDO1) in tumor, tumor associated
macrophages (TAMs), and monocytes prevents the activation of effector T cells, inhibits
NK cell function, supports Treg activation, and promotes the expansion and activation of
dendritic cells (DCs) and MDSCs [125].

Furthermore, tumors cells, MDSCs, monocytes, and TAMs promote immunosuppress-
ing microenvironment by expressing the immune checkpoint PD-L1, which induces the
T cells exhaustion and anergy by binding to PD1 [31,126] (Figure 2).

Recent data indicate that NK cells and PGE2 play a fundamental role in reprogram-
ming TME towards a cancer-promoting versus cancer-inhibitory condition which affects the
anti-tumor immune response and the efficacy of immune therapy. The early intratumoral
accumulation of natural killer (NK) cells producing interferon gamma (IFN-g), drives a
broad polarization of myeloid cells toward an inflammatory profile conducive to effector
T-cell infiltration. In contrast, tumor-secreted PGE2 in TME inhibits NK cells by binding to
EP2 and EP4, the PGE2 receptors, and thus hinders NK-induced TME switch and promotes
immune evasion of melanoma, breast, and colon cancer [76].
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Figure 2. Cancer cells shape the tumor microenvironment through secretion of soluble factors and
recruitment of immunosuppressive cells. Neutrophils and monocytes migrate to TME attracted
by chemokines such as CXCL12 and CXCL1, released by cancer cells, and differentiate into poly-
morphonuclear (PMN−) and mononuclear (M−) MDSCs. PMN-MDSCs suppress immune cells by
producing ROS, peroxinitrite and prostaglandins and depleting TME of arginine by upregulating
arginase I expression. M-MDSCs inhibit T cells, B cells and natural killer (NK) cells by producing
nitric oxide (NO), immunosuppressive IL-10 and TGFβ and immune checkpoint molecules such as
PDL1. Chemokine and growth factors (VEGF, CCL2, CCL5, CSF-1, EMAP-II, endothelin-2, SEMA3A,
oncostatin M, and eotaxin), secreted by cancer cells, promote the migration of monocytes into the
TME and their differentiation into tumor-associated macrophages (TAMs). TAMs differentiate into
anti-tumor M1 macrophages upon stimulation with IFN-γ, lipopolysaccharide, IL-1β, TNF and/or
GM-CSF, and into pro-tumor M2 macrophages upon stimulation with IL-4, IL-10, IL-13 and/or M-CSF.
Tumor antigens, cytokines (such as TGF-B) promote CD4 differentiation in immunosuppressive Treg
and T helper type 2 cells (Th2). Th2 cells secrete protumor cytokines IL-4, IL-5, IL-10, IL-13, and
IL-17, recruits M2 macrophages by releasing IL-5 and IL-13 and promotes MDSCs infiltration by
increasing vascular leakage through IL17 secretion. Tregs impair CTL, NK and dendritic cell function
by secreting immunosuppressive cytokines such as IL-10, TGF-β and IL-35, expressing the immune
checkpoint receptor (LAG3, CTLA4) the enzyme IDO, which converts tryptophan to kynurenine and
CD39 and CD73 nucleases that convert ATP to adenosine.
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3. Cancer Metabolism

Cancer cells accumulate mutations in oncogenes and tumor suppressor genes lead-
ing to the constitutive or increased activation of signaling pathway which renders the
tumor cells insensitive to or partially independent of growth factor stimuli and nutrient
availability, leading to proliferation [127]. To support cell proliferation and meet the biosyn-
thetic and bioenergetic requirements for growth, cancer cells require higher amounts of
specific nutrients compared to healthy cells [128]. These high-nutrient demands change the
metabolic landscape in the TME, and result in areas deprived of certain nutrients, including
glucose and amino acids [129]. A nutrient-restricted TME impairs T cell differentiation
and function while promoting the expansion and potentiating the suppressive capacity of
immunosuppressive immune cells [130].

Most cancers prefer aerobic glycolysis over oxidative phosphorylation (OXPHOS)
because even though it is a low-efficiency process for energy generation, it produces large
amounts of glycolytic intermediates essential for the biosynthesis of biomass molecules
and molecules involved in the cell’s redox state control [131,132].

Furthermore, aerobic glycolysis supports the biosynthesis of proteins, heme, and
nucleotides by promoting the synthesis of serine from glucose through the activity of
phosphoglycerate dehydrogenase (PHGDH) [133,134]. At the same time, PHDC, by gen-
erating 3-phosphohydroxypyruvate (3PHP), stimulates the conversion of glutamate to
α-ketoglutarate (a-KG), which supplies the dietary tricarboxylic acid (TCA) cycle and
allows pyruvate-derived citrate to be shuttled from the mitochondria to the cytosol where
it is converted in oxaloacetate and acetyl-coA by ATP citrate lyase (ACLY) [135]. In the
cytosol, acetyl-coA is mainly used for fatty acid synthesis [136,137].

The high metabolic demand of tumor cells reduces citrate concentrations in tumor
cells, TME, blood, and urine of patients with multiple tumors [138].

High glucose consumption in the tumor leads to lactate secretion as pyruvate produced
by aerobic glycolysis is converted to lactic acid by lactate dehydrogenase in order to sustain
glycolysis through NAD+ regeneration [139]. Lactate accumulation in TME and lactate
dehydrogenase (LDH) expression are associated with poor prognosis and survival in
patients with various cancers, including breast cancer, gastrointestinal cancer, urogenital
cancer, lung cancer, sarcoma, melanoma, myeloid malignancies, lymphoid malignancies,
and other types of cancer [140]. High lactate concentrations cause acidification of TME
leading to TIL depletion, infiltration of tolerogenic cells such as MDSCs, and, in turn,
immune evasion and tumor progression [140,141].

After glucose, glutamine is the main source of energy for several types of cancers,
so much so that some cancers are considered glutamine dependent. Glutaminase (GLS)
catalyzes the breakdown of glutamine into ammonia and glutamate. Ammonia is utilized
for the synthesis of purines and pyrimidines [142,143], whereas glutamate contributes
to the production of ATP by entering the TCA cycle as α-ketoacids, to the synthesis of
biomass in particular of lipids and other non-essential amino acids, and to the production
of glutathione, an antioxidant essential for redox homeostasis [144,145].

Finally, glutamate contributes to aspartate synthesis, which is crucial for cancer cell
proliferation, specifically for those with a severely dysfunctional electron transport chain
(ETC), as it provides electrons for oxidative phosphorylation (OXPHOS) via the malate-
aspartate shuttle (MAS) [146,147].

The dependence of tumors on glutamine also depends on the concentration of cystine.
Cystine is essential for glutathione synthesis and thus redox homeostasis and is transported
into the cell via the cystine–glutamate antiporter xCT/SLC7A11, which exchanges an
extracellular cystine molecule for an intracellular glutamate molecule. This exchange causes
a depletion of glutamate, which is produced through the glutaminolysis of glutamine [148].

Most cancer cells depend on methionine, an essential amino acid involved in glu-
tathione and protein synthesis and DNA methylation. Methylthioadenosine phosphory-
lase (MTAP) [149] and methylenetetrahydrofolate reductase (MTHFR) defects result in
methylthioadenosine accumulation, methyltetrahydrofolate deficiency, and impairment
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of the methionine salvage pathway, essential for the regeneration of methionine from
methylthioadenosine (MTA) and for the production of polyamines critical for cell prolifera-
tion [150,151]. Deficiency of the cofactors cobalamin and folate, crucial for the production
of tetrahydrofolate and the replacement of cysteine by homocysteine, not convertible in
methionine due to defects in cysteine uptake, contribute to making tumor cells dependent
on methionine [152,153].

Cancer cells are addicted to external arginine, as they are unable to synthesize it
because they do not express arginine synthase 1 (ASS1), which, in combination with
argininosuccinate lyase (ASL), synthesizes arginine in normal cells from citrulline and
aspartate. In order to meet the high arginine demand, cancer cells overexpress several
arginine transporters such as SLC6A14, SLC7A3, and SLC7A9.

Arginine is a non-essential amino acid involved in the synthesis of nitric oxide (NO)
and polyamines [154,155], mTOR activation, and epigenetic remodeling. NO plays a pro-
tumorigenic role by promoting angiogenesis, metastasis, and inhibiting apoptosis [156].
Arginine-activated mTOR is implicated in tumor cell growth and proliferation but also
epigenetic reprogramming [157]; mTOR promotes acetyl-CoA synthesis through the activa-
tion of ATP citrate synthase (ACLY) and Acyl-coA synthetase short-chain family member
1–2 (ACSS 1–2) [158]. Increased acetyl-CoA promotes histone acetylation via the activation
of histone acetyltransferases (HATs) [159].

Serine and glycine play important roles in tumor growth as they are involved in
nucleotide synthesis and DNA methylation. Cancer cells can meet their need for serine
by absorbing it from the extracellular matrix or synthesizing it de novo from glucose via
the de novo serine synthesis (SSP) pathway [160]. De novo serine produced via the SSP
pathway promotes and sustains the activation of glycolysis by binding to pyruvate kinase
M2 (PKM2), the last rate-limiting enzyme of glycolysis [161,162]. The conversion of serine
to glycine by serine hydroxymethyltransferase (SHMT1-2) generates 5,10-methylene-THF
essential for purine and pyrimidine synthesis [163,164]. Furthermore, serine and glycine
influence DNA/RNA methylation and de novo ATP synthesis in cancer cells through the
one carbon pathway [165].

Leucine, isoleucine, and valine belong to the branched chain amino acids (BCAA) and
are essential amino acids obtained only via food intake [166]. BCAA are transported via
lat1(SLC7A5), a transporter that imports several essential amino acids (e.g., phenylalanine,
leucine, isoleucine, tryptophan, histidine, and tyrosine) in exchange for intracellular his-
tidine, tyrosine, and glutamines [167,168]. Lat1 is highly expressed in cancer cells as its
transcription is regulated by oncogenes such as c-Myc [169], HIF2a [170], and NOTCH [171].
BCAAs are catabolized into glutamate and branched-chain α-ketoacids (BCKA), which are
converted to TCA intermediates and provide acetyl-CoA and/or succinyl-CoA essential
for energy production [172] or acetylation modification [173].

4. TME Metabolism

The different cell lines that make up TME have distinct metabolisms that may depend
on cellular activation status and the availability of specific nutrients in the microenviron-
ment. Highly proliferative CD4- and CD8-activated T cells, activated B cells, γδIFNγ cells,
cancer cells, activated DCs, M1-like TAMs, and intratumoral myeloid cells rely heavily
on glucose and glutaminolytic metabolism, preferentially using aerobic glycolysis over
TCA-coupled OXPHOS for ATP production [174–176].

Glycolysis supports CD8 T cell and B cells’ effector function and interferon-gamma
(IFNγ) production via glyceraldehyde 3-phosphate dehydrogenase (GAPDH), LDHA, and
mTOR regulation [177–181], whereas glucose promotes CD4 activation and their antitumor
activity by sustaining the production of the glycolytic intermediate phosphoenolpyruvate
(PEP) which restores Ca2+—the nuclear factor of activated T cells (NFAT) signaling [138].

Since different cell lines require glucose to support their function, high glucose con-
sumption can lead to glucose depletion in the TME. Glucose deficiency may induce a
metabolic shift towards FA uptake and OXPHOS metabolism in CD8 T cells via PPAR-α
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signaling pathway activation [182] but may also make them metabolically inactive and
exhausted [183]. In addition, glucose deprivation promotes differentiation of effector T
cells into Treg cells by inducing Foxp3 expression and thus contributes to the establishment
of an immunosuppressive environment [184].

Tumor-infiltrating MDSCs, unlike peripheral MDSCs that rely on glycolysis, exhibit
an increased FAO and OXPHOS metabolism [185,186]. Under these TME conditions,
neutrophils support the production of ROS by NADPH oxidase (NOX), which potently
suppresses innate and adaptive immunity, adopting a metabolism based on mitochondrial
oxidative metabolism and fatty acid oxidation (FAO) [187]. The cytotoxic activity of NK
cells also depends on glucose metabolism; thus, the lack of glucose impairs the production
and release of Ifng and cytotoxic perforins and granzymes [188] (Figure 3).
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Figure 3. Metabolic changes in TME regulates adaptive and innate immune system function. Gly-
colysis supports naïve CD8 and CD4 T cells and NK cell activation. Progenitor exhausted T cells,
Tregs and MDDSC rely on oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO)
Increased concentration of FFAs within TME leads to CD8 T cell and NK exhaustion, renders T cell
exhausted and anergic, and promotes the differentiation of CD4 T cells into Tregs and Th17 and
skews macrophage polarization toward protumoral M2-like TAMs which mainly depend on FAO
and OXPHOS for their metabolism and bioenergetic demands. Glutamine metabolism promotes
CD4 T cell differentiation towards Th1 and Treg cells, TAM polarization towards the protumor M2
phenotype and MDSC expansion. Methionine metabolism regulate T cell activation and exhaustion
by remodeling epigenetic landscape. Arginine enhances T cells survival and supports effector and
memory T cells generation by modulates OXPHOS activity, whereas production of nitric oxide from
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arginine catabolism by MDSC-expressed arginase leads to Thelper cell dysfunction and anergy. Tryp-
tophane is required for T lymphocyte effector functions as promotes NAD+ synthesis. Conversion of
tryptophan to kynurenine via IDO1, expressed by tumors and macrophages, promotes Treg expan-
sion and renders effector T cells exhausted. Cholesterol improves cytotoxic function by enhancing
immunological synapse formation and maturation, and promoting TCR clustering and signaling.
Instead, high cholesterol content in TME hampers T cell function as induces ER stress and expression
of exhaustion markers, such as PD-1, LAG-3, TIM-3, 2B4 and CTLA-4. Finally cholesterol induces
FOXP3 expression and promotes Treg differentiation. LDHA: lactate dehydrogenase A; GAPDH:
glyceraldehyde-3-phosphate dehydrogenase; PEP: phosphoenolpyruvate; NFAT-1: nuclear factor of
activated T cells; lfnγ: interferon-γ; PRF1: perforin; GZM: granzyme B; α-KG: α-ketoglutarate; NO:
nitric oxide; OXPHOS: oxidative phosphorylation; FAO: fatty acid oxidation; ROS: reactive oxygen
species; NOX: NADPH oxidase isoforms.

High glucose consumption by myeloid cells, T cells, B cells, and tumor cells leads
to an elevated lactic acid release which affects the function of various immune cells and
reduce T cells antitumor efficacy [189,190].

Lactate accumulation reduces effector T cell proliferation and cytotoxicity by reducing
IL-2 and IFN-γ production and lytic granule exocytosis through impairment of TCR-
triggered phosphorylation of JNK, C-Jun, and p38, and inhibition of STAT5 and ERK
activation and mTOR inhibition [141,191].

Low pH in TME, due to lactic acid release, inhibits monocyte and NK cell activation,
dendritic cell differentiation, and promotes Th17 cell differentiation [192], MDSCs accumu-
lation, and macrophages M2 polarization through arginase I [193–196]. Increased arginase
I expression in macrophages due to acid lactic accumulation in TME leads to depletion
of arginine, an essential amino acid for effector T cells activation and proliferation [197]
(Figure 4).

Finally, lactate promotes angiogenesis and immune evasion through the activation of
G protein coupled receptor (GPR81) on immune cells and endothelial cells [198].

The reduction of citrate in TME due to high consumption by tumor cells influences
the function and regulation of immune cells. The conversion of citrate to acetyl-CoA by
ATP citrate lyase (ACLY) is essential for histone acetylation and thus for epigenetic repro-
gramming. Thus, citrate depletion affects epigenetic reprogramming, thereby impairing
memory CD8+ T cell recall responses and CD4+ helper T cell (Th1 cell) proliferation and
activation, while promoting Th17 viability at the expense of the Tregs [199,200] (Figure 4).

Since glucose is scarce in the tumor microenvironment, glutamine can become the
primary energy source. Glutamine metabolism supports T and B cell activation and
promotes CD4 T cell differentiation towards Th1 and Treg cells through the production
of α-ketoglutarate essential for histone acetylation and epigenetic remodeling [201,202].
In addition, glutamine-derived α-ketoglutarate promotes MDSC expansion and TAM
polarization towards the protumor M2 phenotype [203].

However, inhibition of glutamine metabolism promotes the immune response of
effector T cells by switching metabolism towards glycolysis, slowing tumor growth by
reducing both glycolysis and oxidative phosphorylation and increasing anti-tumor M1
polarized macrophages [204] (Figure 3)

Methionine metabolism is also critical for T cell function and differentiation as it
regulates the epigenetic landscape through histone and DNA methylation [205]. Lack of
methionine and S-adenosylmethionine due to the high consumption by cancer cells leads
to CD4 and CD8 T cells dysfunction and exhaustion, inhibition of Th17 proliferation, and
cytokine production [205,206].

Arginine is an amino acid valuable for the CD8+ T cells survival, antitumor response,
and for the formation of memory T cells [207]. However, the high uptake of arginine by tu-
mor cells, the catabolism of arginine by MDSC-expressed arginase [208,209], and the conver-
sion of arginine to nitric oxide by macrophage-expressed nitric oxide synthetase [195,210]
result in arginine depletion in the TME leading to T cell dysfunction and anergy.
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Figure 4. Cancer metabolism promotes immunosuppressive TME. Cancer cells mainly rely on gly-
colysis as it supports the biosynthesis of nucleotide, via penthose phosphate pathway and folate
metabolism cycle, and molecules involved in controlling the redox state of the cell, via methionine cy-
cle. LDH: lactate dehydrogenase; 3PG: 3-phosphoglyceric acid; 3PHP: 3-phospho-hydroxypyruvate;
Glu: glutamate; α-KG: α-ketoglutarate; TCA: tricarboxylic acid cycle; ACLY: ATP citrate lyase;
OXPHOS: oxidative phosphorylation; MAS: malate-aspartate shuttle; xCT: Cystine/Glutamate An-
tiporter; MTAP: methylthioadenosine phosphorylase; MTHFR: methylenetetrahydrofolate reductase;
ASS1: arginine synthase 1; ASL: argininosuccinate lyase; Arg: arginine; SLC6A14, SLC7A3, SLC7A9:
arginine transporters; NO: nitric oxide; ARG1: arginase 1; Lat1: branched amino acids transporter;
BCKA: branched-chain α-ketoacids.
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Tryptophan and its metabolism also play an important role in generating a pro- or
anti-tumorigenic microenvironment. Expression of IDO1 by tumor, Bregs, and TAM
cells promotes the conversion of tryptophan to kynurenine, thus resulting in tryptophan
deficiency in TME. Tryptophan is essential for T cell function, while kynurenine inhibits
CD8 effector T cells by blocking mTOR signaling pathway and promoting Treg activation,
MDSC expansion, and TAM M2 polarization [125,211,212]. Thus, tryptophan depletion
and elevated kynurenine repress T cell responses and promote immune evasion [213].

At low concentrations, lipids have a beneficial effect on T cell proliferation and ac-
tivation, while at high concentrations in TME, they promote immunosuppression and
T lymphocyte apoptosis [214]. In a hypoglycemic environment, CD8 T cells adapt their
metabolism by increasing the expression of genes such as PPAR-a and CD36 involved in
fatty acid beta oxidation and uptake [203].

However, the accumulation of fatty acids increases oxidative phosphorylation metabolism
in CD8 T cells and reduces the expression of very long chain acyl-CoA dehydrogenase
(ACADVL), the first enzyme of fatty acid beta oxidation, which determines the accumula-
tion of very long fatty acid, which leads to mitochondrial dysfunction, high reactive oxygen
species (ROS) production, metabolic exhaustion, apoptosis, and ferroptosis [215–217]. FA
uptake by CD36 induces PD-1 and TIM-3 expression, reduces IFN-γ and TNF-α production,
and leads to CD8 terminal exhaustion [218].

In addition, fatty acids stimulate T lymphocytes to secrete pro-inflammatory cytokines,
such as TNFα, IL-1β, IL-2, IL-6, IL-8, and IFN-γ, and promotes Treg differentiation, the
generation of immunosuppressive and protumor TME [219,220]. Treg and Th17 cells, major
immunosuppressive population, rely on FAO and OXPHOS metabolism to support their
survival and immunosuppressive function [221]. To meet their high need for fatty acids,
Tregs increase the expression of CD36 and SREBP, the major regulatory gene of de novo
cholesterol and fatty acid synthesis, and induce PPAR-dependent lipid metabolism [13,222].
FA enrichment in TME leads TAM to shift their metabolism toward FAO and OXPHOS
and promotes TAM polarization to immunosuppressive M2 phenotype [223]. FA affect
NK cytotoxic activity, as high FA levels inhibit the protein complex mTORC1, essential for
IFN-γ and granzyme B production [223].

In the breast, melanoma, colorectal tumor microenvironment dendritic cells, accu-
mulate fatty acids because they overexpress the scavenger receptors (SR) involved in the
intracellular transport of lipids. High levels of fatty acids impair the DC capacity to process
and present antigen and their ability to stimulate and activate T cells [224].

Cholesterol is essential for T lymphocyte function as it enhances immunological
synapse formation and maturation, promotes TCR clustering and signaling, and thus
improves cytotoxic function [184,225]. However, high cholesterol content in TME impairs
T cell function as it impairs lipid metabolism and induces ER stress leading to increased
expression of exhaustion markers, such as PD-1, LAG-3, TIM-3, 2B4 and CTLA-4, on
CD8+ T cells [226]. The accumulation of cholesterol esters, transported by CD36, leads to
ferroptosis of CD8 T cells. Cholesterol oxidation by CYP27A1 generates oxysterol, which
promotes tumor cell proliferation and the recruitment of immunosuppressive cells such as
neutrophils and IL17-expressing γδ cells [226].

Finally, cholesterol induces FOXP3 expression and promotes Treg differentiation, thus
supporting the generation of immunosuppressive TME [227] (Figure 3).

5. Fasting, Caloric Restriction, Metabolite Restriction, and Fasting Mimicking
Diet (FMD)

Calorie restriction is a diet that involves a daily reduction (10–30%) of caloric intake
for an extended period of time. Fasting, on the other hand, consists in complete abstinence
from food, but not from water, for a limited period (from 16 h up to a few days) and is not
easily applicable in the clinic as it is very restrictive and poorly tolerated by patients. For
this reason, a new dietary intervention called “fasting-mimicking diet” has been developed,
a 5-day food program which consists of a 50% reduction in calorie intake on the first day
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and a 90% reduction in the following 4 days. Unlike calorie restriction and fasting, FMD is
easily tolerated by patients as it alternates a short period of severe calorie restriction with a
normal calorie intake diet. The amino acids or metabolites restricted diet provides a normal
caloric intake but lacks specific amino acids or metabolites essential for the regulation of
signaling pathways, often altered in tumor cells. However, even these diets could have side
effects such as causing serious weight loss in patients as is found in diets lacking essential
amino acids.

6. Effects of Fasting and Metabolite Restriction on Cancer Cells

Food restriction induces systemic and local metabolic changes through the modulation
of hormone and nutrient sensing pathways. The reduction of circulating glucose upon
dietary restrictions leads initially to glycogenolysis in order to support gluconeogenesis;
then, when glycogen storage is depleted, it leads to lipolysis and the release of glycerol
and fatty acids essential for the production of ketone bodies, the main energy sources in
the absence of external nutrients [8,228]. The organism responds to the macronutrients
and particularly amino acid limitation by inhibiting the anabolic pathways through the
downregulation of growth hormone (GH) and insulin growth factor (IGF1). The low level
of IGF 1 and of amino acid and increased AMP/ATP ratio lead to the inhibition of PI3K
and mTOR pathway and to the activation of autophagy, a process that provides energy and
substrates by removing the damaged and redundant self-components [229,230].

In normal cells, the effects of CR on the reduction of growth factors is also associ-
ated with the upregulation of anti-stress response (NRF2 and antioxidant genes), which
can include DNA repair and cause reduced inflammation trough the release of corti-
costeroids, ghrelin, and adiponectin and the inhibition of pro-inflammatory cytokine
secretion [231,232].

The inhibition of the nutrient-sensing pathway (IGF1-PI3K-mTOR), the activation of
the antistress response pathway, and the upregulation of genes involved in DNA repair
induced by caloric restriction/fasting prompt normal but not cancer cells to slow down
their proliferation and enter a quiescent state, an effect called “differential stress resistance”
which protects normal but not malignant cells from the cytotoxicity of anti-tumor drugs.
However, tumor cells that possess mutations in oncogenes (IGF-1R, Ras, AKT, and mTOR
pathways) and tumor suppressor genes (p53, p16, and Rb) are not only insensitive to lack
of nutrients and low levels of anabolic hormones and do not become protected during
fasting condition, their uncontrolled proliferation and increased requirement for many
metabolites can sensitizes them to anticancer therapy. This mechanism induced by fasting
in tumor cells is termed differential stress sensitization, since only cancer cells (breast,
glioma, neuroblastoma, melanoma) and not normal cells are sensitized to a wide variety of
therapies ranging from chemotherapy to radiotherapy to hormone therapy (DSS) [233–236].

A key effect of fasting is the reduction of carbohydrates, which are the main energy
source for many types of cancers. The scarcity of carbohydrates has a particular impact on
the metabolism of tumor cells, which, prior to the restriction, adopt an increased glycolytic
mode, called the Warburg effect, and which, in response to glucose restriction, attempt
to shift from glycolysis to oxidative phosphorylation to generate more energy but also as
the fatty acids and ketone bodies generated by lipolysis become a fuel source. However,
glycolysis-dependent tumor cells (ovarian, breast, thyroid cancer) are unable to effectively
adapt their metabolism to OXPHOS, so this change induces a slowdown in proliferation
and an increase in oxidative stress and apoptosis [237–239].

The energy deficit induced by caloric restriction/fasting leads to an increase in NAD+,
which activates histone deacetylase sirtuins. Sirtuins reshape the epigenetic landscape,
causing an inhibition of glycolysis and thus reinforcing the inhibitory effect of calorie
restriction on tumor glucose metabolism [240–242].

Cycles of fasting or fasting-mimicking diets (FMD), developed to simulate the effects
of fasting and lasting 2–5 days, also sensitizes glycolysis-dependent cancer cells (TNBC)
to glucose analogues (2DG) and affects cancer stem cell self-renewal [243]. Furthermore,
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the reduction of glucose and circulating IGF enhance the efficacy of cycline kinase in-
hibitors/hormone therapy combination and PI3 kinase inhibitors against ER-positive and
triple-negative tumors, respectively, preventing drug resistance in ER+ breast cancers [244]
and completely eradicating triple-negative breast tumors [243].

Fasting cycles could affect tumor growth by modulating the levels of essential (leucine,
lysine, and methionine) and non-essential (serine, glycine, glutamine, and asparagine)
amino acids [245].

For example, serine deprivation activates the serine synthesis pathway and inhibits
glycolysis by promoting OXPHOS [165,246]. This metabolic switch increases ROS pro-
duction, thus sensitizing colorectal tumors, lacking p53, to agents that increase ROS [247].
Fasting/FMD also alters the iron metabolism in KRAS-mutated tumor (pancreas, lung,
colorectal) cells by reducing the levels of heme oxygenase and ferritin, thus increasing
sensitization to high doses of vitamin C, which acts as a pro-oxidant agent [248].

Methionine restriction also inhibits tumor growth and increases the efficacy of
chemotherapies [249,250] and reverses the drug resistance of RAS-driven colorectal cancer
as it affects nucleotide metabolism and glutathione synthesis and reactivates the expres-
sion of silent tumor suppressor genes by reshaping the epigenetic and DNA methylation
landscape [251].

Several cancer cells are glutamine-addicted because glutamine plays an essential role
in cell metabolism as it supplements tricarboxylic acid (TCA) cycle and participates in the
biosynthesis of nucleotides, glutathione (GSH), fatty acid, and other nonessential amino
acids (alanine, proline, aspartate, asparagine, and arginine) [252]. In addition, glutamine
support the production of α-KG, which is a cofactor for Jumonji C domain-containing
histone demethylases (JmjC), and ten-eleven translocation (TET) family DNA demethy-
lases [253,254]. Therefore, glutamine deprivation affects cancer growth by impairing the
energy and nucleotide metabolism and redox homeostasis [255]. However, glutamine de-
pletion leads to histone and DNA hypermethylation through the inhibition of JmjC and TET.
These epigenetic changes promote cancer cells dedifferentiation and drug resistance [256].

Fasting mobilizes lipids from adipose tissue as beta-oxidation of fatty acids becomes
the main energy source in glucose deficiency. Therefore, the high consumption of lipids at
the cellular level allows for a reduction in plasma lipid levels [8]. This metabolic change af-
fects the metabolism of cancer cells and their ability to adapt. In fact, tumor cells dependent
on glycolysis can be more affected by this metabolic change as they are not able to effectively
process the fatty acids that accumulate in the lipid droplets [257]. Furthermore, CR reduces
the activity of the enzyme stearoyl-CoA desaturase (SCD), essential for maintaining the
fluidity of the cytoplasmic membrane through the production of monounsaturated fatty
acids (MUFA) [238].

On the contrary, the growth of tumor lines, whose metabolism relies on OXPHOS, is
less affected by the effects of caloric restriction and fasting, as they support their growth
through the beta oxidation of fatty acids, which are reduced in the tumor microenviron-
ment [257].

Calorie restriction and fasting may exert an antitumor action through downregula-
tion of the satiety hormone leptin and upregulation of adiponectin. Fasting blocks the
progression of acute lymphocytic leukemia (ALL) through upregulation of the leptin re-
ceptor (LEPR). LEPR expression slows cell proliferation and promotes ALL differentiation
by upregulating XBP1, involved in the unfolded protein response (UPR) pathway, and
PRDM1, the tumor suppressor gene involved in T and B cell differentiation [258]. Calorie
restriction has been shown to prevent the risk of radiation-induced myeloid leukemia
in mice if performed both before and after irradiation [259]; however, it has no effect on
multiple myeloma progression, although it is able to remodel the microenvironment of the
bone marrow [260]. Therefore, the antitumor effects of CR and FMD are cancer specific and
dependent on the genotypic and phenotypic characteristics of the tumors.
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7. Effects of Fasting and Caloric Restriction on TME

Although the reduction of glucose and essential and non-essential amino acids has a
detrimental effect on tumor growth, such restrictions also negatively impact the function
of the immune system. Glucose reduction suppresses proliferation and activation of
tumor infiltrating effector immune cells while promoting the formation of long term
memory CD8+ T cells [261,262]. At the same time, glycine and serine restriction inhibit
CD8 T cell activation [263], while low methionine levels impair CD4 T cell activation by
reducing histone methylation at the levels of genes involved in T cell proliferation and
activation [264].

Although calorie restriction/fasting reduces glucose and amino acids levels, such
dietary interventions have been shown to have beneficial effects on the antitumor response
by increasing the percentage of CD8+ cytotoxic T cells, memory T cells, and stem cell-
like memory T cells and repressing Treg through the reduction of IGF1 levels, epigenetic
reprogramming, and the production of ketone bodies [257,265–271].

More recently, fasting/FMD cycles were shown to promote the immune cell-dependent
attack of different types of cancer cells (melanoma, breast, gastric cancers) [256,257,269,272,273].

This was attributed to the ability of fasting/FMD to reduce the Treg population and
boost CD8 infiltration by downregulating the expression of heme oxygenase-1 (HO-1) and
IGF-1 and by inducing autophagy in melanoma and breast cancer [271,272]. FMD poten-
tiates the cytotoxic effect of chemotherapy and increases the immune infiltrate in breast
and melanoma cancer by reducing tumor HO-1 expression, a potent immunomodulator
involved in suppressing CD8+ T-cells infiltration and cytotoxic activity and promoting
Treg accumulation [272]. Fasting sensitizes low immunogenic non-small-cell lung cancer
lung tumors to anti-PD1 immunotherapy and even leads to complete tumor remission in
preclinical studies by reversing or neutralizing the immune evasion mechanism through
IGF-I signaling pathway downregulation [271].

Since IGF-1 cooperates with the receptor for advanced glycation end products (RAGE)
in inducing metabolic-dependent inflammatory responses, and since RAGE activation
amplifies IGF-1 signaling, CR and FMD could improve the antitumor immune response
by modulating the RAGE signaling pathway. RAGE activation by advanced glycation
end-products and 25 other ligands induces transcription of inflammatory cytokines and
chemokines that contribute chronic inflammation in the tumor microenvironment pro-
moting MDSC recruitment, TAM polarization from the proinflammatory M1 to the anti-
inflammatory M2 phenotype, DC dysfunction, and T cell exhaustion. Furthermore, RAGE
triggers the activation of the NLRP3 inflammasomes pathway, which favors immunosup-
pression by promoting the genesis and recruitment of MDSC or by inducing the differentia-
tion of TAMs into a tolerogenic phenotype [274]. CR and FMD suppress inflammation and
reduce oxidative damage in humans and in preclinical mouse models [232,275]. Further-
more, we show that FMD reduces the levels of inflammatory markers such as the NLRP3
inflammasome, leukotriene in the heart of mice bearing melanoma and lung cancer and
treated with immune checkpoint inhibitors [205,276].

Fasting improves chemotherapy efficacy against fibrosarcomas, mammary carcinomas,
and non-small cell lung cancers by boosting the T-cell-mediated immune response, which
leads to Treg depletion through enhanced ATP release due to fasting-induced autophagy in
the tumor [273].

The effects of calorie restriction and diet on immune system activation could also be
mediated through the reduction of high mobility group box protein 1 (HMGB1) [277].

HMGB1 is a multifunctional redox sensitive protein secreted by innate immune system
cells (macrophages and NK) in TME under stress or inflammatory conditions. Extracellular
HMG1 can play both protumor and antitumor roles. Reduced HMGB1 promotes immune
cell activation and chemotaxis by stimulating the synthesis and release of proinflamma-
tory cytokines, such as TNFα and IL1,6, through activation of the receptor for advanced
glycation end products (RAGE) and/or Toll-like receptor (TLR) signals 2, 4 [278]. On the
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other hand, oxidized HMGB1, mostly present in the interstitial fluid of TME, inhibits DC
activation and renders them tolerogenic via RAGE activation [279].

In addition to modulating the immune response, HMGB1 inhibits tumor growth and
promotes the death of some tumor forms (as colorectal cancer) by inducing a metabolic
shift towards anaerobic glycolysis through the inhibition of PKM2, an enzyme involved in
the conversion of phosphoenolpyruvate into pyruvate, essential for the fuel of TCA and
oxidative phosphorylation [280].

It has recently been shown that inhibition of extracellular HMGB1 blocks the growth
of breast tumors through activation of the adaptive immune system and improves efficacy
of immune checkpoint therapy (PD-1) by reducing the percentage of Tregs and increasing
the percentage of M1 macrophages and activated DCs [281].

Recently it is emerging that the effects of fasting mimicking diet and caloric restriction
on the activation of the antitumor immune response could be mediated by the intestinal
microbiota remodeling [282]. Several studies have shown that the efficacy of chemotherapy
and immunotherapy depend on the abundance and presence of bacterial species in the
intestinal microbiota capable of secreting short-chain fatty acids (SCFA: acetic acid, propi-
onic acid, butyric acid) [283,284]. The release of butyric acid inhibits histone deacetylases
(HDACs), prevents CD8 exhaustion, and promotes effector CD8 activation by increasing
IL12Rb expression through upregulation of the transcriptional regulator ID2 [285]. Calorie
restriction exerts the antitumor response against colon and breast cancer by promoting
CD8 activation through the enrichment of the microbiota with SCFA producing microbial
families (butyric acid and acetic acid) [282].

At the same time, the composition of the microbiota could also influence the activation
of the immune system directly through the production of serotonin [286] and indirectly
through the release of SCFA, which promotes the transcription of tryptophan hydroxylase
1 (TPH1), the rate-limiting enzyme of the serotonin biosynthetic pathway, and colon sero-
tonin production by enterochromaffin cells [287]. Serotonin is synthesized from tryptophan
and, in addition to its crucial role as a mediator between the gut and the brain, plays an
important role in regulating the immune system and tumor progression.

In fact, serotonin mitogenic property favors the progression of cancer [288]. On the
other hand, serotonin signaling stimulates T cell activation and proliferation, promotes DC
maturation, supports B cell development, enhances NK cell cytotoxicity, and stimulates
macrophage polarization towards the M2 phenotype, while inhibiting M1 macrophage
polarization [289,290]. However, the conversion of tryptophan to serotonin or kynurenine
leads to tryptophan depletion in TME and thus to T-cell exhaustion and immune eva-
sion. Although serotonin plays contradictory roles in regulating the functions of different
immune cells, serotonin may have a pro-tumorigenic effect and enhance tumor immune
evasion by generating an anti-inflammatory microenvironment.

Furthermore fasting/FMD cycles reverse chemotherapy-induced immunosuppres-
sion by promoting hematopoietic stem cell self-renewal (HSC) [291] and enhances cancer
immune surveillance by improving memory T cell survival [292]. Indeed, fasting/calorie
restriction boosts secondary immune response as it promotes memory T cell migration
into the bone marrow where they meet a favorable microenvironment favorable to their
survival and protection against chemotherapy [10,291]. Furthermore, T cells subjected to
fasting acquire stem features as the lack of nutrients leads to an increase in autophagy
and mitochondrial metabolism which causes a reduction in metabolic cofactors, such as
acetyl coenzyme A, essential for epigenetic remodeling and cell differentiation. At the same
time, the reduction of methionine and its intermediates affects histone methylation and
compromises the activation of signaling pathways involved in stemness suppression [293].

Fasting/FMD cycles promote the selective expansion of early/progenitor exhausted
effector T cells at the expense of late exhausted effector T cells in breast cancer [257].
Early exhausted effector T cells represent a subpopulation of exhausted/dysfunctional
T cells, which correlate with the success of immune checkpoint inhibition and increased
patient survival [294,295]. This subpopulation expresses dysfunctional markers such as
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TOX and PD1, but also exhibit self-renewing capacity and features of memory T cells,
associated with the expression of transcriptional regulator T cell factor 1 (TCF1) [296–298].
Immune checkpoint blockade reverses immunosuppression and boosts immune response
by increasing early exhausted effector T cell proliferation and differentiation in effector T
cells, essential for long-term maintenance of persistent T cell responses. mTOR inhibition
expands early exhausted effector T cells ex vivo and enhances long term T cell response
and the efficacy of immune checkpoint inhibition [299]. Therefore, the frequency of early
exhausted T cells is considered to be a predictive biomarker for favorable clinical outcome
of checkpoint therapy.

Early exhausted effector T cells display higher mitochondrial mass and better mi-
tochondrial fitness compared with late exhausted effector T cells. These mitochondrial
changes are associated with high OXPHOS capacity, essential for supporting the early ex-
hausted effector T cells’ self-renewal [299]. Fasting/FMD promotes the selective expansion
of early exhausted effector T cells at the expense of late exhausted effector T cells in the
breast cancer model by shifting the metabolism from glycolysis to OXPHOS and increasing
b-oxidation of fatty acids [257].

Fasting favors the accumulation and activation of gd T cells in breast tissue and
strengthens the anti-tumor immune response of cytotoxic CD8 T cells by producing ketone
bodies and inhibiting mTOR activity. γδ T cells, particularly the Vd1+ subtype, can orches-
trate an effective anti-tumor response, as supported by the positive correlation of their
presence with better prognosis in TNBC patients [300]. Notably, ketone bodies produced
by a ketogenic diet have been shown to promote the expansion and activation of gd T cells
in the visceral mass [301], while the mTOR inhibition impairs the development of ab T cells
but promotes gd T cell generation in the thymus [243,302].

Short-term fasting attenuates monocyte metabolic and inflammatory activity and in-
hibits monocyte mobilization from the bone marrow through suppression of systemic CCL2
production, leading to a drastic reduction of circulating monocytes that could affect infiltra-
tion and the composition of the tumor microenvironment [303]. Furthermore, fasting/FMD
cycles reduce the accumulation of immunosuppressive polymorphonuclear (PMN) MDSC
in TME, thereby enhancing the response to immunotherapy in breast cancer [257]. Fasting
could enhance the efficacy of immune-checkpoint blockade through the production of
ketone body, 3-hydroxybutyrate, as demonstrated for ketogenic diet, by preventing the
upregulation of PD-L1 on myeloid cells and by expanding CXCR3+ T cells [270].

Fasting/FMD cycles also could enhance the immune response of anticancer ther-
apies by promoting tumor vessel normalization and a reduction in size, number, and
density by repressing the secretion of pro-angiogenic factors such as VEGF, factor VIII,
inter- leukin-6 [IL-6], TNF-α, and plasminogen activator inhibitor-1 [PAI- 1] in breast
cancer [257,265,266,304]. In addition, CR and fasting reduces fibroblast collagen deposition
in the TME and cancer fibrosis by inhibiting, respectively, mTOR and TGF-β signaling,
which promotes the conversion of fibroblast in cancer associated fibroblast (CAF) [305–308].

The less dense and viscous stroma, generated by CR and fasting, reduces the secretion
of pro-inflammatory and pro-fibrotic cytokines, allows the infiltration of immune cells
into the TME, and consequently enhances the diffusion of the anticancer therapy, thus
enhancing the efficacy of anticancer treatment in breast cancer model [257,309].

8. Conclusions

Tumor cells alter the tumor microenvironment and help to create an immunosuppres-
sive TME by restricting nutrients availability and by releasing metabolites, chemokines,
and growth factors that reprogram the normal cell function and metabolism in TME, pro-
mote the recruitment of immunosuppressive cells and their differentiation in immune
cell subtypes with immunosuppressive activity, and inhibit the activation of cytotoxic T
lymphocytes and NK cells.
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To meet metabolic demands and sustain a continuous, high proliferation rate, cancer
cells rely mainly on glycolysis and glutamine catabolism as they generate intermediate
metabolites that supply the amino acids, lipids, and nucleotides synthesis pathway and
contribute to the synthesis of molecules involved in redox homeostasis maintenance. High
tumor metabolic rate leads to glucose, glutamine, and amino acids (methionine, argi-
nine, tryptophane, leucine, serine) depletion and the secretion of immunosuppressant
lactate in TME. To support proliferation and effector response, activated T and NK cells
need environmental nutrients, including glucose and amino acids, essential to promote
PI3K/AKT/mTOR anabolic pathway activation. Therefore, the scarcity of nutrients, high
lactate concentration, and low pH in TME lead to cytotoxic T and NK cells exhaustion
and promote the proliferation of immune cells with immunosuppressive activity as their
metabolism is more suited to this environment.

At the same time, tumor cells release chemokines and growth factors that promote
tumor angiogenesis, the recruitment of immunosuppressive cells, such as MDSCs and
M2 macrophages, and collagen deposition via fibroblast, making the extracellular matrix
dense and rigid and further impeding T lymphocyte infiltration. Therefore, TME becomes
a complex milieu of immune and normal cells and acellular components which support
angiogenesis, tumor progression, and immune evasion.

CR, fasting, and FMD may reverse the immunosuppressive TME by affecting the
cancer and immune cells’ metabolism, regulating growth factors and inflammatory me-
diators, and reshaping the extracellular matrix. The reduction of glucose and glutamine
induced by caloric restriction, fasting, and FMD mainly affects the survival and prolifera-
tion of tumor cells as they are unable to shift their metabolism from glycolysis to oxidative
phosphorylation and adapt to the new restrictive conditions. Furthermore, CR-dependent
downregulation of stearoyl-CoA desaturase (SCD) limits the synthesis of monounsaturated
fatty acids, essential for cell membrane fluidity and synthesis.

The reduction of IGF-1 in response to caloric restriction inhibits the PI3K-AKT-mTOR
pathway and thus reduces the proliferation of tumor cells, immunosuppressive Tregs, and
collagen deposition in TME and promotes normalization of tumor vasculature.

The metabolic changes induced by caloric restriction in T lymphocytes reshape the
epigenetic landscape by reducing the production of acetyl coenzyme A and the expression
of immune checkpoint receptors such as PD1. These metabolic and epigenetic changes
improve T cell persistence, multipotency, tumor clearance, and their responsiveness to
immunotherapy. Overall, calorie restriction promotes several changes in tumor cells, the
immune system, and the extracellular matrix that may sensitize tumor cells to immunother-
apy and enhance the immune response. However, a more in-depth analysis and detailed
characterization of the effects of caloric restriction on tumor cells and TME is needed in
order to develop, in the future, new dietary interventions that may have a greater synergis-
tic effect with targeted anticancer therapies, minimizing the adverse or counterproductive
effects induced by caloric restriction.
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