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Simple Summary: Radiomics involves the extraction of quantitative features from medical images,
which can provide more detailed and objective information about the features of a tumor compared
to visual inspection alone. By analyzing the extensive range of features obtained through radiomics,
machine-learning techniques can enhance tumor diagnosis, assess treatment response, and predict
patient prognosis. This review highlights the mutual impact between the tumor and its microenviron-
ment (habitat), in which tumor cells can modify the microenvironment to promote their growth and
survival. At the same time, the habitat can also influence the behavior of tumor cells. Encouragingly,
radiomics and machine learning have shown promising potential in diagnosing brain tumors and
predicting prognosis. However, several limitations still need to be improved for their practical
application in clinical settings. Further research is required to optimize radiomic feature extraction,
standardize imaging protocols, validate models on larger datasets, and integrate diverse data to
facilitate a more comprehensive analysis.

Abstract: Radiomics is a rapidly evolving field that involves extracting and analysing quantitative
features from medical images, such as computed tomography or magnetic resonance images. Ra-
diomics has shown promise in brain tumor diagnosis and patient-prognosis prediction by providing
more detailed and objective information about tumors’ features than can be obtained from the visual
inspection of the images alone. Radiomics data can be analyzed to determine their correlation with
a tumor’s genetic status and grade, as well as in the assessment of its recurrence vs. therapeutic
response, among other features. In consideration of the multi-parametric and high-dimensional space
of features extracted by radiomics, machine learning can further improve tumor diagnosis, treatment
response, and patients’ prognoses. There is a growing recognition that tumors and their microen-
vironments (habitats) mutually influence each other—tumor cells can alter the microenvironment
to increase their growth and survival. At the same time, habitats can also influence the behavior of
tumor cells. In this systematic review, we investigate the current limitations and future developments
in radiomics and machine learning in analysing brain tumors and their habitats.

Keywords: radiomics; brain tumor; peritumoral region; tumor habitat; neuro-oncology; machine learning

1. Introduction

Brain cancer is responsible for a significant number of deaths, ranking among the
ten most common causes of cancer-related death [1]. These tumors can be primary or
metastatic in nature. Approximately 80% of primary malignant brain tumors are classified
as gliomas, encompassing several subtypes, including astrocytoma, oligodendroglioma,
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ependymoma, and the most malignant type, glioblastoma (GBM) [2,3]. The distinctive
traits of specific subtypes of glioma, such as invasive and proliferative cell behaviour,
angiogenesis, apoptosis, and significant heterogeneity, collectively contribute to heightened
morbidity and mortality rates. Of these subtypes, GBM is the most aggressive and diverse
type, displaying high heterogeneity in cellular and molecular characteristics, and it leads
to low levels of short-term survival [4]. The average 5-year survival rate for GBM is
between 5.6% and 7%, with a median survival period of approximately 12 to 15 months [5].
Although patients receive intensive treatment through surgical procedures, radiotherapy,
and chemotherapy, the overall survival rate remains disheartening [6]. The early diagnosis
and accurate classification of brain tumors can facilitate prompt treatment and help to
prevent further tumor growth and spread, improving the effectiveness of therapy and
survival rates for patients.

Neuro-oncology relies on magnetic resonance imaging (MRI) as the preferred method
for diagnosing, evaluating treatment response, and predicting prognosis. This non-invasive
technique provides extensive information about tumors and peritumoral regions [7]. There
is an increasing interest in the use of radiomics to extract reproducible features from images,
including complex patterns not visible to the human eye [8,9]. By examining the statistical
inter-relationships between voxels, these features may reflect the underlying dynamics of
smaller-scale biological phenomena or disease pathophysiology [10]. Therefore, they are
widely used to describe brain tumors’ radiologic phenotypes [11].

Radiomics is a promising method for the quantitative analysis of high-dimensional
medical imaging data, which are not limited to MRI and include other imaging modalities,
such as ultrasound, computed tomography (CT), and nuclear medicine imaging (e.g.,
positron emission tomography, PET). The radiomics process typically requires several
pre-processing steps. Once the tumor is segmented, radiomics features are extracted using
pre-determined mathematical methods or automatic learning techniques from the input
images. The most informative features are selected, and a machine-learning model is
created and tested using different classifiers. Finally, the developed model is evaluated
for further analysis. Figure 1 presents a straightforward workflow that starts with the
acquisition of images for MRI imaging and concludes with an evaluation after passing
through segmentation, feature extraction, and selection. In neuro-oncology, radiomics has
been utilized to differentiate between various conditions, recognize molecular subtypes,
evaluate survival rates, and assess responses to antiangiogenic treatments [12,13]. Despite
its potential to aid the diagnosis and prediction of brain tumors, there are still challenges
to overcome. One of these challenges is the standardization of imaging protocols and
equipment, as variations in these can affect the extracted radiomic features [14].

Additionally, overlapping radiomic features between different tumor types can make
distinguishing between tumors difficult [15]. Moreover, radiomic features are typically
extracted from a single time point in a patient’s imaging, which may not capture the
temporal heterogeneity of tumor growth and response to treatment. Furthermore, clinical
annotations on radiomics datasets can be necessary to validate the predictive power of
radiomic features. In such cases, assessing the correlation between radiomic features and
clinical outcomes is complex, making it challenging to validate predictive models based
on these features. For instance, to develop a predictive model for treatment response
using radiomic features, clinical annotations, such as patient-response data, are needed to
accurately evaluate the model’s performance. These annotations are necessary to assess the
accuracy of the model’s predictions, limiting its clinical utility.

Nevertheless, there has been an increase in the use of radiomics for brain tumor studies,
particularly in combination with machine-learning methods. Machine learning has proven
to be effective in the identification and extraction of essential characteristics of diseases,
leading to a wide range of clinical uses [16]. In neuro-oncology, machine learning has
yielded promising outcomes, with encouraging findings and novel opportunities for the
improved care of patients affected by brain tumors [17], such as automated detection [18],
differential diagnosis, grading [19] and mutation status [20], and the evaluation of the
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aggressiveness of tumors, as well as the prediction of treatment response, recurrence [21],
and survival [22]. The application of machine learning to radiomics provides automatic,
objective, and quantitative data with high efficiency, which is an improvement over the
traditional radiology practice of manual annotation, which relies on trained physicians
to deal with large amounts of information. In this context, this systematic review was
conducted to investigate the role of radiomics and machine learning in brain tumors and
their habitats for patient diagnosis and prognosis.

Figure 1. Radiomics workflow: A diagram illustrating the various steps involved in the radiomics
workflow, starting with image acquisition for MRI imaging and ending with evaluation, after passing
through segmentation, feature extraction, and selection.

2. Materials and Methods
2.1. Search Strategy and Selection Criteria

A literature review was performed according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Figure 2). The PubMed,
Scopus, and WoS databases were searched to identify all potentially relevant studies from 1
January 2012 to 1 January 2023. The search query used medical subject headings (MeSH)
related to AI and brain. The following search query was used on all three databases,
restricted to original articles published between 2012 and 2023:

(RADIOMICS AND BRAIN TUMOR AND MACHINE LEARNING) OR (RADIOMICS
AND BRAIN TUMOR HABITAT OR PERITUMORAL) OR (RADIOMICS AND PERI-
TUMORAL AND MACHINE LEARNING AND BRAIN TUMOR).

This study aimed to evaluate machine learning (ML) models for radiomics analysis in
brain tumor research. A systematic search was conducted using three databases, resulting
in 222 initial results. After removing duplicates, the remaining 154 articles were screened
by abstract review, excluding 70. These exclusions were based on the following reasons:
thirty-five were reviews, twenty were non-radiomics studies, one was a book chapter, four
were histopathology studies, and ten were non-brain studies. Twelve additional articles
were excluded based on specific conditions, biomarkers, or radiogenomic perspectives. The
final total of eligible papers was 72; these papers were included in this review.
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Figure 2. The PRISMA diagram shows the screening and selection of relevant papers.

2.2. Planning and Performance of the Review

The selected articles were studied, and information relevant to the review was collected
in a prearranged datasheet. The documented information included details about the study,
the type of study conducted, the imaging methods used, the type of tumor analyzed, the
application of the study, the dataset used, the number and type of features extracted, the
method used for feature selection, the method used for classification/grading, the highest
accuracy achieved, the population studied, the specifics of the training and validation,
the performance of the study, the software used for radiomic- feature extraction, and the
main findings of the study. The studies were then analyzed and categorized based on their
purpose and the type of tumor studied.

2.3. Studies Corresponding Publication Year

Figure 3a provides an overview of the yearly distribution of published articles, ranging
from 1 January 2012 to 31 December 2022, revealing the growing popularity of the field. No
articles containing the targeted keywords were published between 2012 and 2017. However,
some related content was discussed by Akbari et al. in [23], and preliminary findings were
reported in [10].

The ground-breaking research in [10] demonstrated that machine-learning techniques
could effectively predict tumor infiltration and early recurrence in glioblastoma patients us-
ing preoperative magnetic resonance images, thereby guiding targeted treatment. Moreover,
the study highlighted the potential of machine-learning and pattern-analysis approaches for
uncovering visually imperceptible imaging patterns to estimate the extent of the infiltration
and location of future tumor recurrence.
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Figure 3. (a) Bar chart of the number of articles included in this review according to their publication
year. Three pie charts (b–d) are presented, depicting the number of articles and focusing on types of
study, application area, and subject.

The field has witnessed a substantial increase in published articles since 2019, with
11 and 17 publications in 2019 and 2020, respectively. The year 2021 featured the highest
number of publications, with 23 articles. In 2022, 16 articles were published, indicating that
research in this field has gathered momentum in recent years, experiencing a significant
rise in publications from 2018 onwards. This positive trend is anticipated to persist in the
coming years.

2.4. Characteristics of Studies

The analysis presented in this review involved the examination of 72 articles, and their
characteristics are documented in Table 1. These publications were classified according
to their intended purpose, which included diagnosis, prognosis, and overall survival.
According to the findings presented in Figure 3b–d, most of the research (62%) was focused
on gliomas, which included high- and low-grade gliomas. A substantial proportion of
the studies (23%) were dedicated to predicting genetic mutations. A smaller portion
of the research (14%) focused on non-glial tumors, such as brain metastases (9%) and
meningiomas (5%), while only 1% of the studies were categorized as “others”.

Additionally, the analysis demonstrated that a large proportion of the studies (74%)
were concerned with investigating tumors, whereas only a minority (26%) focused on
exploring their habitats. Among the studies that focused on tumors, the majority (67%)
aimed to diagnose the disease, while the rest (33%) investigated the prognosis. A few
studies focused on differentiating the peritumoral area, with roughly equal representation
from classification and survival-prediction investigations. These findings suggest that most
brain tumor research has focused on gliomas, genetic mutation prediction, and tumors, with
a primary emphasis on diagnosis. To improve patient outcomes and develop more effective
treatments, it is crucial to persistently explore various aspects of brain tumors, including
the peritumoral region and its surrounding environment, while continuing research in
established areas. In addition, we calculated the RQS (research-quality score) [24] for each
study, a metric used to assess the quality and rigor of research studies. It is typically
calculated by evaluating various aspects of a study, such as its design, methodology, data
analysis, and reporting.

In this context, each study’s RQS score was calculated by assessing its performance in
16 sections. Each section was evaluated based on specific criteria related to study design,
data collection, analysis, and reporting. The maximum achievable score was 36, indicating
a higher level of research quality. This scoring system helps researchers and readers gauge
individual studies’ overall quality and credibility.
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Table 1. Characteristics of included studies. Abbreviations: NP = number of patients; NF = number of features; FS = feature selection; CM = classification method;
VM = validation method, CV = cross-validation, RQS = radiomics quality score. See Abbreviation section for additional abbreviations.

Reference Application
Field Diseases NP (Type) MRI Sequence Region for Feature

Extraction
Software

Used NF FS CM VM Performance RQS

Prasanna et al.,
2017
[10]

Prognosis GBM

65(36 long-term
survival, 29
short-term
survival)

T2W, Gd-T1W,
FLAIR ET, NCR, PTR MATLAB 134 12 (mRMR) RF 3-Fold CV CI = 0.68~0.78 56%

Shofty et al.,
2018
[25]

Diagnosis LGG
47 (26

oligodendroglia, 21
astrocytomas)

T1WGd, T2W,
FLAIR

Pre-defined Lesion
area of tumor MATLAB 152 PCA

SVM, KNN,
Ensemble
classifier

5-Fold CV AUC = 0.87 69%

Akbari et al.,
2018
[26]

Diagnosis and
prognosis GBM 129 (74 male,

55 female)

T1WGd, T1W,
T2W,

T2-FLAIR, DTI
ET, non-ET, ED CaPTk 436 Yes SVM 10-Fold CV AUC = 0.92 75%

Cho et al., 2018
[27]

Prognosis and
survival Glioma 285 (210 HGG,

75 LGG)
T1W, T2W,

T1ce, FLAIR ET, non-ET, ED PyRadiomics,
MATLAB

468 (3
Types) yes (Top 5) SVM, RF 5-Fold CV AUC = 0.903 75%

Rathore et al.
2018
[28]

Prognosis GBM 31
T1W, T2W,

T1ce, FLAIR,
DTI

ED, ET, NET CaPTk n/a n/a SVM LOO CV AUC =0.91 72%

Binder et al.,
2018
[29]

Survival GBM 260 T1W, T2W,
T1ce, FLAIR ET, non-ET, ED CaPTk 1650 yes (p > 0.05)

Multivariate
classification
framework

5-Fold CV ------- 78%

Abidin et al.,
2019
[30]

Diagnosis
METs
and

Glioma
52 T1ce, T2

FLAIR Tumor Amira 630 no AdaBoost 10-Fold CV AUC = 0.84 64%

Talamonti
et al., 2019

[31]
Survival Medulloblastoma 70

T1W TSE
MDC, T2W
TSE, T2W

FLAIR

Necrosis, solid
tumor, and oedema PyRadiomics ---- yes SVM LOO-CV ------ 72%

Hajianfar et al.,
2019
[32]

Diagnosis GBM 82 T1W, T2W,
T1ce, FLAIR NCR, WT, ET, ED R, Python 7000 Top 20 Ada-Boost, DT 10-Fold CV AUC = 0.74 81%

Hamerla et al.,
2019
[33]

Diagnosis Meningioma 147 T1W, T2W,
T1ce, FLAIR Peritumoral ED PyRadiomics 12,733 16 SVM, RF, NLP,

XGBoost 10-Fold CV AUC = 0.97 81%

Kniep et al.,
2019
[34]

Diagnosis METs 189 T1ce, T1W,
FLAIR Multiple metastases Python 1423 59 RF 5-Fold CV AUC = 0.90 72%

Jeong et al.,
2019
[35]

Diagnosis GBM 25 (13 HGG,
12 LGG)

T2W FLAIR,
T1W Solid tumor MATLAB 1689

7 (types) of
delta- and
radiomic
features

RF LOO CV AUC = 0.938 69%

Wei et al., 2019
[36] Diagnosis GBM 105

T1ce,
T2-FLAIR &

ADC
Tumor & PED R 3051 100 LR No CV AUC = 0.926 78%

Wening et al.,
2019
[37]

Survival GBM 211 Multimodal ED, ET, NEC PyRadiomics 9871 95 LR No CV

ACC = 0.56
(long, mid, and

short-term
survival)

67%
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Table 1. Cont.

Reference Application
Field Diseases NP (Type) MRI Sequence Region for Feature

Extraction
Software

Used NF FS CM VM Performance RQS

Kim et al., 2019
[38] Prognosis GBM 83

T1W, T2W,
T1ce, FLAIR,

DTI, DSC
NER ANTsR 6472 Top 10

(LASSO) GLM 10-Fold CV CI = 0.87 72%

Prasanna et al.,
2019
[39]

Survival Glioma 241 T1c, T2w,
and FLAIR ET, WT, TC MATLAB 234 yes (Top 2) CNN, RF 3-Fold CV

ST- 0.57
MT-0.63
LT-0.43

56%

Qian et al.,
2019
[40]

Diagnosis GBM & METs
412 (GBM
242, 170
METs)

T1W, T1c,
T2w

Tumor &
peritumoral region PyRadiomics 1303 12

SVM, LASSO,
MLP,

ADaBoost
5-Fold CV AUC = 0.95 86%

Carré et al.,
2019
[41]

Diagnosis GBM

243 (108
grade II and III

gliomas, 135
grade IV GBM)

T1w-gd and
T2w-flair OED, NCR, ET PyRadiomics 1462

91 (18
first-order and

73
second- order)

RF, NB, LR,
SVM, NN 5-Fold CV

ACC = 0.82
(95% CI
0.80–0.8

5,
p = 0.005)

72%

Shofty et al.,
2020
[42]

Diagnosis METs 53 Multi-modal Brain lesions MATLAB 195 50 (PCA) SVM 5-Fold CV AUC = 0.78 75%

Sudre et al.,
2020
[43]

Diagnosis Glioma 333 (101 LGG, 232
HGG T2 W, FLAIR Tumor NiftyReg Several

29
(Shape,

histogram,
Haralick)

RF 2-Fold CV AUC = 0.80 67%

Crisi et al.,
2020
[44]

Prognosis GBM 59 T1-GRE, T2-
GRE, T2FLAIR ET, NEC LIFEx 92 14 NB, DT, MLP 10-Fold CV AUC = 0.84 47%

Wei et al. 2020,
[45] Diagnosis IHPC,

meningioma

292 (IHPC = 155
meningiomas =

137)

T1WI, CE-
T1WI, and

T2WI
TC and PED PyRadiomics 473 64

Recursive
feature

elimination, RF
3-Fold CV

AUC = 0.913
(Tr), 0.914

(val)
86%

Beig et al., 2020
[46] Survival GBM 203 Gd-T1W, T2W,

FLAIR
NCR,

PED, ET MATLAB 936 25 Cox regression 5-Fold CV ----- 81%

Lohmann et al.,
2020
[47]

Early
progression GBM 34 PET Tumor PyRadiomics 944

4 (shape,
Histogram,

GLSZM)
RF 5-Fold CV AUC = 0.79 58%

Correa et al.,
2020
[48]

Diagnosis METs 37
post-Gd T1w,

T2w,
and FLAIR

Lesion and lesion
habitat --------

4740
(Haralick,

Gabor,
Laws,

CoLlAGe)

top 3 (Laws) RF 3-Fold CV AUC = 0.97 67%

Kumar et al.,
2020
[49]

Prognosis Glioma 285 (210 HGG,
75 LGG)

T1, T1c, T2
FLAIR NET, NCR, ED, ET PyRadiomics 1158 580 RF 5-fold CV AUC = 0.97 58%

Verma et al.,
2020
[50]

Survival GBM 156 Gd-T1W, T2W,
FLAIR ET, NET, NCR R studio

3024
(Haralick,

Laws,
CoLlAGe)

------ LASSO 10-fold CV CI = 0.80 56%

Choi et al.,
2020
[51]

Survival GBM 144 T1W, T2W,
T1ce, FLAIR PED PyRadiomics 478 7 Cox-Lasso 10-fold CV --- 75%

Yousaf et al.,
2020
[52]

Survival GBM 335 (259 HGG, 76
LGG)

T1W, T2W,
T1ce and

FLAIR
Tumor MATLAB 30,632 14 RF 10-fold CV ---- 53%



Cancers 2023, 15, 3845 8 of 22

Table 1. Cont.

Reference Application
Field Diseases NP (Type) MRI Sequence Region for Feature

Extraction
Software

Used NF FS CM VM Performance RQS

Zhang et al.,
2020
[53]

Diagnosis and
prognosis GBM 104 T1C, T1, T2,

FLAIR ET, NCR, ED MATLAB 180 ------ SVM No CV ACC = 87.88% 56%

Choi et al.,
2020
[54]

Diagnosis GBM 136 T2W Tumor & PED PyRadiomics 107 9 Random Forest No CV AUC = 0.758 83%

Sakai et al.,
2020
[55]

Diagnosis Glioma
100 (22 IDH1

mutant, 78
wildtypes

FLAIR, DWI Tumor Olea sphere 92 ---- XGBoost 5-fold CV AUC = 0.97 67%

Demire et al.
2021
[56]

Diagnosis GBM & METs 60 (35 GBM,
25 METs)

T1WI, T2WI,
FLAIR,

postcontrast
T1WI

NEC, NET, ET,
Oedema Third- party 856 ----- SVM, RF, NB 5-Fold CV AUC = 0.97 50%

Tixier et al.,
2021
[57]

Survival GBM 234 T1W Gd -ET, NEC, NET,
TC Python 88 57 Lasso 5-Fold CV AUC = 0.75 61%

Russo et al.,
2021
[58]

Diagnosis Glioma 56 PET Tumor LIFEx 44 ----- NN, RF, SVM 5-Fold CV AUC = 0.78 50%

Yan et al., 2021
[59] Diagnosis GBM 41 T1ce, T1W,

T2W, FLAIR Tumor CaPTk 841 153 RF No CV ACC = 81% 64%

Ye et al., 2021
[60]

Diagnosis and
prognosis GBM 285 (210 HGG,

75 LGG)
T1W, T2W, T2

FLAIR GD-ET, PED PyRadiomics 94 Top 30
RF, KNN,

SVM, MLP,
CNN

No CV

AUC = 0.65
(short-, mid-,

and long-term
survival)

67%

Joo et al., 2021
[61] Diagnosis Meningioma 454 T2W, T1ce Tumor & PED MATLAB 3222 Top 6 RF 10-Fold CV AUC = 0.76 56%

Pasquini et al.,
2021
[62]

Diagnosis High-grade
glioma 156

T1W, T2W,
FLAIR, PWI,

DWI

WT, CET, NEC,
NET MATLAB 1871 Top 15 RF 10-Fold CV AUC = 74.2% 56%

Cao et al., 2021
[63] Prognosis Lower-grade

glioma
102 (60 men,
42 women)

T1W, T2W,
FLAIR, DWI WT, NEC MATLAB 56 Top 10 RF No CV AUC = 0.879 53%

Patel et al.,
2021
[64]

Prognosis GBM 76 CE-T1W, T2W,
DWI Whole Brain PyRadiomics 307 6 RF, NB 10-Fold CV AUC = 0.8 70%

Soltani et al.,
2021
[65]

Diagnosis and
prognosis GBM 211

T1, T1CE,
T2, and T2-

FLAIR
ED, ET, NEC PyRadiomics 3910 67 ANN, KNN,

RF No CV

ACC = 0.57
(short-, mid-,

and long-term
survival)

56%

Wagner et at.,
2021
[66]

Prognosis LGG 115 T2-FLAIR,
Gd-T1W Segmented tumor PyRadiomics 851 10 RF 4-fold CV AUC = 0.75 58%

Le et al., 2021
[67]

Diagnosis and
prognosis Glioma 120 T2-FLAIR,

Gd-T1W ET, NET, ED CaPTk 704 13 XGBoost LOO-CV AUC = 0.85 61%

Kumar et al.,
2021,
[68]

Diagnosis Glioma 369 (293 HGG,
76 LGG)

T2 FLAIR,
T1W,

postcontrast
T1W and

NET, NCR, ED, ET Python 428 ---- LR, SVM,
KNN, ERT 5-fold CV AUC = 0.95 67%
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Table 1. Cont.

Reference Application
Field Diseases NP (Type) MRI Sequence Region for Feature

Extraction
Software

Used NF FS CM VM Performance RQS

Cepeda et al.,
2021
[69]

Survival GBM 203 T1CE, T1, T2,
FLAIR Tumor, peritumoral MATLAB 15,720 ---- Naive Bayes No CV AUC = 0.769 61%

Maliket al.,
2021
[70]

Diagnosis
(clinical study) LGG & GBM 78 (42 GBM, 36

LGG)

T1ce,
T2-FLAIR,

DWI
PED, TC PyRadiomics 3822 9 (RFE)

SVM, KNN,
LDA,

AdaBoost
LOO CV AUC = 0.96 67%

Samani et al.,
2021
[71]

Diagnosis GBM & METs 106 (66 GBM, 40
METs) DTI PTR PyRadiomics

All
first-order
features

Top 2% (PCA) SVM, CNN 5-fold CV ACC = 85% 61%

Xiao et al., 2021
[72] Diagnosis GBM & Brain

Abscess
118 (86 GBM, 32

brain abscess)
T1W, T2W,

T1ce, FLAIR
NCR, PED,

TC PyRadiomics 1004 43 (PCA) RF, LR 5-fold CV AUC = 0.89 56%

Gutta et al.,
2021
[73]

Diagnosis Glioma 237
T1CE, T1W,

T2W, T2-
FLAIR

ET, NET & ED PyRadiomics 1284 45 SVM, RF No CV ACC = 87% 67%

Zhang et al.,
2021
[74]

Diagnosis Glioma 162
Gd-T1W, T1W,

T2W,
T2-FLAIR

TC, ED PyRadiomics 1102 Top 10 autoML 4-fold CV AUC = 0.951 58%

Xu et al., 2021
[75] Prognosis GBM 236

T1, T1-Gd,
T2W, T2-
FLAIR

ET, ED, NET, NCR PyRadiomics 1320 45 Cox regression 5-fold CV C-index = 0.64 61%

Meißner et al.,
2022
[76]

Survival METs 59 T1CE, T2W Tumor PyRadiomics 1316 100 SVM 10-fold CV AUC = 0.92 67%

Shaheen et al.,
2022
[77]

Survival Glioma 178 T1W, T2W,
T1ce, FLAIR PTE, NEC, ENC PyRadiomics 89 50 SVM --- AUC = 0.73 61%

Deng et al.,
2022
[78]

Survival Glioma 84 T2W, T1ce,
FLAIR Tumor, NCR, ED PyRadiomics 1316 12 RF ---- AUC = 0.879 61%

Liu et al., 2022
[79] Prognosis GBM 200 T1CE, T2 Tumor and

peritumoral region PyRadiomics 8412 Top 20 RF, SVM 10-fold CV AUC = 0.91 61%

Do et al.,
2022
[80]

Prognosis GBM 53 T1W, T1Gd, T2,
T2-FLAIR

NCR,
PED, ET Python 704 22 RF, SVM,

XGBoost 5-fold CV AUC = 0.93 50%

Chiu et al.,
2022
[81]

Diagnosis GBM 54
T1Gd, T2W,
T2-FLAIR,

T1CE
NCR, ET, PED Python 1316 ---- RF No CV AUC = 0.96 53%

Chen et al.,
2022
[82]

Diagnosis Meningioma 819 T1W, T2W,
T1CE Solid tumor, NCR Python 2942 top 9 RF No CV AUC = 0.95 56%

Xu et al., 2022
[83] Prognosis Glioma 74 T1W, T2W-

FLAIR, T1CE Solid tumor PyRadiomics 112 7
Stack, KNN,
LR, RF, SVM,

NB
5-fold CV AUC = 0.76 67%

Kumar et al.,
2022
[84]

Diagnosis Glioma 285 (210 HGG,
75 LGG)

T2W, T1ce,
FLAIR NCR, ET, NET, PED PyRadiomics 321 42 RF, DT, SVM,

LR 5-fold CV AUC = 0.975 86%

Verma et al.,
2022
[85]

Survival GBM 150
Gadolinium—

T1w, T2w,
FLAIR

ET,
NCR MATLAB 3792 316 ---- 5-fold CV AUC = 0.78 75%
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Table 1. Cont.

Reference Application
Field Diseases NP (Type) MRI Sequence Region for Feature

Extraction
Software

Used NF FS CM VM Performance RQS

Wang et al.,
2022
[86]

Diagnosis METs 228 T1ce Solid tumor and
NCR Python 960 548 (LASSO) SVM 5-fold CV AUC = 0.928 53%

Yang et al.,
2022
[87]

Diagnosis GBM 187 T1W, T2W,
T1ce, FLAIR Tumor and PED PyRadiomics 190 Yes (LASSO) Cox regression 10-fold CV CI = 0.658 69%

Liu et al., 2022
[88] Diagnosis GBM, MET,

and lymphoma

324 (134 GBM 82
Lymphoma 108

MET)
T2W, T1ce WT, PED PyRadiomics 8412 Top 20

(LASSO)
RF, linear,
AdaBoost 10-fold CV AUC = 0.91 62%
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2.5. Quality Assessment

Based on the QUADAS-2 tool, this study’s assessment summary is shown in Figure 4.
The risk of bias in patient selection was low in sixty-five (91%) studies, high in four (5%)
studies, and unclear in three studies (4%). The risk of bias for the index test was high in
12 studies (16%) and low in 60 studies (84%). The risk of bias for the reference-standard
test was low in sixty-six studies (92%), high in two studies (3%), and unclear in four studies
(5%). Process and timing made the risk of bias low in 21 studies (29%), high in 33 studies
(46%), and unclear in 18 studies (25%). Figure 4 shows an individual evaluation of the risk
of bias and applicability. Overall, number of suitability issues was low.

Figure 4. Summary of QUADAS-2 assessments of included studies.

3. Results
3.1. Radiomics for Glioma Grading and Differential Diagnosis

Forty-six studies are identified in this section, and all used radiomics-based machine-
learning methods to classify glioma grades and types, distinguish glioma from other
brain tumors or tumor mimics, or characterize tumor-progression phenotypes. For in-
stance, Jeong et al. [35] and Prateek et al. [39] aimed to classify or differentiate high-
and low-grade gliomas; and Cho et al. [27], Zenghui et al. [40], Abidin et al. [30], and
Demirel et al. [56] focused on differentiating GBM from other types of brain tumor. These
studies concluded that radiomics-based AI models obtained by automatic segmentation
could accurately classify GBM types and distinguish them from other types with con-
ventional sequences, reducing device- and person-dependency. While the studies had
similar overall goals, there were differences in the types of imaging data used, the specific
machine-learning algorithms employed, and the performance metrics and validation meth-
ods used to evaluate the effectiveness of the approaches—for example, Prateek et al. [39]
utilized a convolutional neural-network framework to integrate radiomic texture features,
while Jeong et al. [35] used delta-radiomic features from dynamic-susceptibility contrast-
enhanced MRI. SVM [89], random forest (RF) [90], artificial neural networks (ANN), logistic
regression (LR), and eXtreme gradient boosting (XGBoost) are commonly used for classifi-
cation. Again, in [59,75], radiomics approaches were used on preoperative multimodal MRI
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data to characterize tumor progression phenotypes. The variations among these studies lie
in their areas of focus, sample sizes, and machine-learning-classifier methods. For glioma
grading, [43,49,56,61,67,68,91] most of the studied papers applied K-fold (K from 2 to 10)
cross-validation (CV). The performance of these models was measured through the area
under the curve (AUC) values, indicating varying levels of efficacy. Furthermore, distinct
evaluation metrics, such as accuracy, sensitivity, and specificity, were also employed in
the studies.

3.2. Radiomics for Non-Glial Tumors

Three studies on meningioma diagnosis are reviewed in this section. The first study [33],
aimed to differentiate between Grade I, II, and III meningiomas using radiomics features
extracted from multiparametric MRI. The study included one hundred and thirty-eight
patients from five international centers, and four machine-learning classifiers were used to
score the selected features. The second study [45], developed an integrated diagnostic tool
called the IHPC and the Meningioma Diagnostic Tool (HMDT) to distinguish intracranial
hemangiopericytoma from meningioma using a multihabitat-based radiomics strategy.
The study included 292 patients with complete clinical–radiological and histopathological
data. The HMDT displayed remarkable diagnostic ability, with AUC values of 0.985 and
0.917 in the training and validation cohorts, respectively. The third study [82] developed
an automated segmentation approach for meningioma utilizing deep learning. Subse-
quently, it evaluated the ability of the approach to differentiate between different types of
meningioma before surgery using radiomic features. This multicenter study retrospectively
examined MR images from 609 patients. The meningioma segmentation was conducted us-
ing a modified-attention U-Net, and L1-regularized logistic regression models was created
separately to distinguish between Grade I and Grade II/III meningiomas using manual
and automated segmentations.

All these studies involved the analyses of MRI images and included a large number of
patients from multiple centers. The first two studies focused on differentiating distinct sub-
types of meningiomas, while the third focused on segmentation and differentiation between
meningiomas of different grades. These studies demonstrate the potential of radiomics
and machine-learning techniques to improve the accuracy of meningioma diagnosis, which
could have significant implications for patient outcomes and treatment planning.

3.3. Radiomics for Survival Prediction

Radiomics methods based on ML are new developments in the prediction of patient
survival, with no prior exploration of this topic before 2019. Weninger et al. [37] began
exploring various radiomics-based methods for predicting survival based on the BraTS
dataset [92]. Their study evaluated different radiomic approaches to predicting brain tumor
patients’ survival, including a linear-regression baseline based on age only. The use of
radiomics showed promise for patients with subtotal resection. However, it performed
poorly for patients with gross total resection, which explains the poor overall performance
of radiomics-based approaches in the BraTS dataset. Two studies [40,77] focused on the
progression-free survival of patients with glioblastoma.

In contrast, other studies concentrated on classifying overall survival or calculating
survival time using the radiomics model [68] or radiomics score [36]. Deng et al. [68]
applied a multiregional model that extracts radiomic features from multiple ROIs within
tumors and evaluated the effectiveness of four multiregional radiomic models in predicting
overall survival. The random survival forest (RSF) algorithm was used to perform the
survival analyses. The naive Bayes classifier achieved the best results in the test data set,
with an AUC of 0.769 and a classification accuracy of 80%.

3.4. Radiomics for Brain-Habitat Analysis

In recent years, there has been growing interest in the use of radiomics features to
analyze tumor habitats, i.e., peritumoral environments. In this regard, authors employ
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different terms to describe the surrounding area of a tumor, including the lesion habitat,
brain habitat, multi-habitat, and subcompartments or microenvironments, which can form
peritumoral edema or be affected by tumor growth.

The peritumoral region, also known as the tumor microenvironment, plays a crucial
role in glioblastoma’s recurrence [28,88] and provides valuable insights for diagnosis and
prognosis. This region is characterized by various molecular and cellular changes contribut-
ing to tumor growth, invasion, and treatment resistance. Exploring the peritumoral region
can reveal important clues about the underlying mechanisms driving GBM recurrence.

One of the key features of the peritumoral region is its heterogeneity. In diffuse
gliomas and glioblastoma, it consists of brain regions infiltrated by distinct subpopulations
of tumor cells with varying genetic and epigenetic alterations. This heterogeneity leads to
differences in cellular behavior, including invasive potential and resistance to therapy [36].
Researchers can identify specific biomarkers associated with recurrence and aggressiveness
by analyzing the molecular and genetic [35] profiles of cells in the peritumoral region. This
information can aid in developing targeted therapies and personalized treatment strategies.

Despite the varying terminology across studies, the underlying concept is the same:
the analysis of the characteristics of the tumor’s surrounding tissues and the tumor itself
can provide valuable information for diagnosis, treatment planning, and the prediction
of patient outcomes. For instance, Verma et al. [50] analyzed lesion heterogeneity on
clinical MRI to stratify patients into low- and high-risk categories based on progression-
free survival, while Neha Beig et al. [46] developed a survival-risk score for predicting
progression-free survival in glioblastoma using radiomic features extracted from routine
MRI scans. Other studies investigated the potential of radiomics as imaging biomarkers for
glioblastoma patients [51], developed a radiomic-pipeline to differentiate radiation necrosis
from tumor recurrence in brain-metastases patients [28,48], and utilized multi-habitat
radiomics features and clinical–radiological information to distinguish between different
tumor types [45]. In [71], deep learning was employed to analyze the microstructure of
the surrounding tissue to identify distinct tumor characteristics. The study’s outcomes
revealed that traditional machine-learning techniques cannot find subtle features that a
convolutional neural network can detect. This approach may hold potential for accurately
distinguishing between various types of brain tumors. Other studies [50,75,79,81,85,87]
also analyzed this category and focused on glioblastoma tumors. Some of them [79,81]
investigated the classification or grading of glioblastoma tumors, aiming to understand
better the molecular and genetic characteristics that may contribute to their development
and progression. This could help to identify different glioblastoma-tumor subtypes and
develop tailored treatment approaches. Overall, radiomics research is used to investigate
the significance of habitat features in anticipating patient outcomes and treatment response.
Furthermore, the relationship between radiogenomic associations and molecular-signaling
pathways is under study to better understand these features’ biological basis.

3.5. Radiomics for Genetic-Mutation-Status Prediction

Our analyses identified a considerable amount of research highlighting the poten-
tial of radiomics methodologies for predicting important genetic biomarkers in gliomas,
such as the epidermal growth factor receptor (EGFR), isocitrate dehydrogenase 1 (IDH1),
Oˆ6-methylguanine-DNA methyltransferase (MGMT), and v-Raf murine sarcoma viral
oncogene homolog B (BRAF) mutations, using various MRI contrasts, radiomic features,
and machine-learning algorithms (in the so-called radiogenomic field). These techniques
offer significant opportunities for improving patient outcomes. This is demonstrated by
three articles published in 2018, the first two of which [26,29] examined the impact of
EGFR mutations on the overall survival rates and the efficacy of EGFR-targeted therapies.
Another study [25], aimed to assess the effectiveness of radiomics in categorizing patients
with low-grade gliomas based on their IDH1 mutations and 1p/19q codeletion status.

The analyses also highlight four significant advances [54,55,63,93] that focus on the
use of radiomic features and machine-learning methods to predict IDH1-mutation status in
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gliomas, and five MGMT-focused articles [32,36,44,62,80] that utilize radiomics to predict
the methylation status of the MGMT gene promoter in glioblastoma multiforme patients.
Two articles used radiomics approaches and machine-learning techniques to predict the
molecular markers (IDH1 and MGMT) and prognoses of glioblastomas and gliomas [74,94].
The first study [94] developed a prognostic model using clinical and radiomics features for
GBM patients, with promising results in the prediction of molecular markers, such as IDH
mutation, MGMT methylation, and EGFR amplification. The second study [74], aimed to
determine the ability of glioma radiomics features on MRI to predict overall survival and
progression-free survival.

Wagner et al. [66] and Meißner et al. [76] demonstrated the feasibility of using ra-
diomics features extracted from MR images to predict the BRAF status of pediatric low-
grade gliomas and intracranial BRAF-V600E-mutation status in patients with melanoma
brain metastases, respectively. Additionally, the analyses cite a study [95] that developed
an automated machine learning (autoML) approach using radiomics features to predict
H3-K27M-mutation status in midline gliomas in the brain.

These studies suggest that the radiomics-based prediction of genetic mutation status
holds promising clinical relevance for aiding clinical decision-making in managing patients
with brain tumors. Additionally, radiomics approaches can aid in preoperative stratification
for targeted therapies and improve patient outcomes.

3.6. Frequently Selected Radiomics Features

Radiomics features have the potential to provide valuable information about the tissue
properties within a region of interest (ROI). Depending on their information, these features
can be categorized according to size and shape, texture, intensity, and wavelets. Among
the various radiomics features, some of the most frequently used in recent studies are the
gray-level co-occurrence matrix (GLCM) [41], the gray-level run-length matrix (GLRLM),
the gray-level size-zone matrix (GLSZM), Haralick features [43], Laws features, Gabor
features, and histogram-based features.

In addition to the shape- and intensity-based features, several other radiomic features,
including Haralick, Gabor, Laws, and the co-occurrence of local anisotropic gradient orien-
tations (CoLlAGe) [46,48,50], are commonly used in medical imaging analysis. Haralick
features describe the spatial relationship between pixel values based on gray-level co-
occurrence matrices. Gabor features use filters with different frequencies and orientations
to capture image texture information. Laws features use predefined filter masks to capture
different texture patterns at various scales. The CoLlAGe [39] features consider both the
spatial arrangement and the intensity levels of pixel values in an image, providing a robust
measure of texture heterogeneity. These radiomic shape- and intensity-based features can
provide valuable insights into tumor heterogeneity and may have potential applications in
diagnostic and prognostic settings.

The analysis of these features can provide insights into a tissue’s heterogeneity, com-
plexity, and spatial distribution within a ROI, which is crucial in the diagnosis, prognosis,
and treatment planning of various diseases. However, the selection of radiomics features
may vary depending on several factors, including the type and location of the cancer stud-
ied and the imaging modality employed. Our analysis of the 72 selected articles identified
the most frequently used radiomics features, which are further described in Supplementary
Section I.

3.7. Evaluation Metrics

Researchers who work on ML models for brain tumor diagnosis and prognosis com-
monly use a range of evaluation metrics. These metrics provide an objective way of
assessing the performance of these models in identifying and classifying different types of
brain tumors, such as glioblastoma, metastasis, and meningioma.

One of the most basic and commonly used metrics is accuracy, which measures the
proportion of correctly classified instances. In brain tumor diagnosis, accuracy is used
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to measure how often a model correctly identifies the type of tumor. Sensitivity and
specificity are other commonly used metrics that measure the proportion of true positives
and true negatives, respectively, and indicate how well a model can distinguish between
different types of brain tissue. Graphical representations of evaluation metrics, such as the
receiver operating characteristic (ROC) and the precision–recall curve, are also commonly
used. The ROC curve shows the trade-off between sensitivity and specificity for different
classification thresholds.

In contrast, the precision–recall curve visually represents the balance between precision
and recall for different classification thresholds, mainly when the dataset is unbalanced. The
area under the ROC curve (AUC) is another commonly used metric for binary classification
problems. A higher AUC value indicates better performance in distinguishing between
positive and negative cases. The F1 score is a metric that evaluates the balance between
precision and recall, while a confusion matrix provides a table summarizing the overall
performance of a classification model.

Along with the other metrics described above, one commonly used metric to assess
the performance of radiomics models in predicting the overall survival of brain tumor
patients is the concordance index (C-index), which measures a model’s ability to distinguish
between patients with different survival times. The C-index is determined by comparing
the expected and actual survival probability. The Kaplan–Meier estimator, a non-parametric
method for estimating survival probabilities over time, was also found in many papers. The
Kaplan–Meier estimator is often used to compare the survival curves of different patient
groups. Another metric used for evaluating a model’s predictive accuracy is Harrell’s C
statistic. This statistic is a variant of the C-index and considers both a model’s discrimination
and calibration.

These metrics can be used individually or in combination to evaluate the performance
of radiomics models for overall survival prediction in brain cancer patients. However, the
choice of metrics depends on the specific research question and the available data.

4. Discussion
4.1. Promises of Radiomics and Machine Learning for Brain Tumor Analysis

Radiomics-based approaches have shown great potential in predicting patient survival
and differentiating between subpopulations of patients with various diseases, including
brain tumors. In the case of brain tumor patients, ML-based radiomics approaches have
been explored in recent years, and studies have evaluated the effectiveness of various
radiomic approaches. The addition of location-based radiomic features to classifier models
has improved prediction accuracy in some cases. Furthermore, radiomics-based approaches
have been used to analyze brain tumor habitats to identify radiogenomics-based survival
risk in glioblastoma cases. The radiomic features extracted from tumor subcompartments
have been used to develop radiomic risk scores (RRS) for predicting progression-free
survival (PFS) in GBM patients.

Radiomics also show promise in predicting treatment response and assessing tumor
aggressiveness. By quantifying tumor heterogeneity and capturing subtle changes in the
tumor microenvironment, radiomic features can serve as imaging biomarkers that are
correlated with treatment response and prognosis. Multiple research studies have show-
cased the potential of radiomics for forecasting treatment response in brain tumors, aiding
clinicians in identifying suitable treatment options and enabling personalized planning.
Additionally, Lennart et al. [96] highlight the impact of glioblastoma’s molecular diversity
and communication with the microenvironment on therapy resistance, underscoring the
need for enhanced treatment strategies. Furthermore, the significance of glioma-associated
macrophages (GAMs) in increasing tumor progression, drug resistance, and immunosup-
pression highlights the necessity for targeted therapies to improve patient survival, as
emphasized in another study [97].

Another promising application of radiomics in brain tumor analysis is its ability to
provide valuable insights into the tumor habitat. Tumors interact with the surrounding
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brain tissue, leading to changes in the peritumoral region. Radiomics can capture these
changes by analyzing the spatial relationships and textural patterns within tumors and
their habitat. This information can aid in identifying regions of infiltration, assessing
the extent of tumor spread, and evaluating the impact on neurological functions. By
combining radiomics with functional imaging techniques, such as functional MRI (fMRI),
researchers can also investigate the functional connectivity and network alterations in
tumor habitats, providing a more comprehensive understanding of a tumor’s impact on the
brain, as recently demonstrated by Krishna et al. in their seminal paper on the correlation
between glioblastoma’s remodeling of human-brain neural circuits and decreased patient
survival [98].

The studies included in this review highlight the potential of radiomics for improv-
ing the accuracy and efficiency of tumor grading and diagnosis. Most studies focus on
conventional MRI sequences, such as T1-weighted, T2-weighted, and contrast-enhanced
T1-weighted images, which offer anatomical details and aid in tumor localization and
characterization. However, they may not capture subtle microstructural changes or func-
tional alterations associated with tumors. The integration of advanced modalities, such
as diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI), provides in-
sights into tissue microstructure, cellularity, and white-matter integrity. The application
of DWI is used to assess tumor cellularity and detect restricted diffusion, indicating areas
of high cellular density or necrosis. At the same time, DTI maps tumors’ infiltration into
surrounding brain tissue by characterizing the water-diffusion directionality. Susceptibility-
weighted imaging (SWI) helps to assess compounds that create susceptibility effects on MRI,
such as blood products and calcium. The fMRI techniques, including blood-oxygen-level-
dependent (BOLD) imaging and task-based paradigms, assess brain-activation patterns
and connectivity, aiding preoperative planning and minimizing postoperative deficits.
Perfusion imaging techniques, like dynamic susceptibility contrast (DSC) and arterial spin
labeling (ASL), provide information about tumor vascularity, blood flow, and perfusion,
which is relevant for grading and treatment-response evaluation.

To summarize, the application of radiomics-based approaches has demonstrated
exceptional potential in predicting patient survival, distinguishing subpopulations, and
examining the characteristics of brain tumor habitats. Radiomics enables the quantification
of tumor heterogeneity and the detection of subtle alterations in the tumor microenviron-
ment, making it a valuable tool for imaging biomarkers that are correlated with treatment
response and prognosis. Integrating radiomics with advanced imaging modalities, such as
DWI, DTI, SWI, fMRI, and perfusion imaging, provides a comprehensive understanding of
tumors’ properties, infiltration patterns, and functional changes.

4.2. Research Gaps and Future Challenges

Radiomics still faces several challenges and includes research gaps that must be
addressed. Standardization is a crucial challenge in radiomics, as there is no agreed-upon
protocol for image acquisition, pre-processing, feature extraction, and analysis. This lack of
standardization can lead to variability in results, making it difficult to draw meaningful
conclusions from different studies.

Another challenge is the limited sample size of the datasets used in radiomics research.
Many studies use small datasets, leading to overfitting and limiting the generalizability of
the results. Additionally, radiomics involves the analysis of large and complex datasets,
which can be challenging to manage and analyze. To overcome this challenge, advanced
computational methods and tools are required.

Reproducibility is another critical issue in radiomics research. Reproducibility refers
to the ability to replicate the results of a study using different datasets or methods. There
is a need for the standardization and validation of radiomics methods to improve the
reproducibility of results.
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Moreover, integrating radiomics data with clinical data is essential for improving can-
cer diagnosis, prognosis, and habitat studies. However, several challenges need to be over-
come, including the need for standardized data formats and methods for data integration.

Finally, the validation of radiomics models ensures their clinical relevance and use-
fulness. Large-scale multicentre studies are needed to validate radiomics models and
demonstrate their clinical utility.

Although radiomics has the potential to revolutionize cancer diagnosis and prognosis,
as well as habitat studies, there is a need for standardization, advanced computational
methods, large-scale datasets, and validation studies to realize this potential fully. Address-
ing these challenges will enable radiomics to provide valuable insights into cancer biology
and help clinicians make more informed decisions about cancer treatment.

5. Conclusions

In recent years, radiomics approaches have shown great potential for brain tumor and
tumor-habitat studies. Advancements in radiomics approaches have enabled the extraction
of more complex and diverse features from medical images, improving the characterization
of brain tumors and their microenvironments. This has led to a better understanding
of tumor heterogeneity, which is critical for guiding treatment decisions and predicting
patient outcomes. Radiomics-based approaches have also shown promise for non-invasive
diagnosis, monitoring, and prediction of treatment response in brain tumors.

Overall, the advancements in the radiomics approach in brain tumor and tumor
habitat studies are promising to improve brain tumor diagnosis, treatment, and monitoring.
However, further research is needed to fully understand the potential of radiomics-based
approaches and develop robust and standardized methods for their implementation in
clinical practice.
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Abbreviation

AdaBoost Adaptive Boosting
CI Concordance Index
CNN Convolutional Neural Network
DT Decision Tree
DTI Diffusion Tensor Imaging
DWI Diffusion-Weighted Imaging
ED Edema
ERT Extremely Randomized Trees
ET Enhancing Tumor
GBM Glioblastoma
GLM Generalized Linear Model
HGG High-Grade Glioma
LR Logistic Regression
KNN K- Nearest Neighbour Algorithm
LASSO Least Absolute Shrinkage and Selection Operator
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LDA Linear Discriminant Analysis
LGG Low-Grade Glioma
LOO Leave One Out
METs Metastasis
MLP Multi-Layer Perceptron
mRMR Minimum Redundancy Maximum Relevance
NB Naïve Bayes
IHPC Intracranial hemangiopericytoma
NCR Necrosis
NER Non-Enhancing Region
NET Non-Enhancing Tumor
NN Neural Network
PCA Principal Component Analysis
PED Peritumoral Edema
PTR Peritumoral Region
RF Random Forest
RFE Recursive Feature Elimination
SVM Support Vector Machine
T1ce Contrast-Enhanced T1 Imaging
XGBoost eXtreme Gradient Boosting
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