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Simple Summary: The pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC)
is a surrogate endpoint for predicting long-term clinical benefit in breast cancer. Recently, the use of
radiomic features extracted from 18F-FDG PET/CT has emerged as a promising tool for predicting
treatment outcomes in various cancers. We developed and externally validated a predictive model
using 18F-FDG PET-based radiomics with the least absolute shrinkage and selection operator (LASSO)
logistic method for pCR following NAC in breast cancer. Our radiomic-score model demonstrated
satisfactory discriminative performances in training, internal validation, and external validation
cohorts. Furthermore, the integrated radiomic model incorporating human epidermal growth factor
receptor 2 (HER2) status showed improved performance compared to the radiomic-score model
alone in all cohorts. The newly developed radiomic-score model might enable a more accurate and
personalized assessment of the tumor response to neoadjuvant chemotherapy in breast cancer.

Abstract: The aim of our retrospective study is to develop and externally validate an 18F-FDG
PET-derived radiomics model for predicting pathologic complete response (pCR) after neoadjuvant
chemotherapy (NAC) in breast cancer patients. A total of 87 breast cancer patients underwent curative
surgery after NAC at Soonchunhyang University Seoul Hospital and were randomly assigned to a
training cohort and an internal validation cohort. Radiomic features were extracted from pretreatment
PET images. A radiomic-score model was generated using the LASSO method. A combination model
incorporating significant clinical variables was constructed. These models were externally validated
in a separate cohort of 28 patients from Soonchunhyang University Buscheon Hospital. The model
performances were assessed using area under the receiver operating characteristic (AUC). Seven
radiomic features were selected to calculate the radiomic-score. Among clinical variables, human
epidermal growth factor receptor 2 status was an independent predictor of pCR. The radiomic-score
model achieved good discriminability, with AUCs of 0.963, 0.731, and 0.729 for the training, internal
validation, and external validation cohorts, respectively. The combination model showed improved
predictive performance compared to the radiomic-score model alone, with AUCs of 0.993, 0.772, and
0.906 in three cohorts, respectively. The 18F-FDG PET-derived radiomic-based model is useful for
predicting pCR after NAC in breast cancer.
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1. Introduction

Neoadjuvant chemotherapy (NAC) is widely used to treat patients with locally ad-
vanced breast cancer (LABC) [1]. This approach can downstage breast cancer, increase rates
of breast-conserving therapy (BCT), and minimize the need for aggressive nodal surgery [2].
Furthermore, some patients receiving NAC can achieve a pathologic complete response
(pCR), meaning that all tumor cells have been eradicated. In the last decade, studies have
proposed pCR after NAC as a surrogate endpoint for predicting long-term clinical benefit,
such as disease-free survival and overall survival [3,4]. In the future, they might also have
the chance of omitting surgery [5]. Therefore, there is an increasing demand to develop a
more reliable diagnostic method to accurately predict pCR after NAC.

Anatomical imaging modalities, such as magnetic resonance imaging (MRI), have
traditionally played a crucial role in breast cancer staging and assessment. However, they
primarily rely on visualizing changes in tumor size and morphology, which may not fully
capture the complex alterations in tumor biology. The lack of comprehensive metabolic
and functional data from anatomical imaging can lead to suboptimal prediction of pCR
and potentially limit the accuracy of the treatment response assessment [6,7].

18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F
FDG PET/CT) is a useful imaging modality for staging and restaging in breast cancer [8].
18F-FDG PET/CT can also provide more information on tumor biology in evaluating
breast cancer than conventional anatomic imaging modalities [9–11]. Many studies have
reported the clinical utility of metabolic parameters measured on 18F-FDG PET/CT for
predicting therapeutic response and survival outcomes [12,13]. Furthermore, the use of
texture analysis, currently known as “radiomics”, to derive a large amount of quantitative
parameters has improved the predictive power in the field of oncology [14].

Recent studies have investigated the potential of a radiomics model using texture
parameters extracted from 18F-FDG PET/CT in predicting pCR after NAC in patients with
breast cancer [15–17]. However, it is still challenging to achieve optimal performance and
generalizability of the model due to investigators’ failure to use classification methods that
are appropriate for high-dimensional data or perform an external validation test [18]. The
least absolute shrinkage and selection operator (LASSO) method has been widely used
for analyzing high-dimensional data [19]. Thus, the aim of this study was to develop an
18F-FDG PET-derived radiomics model using the LASSO method for predicting pCR after
NAC in breast cancer and externally validate it.

2. Patients and Methods
2.1. Study Population

This study was approved by our Institutional Review Board (IRB). The requirement for
informed consent was waived by the IRB due to its retrospective nature. We conducted a ret-
rospective review of medical records of consecutive breast cancer patients who underwent
pretreatment with 18F-FDG PET/CT for initial staging at Soonchunhyang University Seoul
and Bucheon Hospitals between September 2016 and December 2019. Inclusion criteria
were: (1) female sex, (2) pathologically-proven invasive ductal carcinoma, (3) clinical stage
II-III, and (4) receiving curative surgery after completing NAC. The NAC regimens con-
sisted of four cycles of Adriamycin and Cyclophosphamide (AC), followed by four cycles
of Taxotere (T). Additionally, some patients received four cycles of weekly Paclitaxel and
Carboplatin, followed by four cycles of AC. Patients with human epidermal growth factor
receptor 2 (HER2) amplification received six cycles of Taxotere, Carboplatin, Herceptin, and
Perjeta Exclusion criteria were: (1) a tumor with inadequate metabolic activity that could
not be delineated with an SUV cut-off of 2.5, and (2) multifocal or multicentric breast cancer.
Eligible patients from Soonchunhyang University Seoul Hospital (SCH, Seoul, Republic
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of Korea) were included in either a training cohort or an internal validation cohort. Those
from Soonchunhyang University Bucheon Hospital (SCH, Bucheon, Republic of Korea)
were enrolled in an external validation cohort. The study workflow is presented in Figure 1.
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2.2. Data Collection

All clinicopathologic data were collected from electronic medical records. Clinical data
included age at initial diagnosis, the American Joint Committee on Cancer (AJCC) TNM
stage, tumor location, surgery method, and tumor marker (cancer antigen 15-3). Pathologic
data included estrogen receptor (ER), progesterone receptor (PR), HER2, and pCR. ER,
PR, and HER2 expression data were collected from reports of biopsies performed before
initiation of NAC. ER and PR positivity were defined as at least 1% of nuclear staining
in tumor cells. HER2 IHC was scored as positive (3+), equivocal (2+), or negative (1+/0).
HER2 status was considered positive if an immunohistochemical (IHC) test score of 3+
was recorded or if there was positive gene amplification using in situ hybridization testing.
Patients with an IHC score of 2+ were tested for HER2 amplification by FISH. Pathologic CR
was evaluated using a surgical specimen following completion of NAC. It was defined as
the absence of any remaining invasive disease or the presence of residual ductal carcinoma
in situ without any remaining lymph node metastasis [4].

2.3. 18F-FDG PET/CT Image Acquisition and Analysis

All patients were instructed to fast for at least 6 h before undergoing PET/CT scans to
maintain their blood glucose level below 200 mg/dL. PET/CT images at SCH, Seoul were
acquired using a PET/CT scanner (Biography 128 mCT, Siemens Healthcare, Erlangen, Ger-
many). A non-enhanced CT scan was conducted 60 min after administering 4.44 MBq/kg of
18F-FDG using a 128-slice spiral CT scanner (100 keV; 65 mAs with Auto Care Dose; section
width 3.0 mm). Three-dimensional emission PET data were acquired from the thigh to the
head for each frame, with a duration of 2.5 min. The PET images underwent reconstruction
using CT for attenuation correction, utilizing the TrueX + TOF method provided by the
manufacturer (21 subsets, 2 iterations). The image matrix size was 400 × 400 with a voxel
size of 2.03 × 2.03 × 3.0 mm3. At the SCH in Bucheon, PET/CT scans were performed
using a PET/CT scanner (Biograph 128 mCT, Siemens Medical Solutions, Knoxville, TN,
USA). Similar to the first site, an unenhanced CT scan was performed 60 min after injecting
4.07 MBq/kg of 18F-FDG with a 128-slice spiral CT scanner (100 keV; 65 mAs with Auto
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Care Dose; section width 3.0 mm). Three-dimensional emission PET data were acquired
from the thigh to the head for each frame, with a duration of 2.5 min. The PET images were
reconstructed using CT for attenuation correction, employing the TrueX + TOF method
offered by the manufacturer (21 subsets, 2 iterations). The image matrix was 200 × 200 with
a voxel size of 4.07 × 4.07 × 3.0 mm3. The volume of interest (VOI) for the breast lesion was
delineated on PET images using a threshold of 2.5 of the maximum standardized uptake
value (SUVmax) in MIM version 6.4 (MIM Software Inc., Cleveland, OH, USA).

2.4. 18F-FDG Radiomic Feature Extraction
18F-FDG PET/CT radiomic features were extracted from segmented tumors on PET

images using the Chang-Gung Image Texture Analysis “CGITA” software package (http:
//code.google.com/archive/p/cgita (accessed on 12 May 2021)) [20]. It is a freeware
and open-source software developed in Matlab for quantifying tumor heterogeneity with
molecular images. A total of 72 radiomic features were calculated and grouped into several
categories (Supplemental Table S1). These categories included co-occurrence (6 features),
voxel alignment (11 features), Neighborhood Intensity Difference (NID) (5 features), In-
tensity Size-Zone (ISZ) (11 features), Normalized Co-occurrence (7 features), voxel statics
(13 features), texture spectrum (2 features Texture Feature Coding (TFC) (4 features), Tex-
ture Feature Coding Co-occurrence (TFCC) (8 features), and Neighborhood Gray-Level
Dependence (NGLD) (5 features). To mitigate the influence of PET image acquisition and
reconstruction factors, specifically scanner effects, on imaging parameters, we implemented
a modified version of the ComBat harmonization method known as M-ComBat [21,22]. This
approach enabled us to align the radiomic feature distributions of the external validation
data with the mean and variance of the training data, serving as the reference center.

2.5. 18F-FDG Radiomic Feature Selection and Model Construction

The primary cohort (SCH, Seoul, Republic of Korea) was randomly divided into
a training set and an internal validation set. The training set was used to construct a
predictive model for pCR after completion of NAC. To build the final model, we used the
LASSO algorithm to select an optimized subset of features through regularization. Prior
to feature selection and model building, no data transformation or standardization was
conducted. In LASSO regression, the tuning parameter lambda (λ) controls the amount
of regularization applied to the model. When lambda is large, coefficients for variables
with smaller absolute values are compressed to zero. We applied a 10-fold cross-validation
method to identify the optimal value of λ, which minimized the mean cross-validation
error. The variables with non-zero coefficients at the optimal λ were considered the most
predictive radiomic features. The radiomic score was calculated as the sum of the selected
radiomic features multiplied by their corresponding non-zero coefficients identified by
the optimal λ [23,24]. This was referred to as the radiomic-score model. Subsequently, we
performed univariate and multivariate logistic regression analyses to identify the most
useful clinical variables for prediction. We then built a multivariate logistic prediction
model by combining the radiomic score and selected clinical variables. This was referred to
as the combination model.

The performance of each model was evaluated using area under the receiver operating
characteristic (ROC) curve (AUC) with 95% confidence intervals (CIs). Differences in AUC
values among models were assessed using the DeLong test. Calibration curves were con-
structed to assess the agreement between predicted probabilities and observed outcomes. The
Hosmer–Lemeshow test was used to determine the goodness of fit. A p-value of greater than
0.05 indicated good calibration.

2.6. Statistical Analysis

All statistical analyses were performed using open source software R version 3.6.1
(The R Foundation for Statistical Computing, Vienna, Austria) and MedCalc 15.5 (MedCalc,
Mariakerke, Belgium). The primary cohort in SCH, Seoul was randomly split using a con-
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servative method with the “caret” package, and LASSO logistic regression was performed
using the glmnet package. M-ComBat correction was applied using the “SVA” package.
The “ResourceSelection” package was used for calibration curve analysis. Categorical
variables were compared using Chi-square or Fisher exact tests for categorical variables.
Continuous variables were compared with the Mann–Whitney U-test or Kruskal–Wallis
test. All tests were two-sided, and statistical significance was set at p < 0.05.

3. Results
3.1. Baseline Characteristics of Patients

A total of 82 female breast cancer patients who received neoadjuvant chemotherapy
were included in training and internal validation cohorts, and 28 patients were enrolled
in the external validation cohort. These patients ranged in age from 27 to 70 years old.
The clinical characteristics of patients in training and validation cohorts are summarized
in Table 1. Of patients included in this study, 10 (18.9%, 10/53), five (14.7%, 5/34), and
four (14.3%, 4/28) cases achieved pCR after completing neoadjuvant chemotherapy in the
training cohort, internal validation cohort, and external validation cohort, respectively.
However, the difference was not statistically significant (p = 0.821). Baseline levels of CA15-
3 were significantly higher in the external validation cohort than in the training cohort and
internal validation cohort (p = 0.001). Otherwise, there were no significant differences in
other clinical variables between cohorts.

Table 1. Clinical characteristics of the training cohort and the validation cohorts.

Variable Training
(n = 53)

Internal Validation
(n = 34)

External Validation
(n = 28) p Value

Age 49.5 ± 10.8 49.7 ± 9.6 48.7 ± 9.8 0.929

Clinical tumor stage 0.190
II 23 (43.4) 9 (26.5) 13 (46.4)
III 30 (56.6) 25 (73.5) 15 (53.6)

Receptor status in histology 0.812
ER-positive 33 (62.3) 19 (55.9) 15 (53.6)
PR-positive 29 (54.7) 18 (52.9) 10 (35.7)
HER2-postive 16 (30.2) 7 (20.6) 7 (25.0)
TNBC 11 (20.8) 9 (26.5) 9 (32.1)

Surgery 0.239
Breast conserving surgery 12 (22.6) 13 (38.2) 10 (35.7)
Mastectomy 41 (77.4) 21 (61.8) 18 (64.3)

Baseline CA15-3 9.6 ± 4.5 9.7 ± 4.5 18.8 ± 11.7 0.001

Tumor location 0.155
Right 28 (52.8) 11 (32.4) 14 (50.0)
Left 25 (47.2) 23 (67.6) 14 (50.0)

Response to NAC 0.821
pCR 10 (18.9) 5 (14.7) 4 (14.3)
Non-pCR 43 (81.1) 29 (85.3) 24 (85.7)

Data are presented as numbers (%) or mean ± standard deviation. ER, estrogen receptor; PR, progesterone
receptor; HER2, human epidermal growth factor receptor 2; TNBC, triple-negative breast cancer; CA, cancer
antigen; NAC, neoadjuvant chemotherapy; pCR, pathologic complete response.

3.2. Comparison of Clinical Variables and Conventional PET Parameters According to pCR

We compared clinical variables and conventional PET parameters between the groups
with pCR and non-pCR in the training cohort (Table 2). The occurrence of pCR was
found to be significantly higher in HER2-positive tumors (p < 0.001). However, no other
clinical variables showed significant differences between the two groups. Regarding the
conventional PET parameters, the SUVmax was higher in the group with pCR, while the
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MTV and TLG were higher in the non-pCR group. However, none of these differences
reached statistical significance.

Table 2. Comparison of clinical variables and conventional PET parameters between groups with
pCR and non-pCR in the training cohort.

Variable pCR
(n = 10)

Non-pCR
(n = 43) p Value

Age 52.8 ± 10.4 48.7 ± 10.8 0.223

Clinical tumor stage 0.484
II 3 (30.0) 20 (46.5)
III 7 (70.0) 23 (53.5)

Receptor status in histology
ER-positive 5 (50.0) 28 (65.1) 0.475
PR-positive 3 (30.0) 26 (60.5) 0.156
HER2-postive 8 (80.0) 8 (18.6) <0.001
TNBC 1 (10.0) 10 (23.3) 0.667

Surgery 0.207
Breast conserving surgery 4 (40.0) 8 (18.6)
Mastectomy 6 (60.0) 35 (81.4)

Baseline CA15-3 8.1 ± 3.5 9.9 ± 4.6 0.285

Tumor location 0.999
Right 5 (50.0) 23 (53.5)
Left 5 (50.0) 20 (46.5)

Conventional PET parameter
SUVmax 12.2 (6.4–19.6) 8.3 (5.5–15.1) 0.328
MTV 8.2 (4.2–11.4) 12.3 (6.0–22.7) 0.112
TLG 25.1 (11.7–40.5) 38.3 (18.2–112.9) 0.228

Data are presented as numbers (%), mean ± standard deviation, or median (interquartile range). pCR, pathologic
complete response; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor
receptor 2; TNBC, triple-negative breast cancer; CA, cancer antigen; PET, positron emission tomograpy; SUVmax,
maximum standardized uptake value; MTV, metabolic tumor volum; TLG, total lesion glycolysis.

3.3. 18F-FDG Radiomic Feature Selection and Model Construction

Using the LASSO logistic regression method with a ten-fold cross-validation, seven ra-
diomics features were selected from a total of 72 features to calculate the radiomics score for
each patient (Figure 2). The radiomic score was calculated using a simple linear combina-
tion of seven selected indicators multiplied by their respective non-zero coefficients [23,24],
as follows:

Radiomic score = (121.0130 ∗ Low-intensity zone emphasis) +
(13.5401 ∗ TFCC_Inverse difference moment) + (10.9128 ∗ Short-run emphasis) +

(3.4582 ∗ Max spectrum) + (−0.4898 ∗ TFCC_Code Entropy) +
(0.0884 ∗ Strength) + (−0.0324 ∗ TFCC_Entropy)

Both univariate and multivariate logistic regression analyses were conducted to evalu-
ate associations among the radiomic score, clinical variables, and pCR in the training cohort
(Table 3). Results of univariate analysis demonstrated that the radiomic score (p < 0.001) and
HER2 status (p = 0.003) were significantly associated with pCR (Table 2). In the multivariate
analysis, both the radiomic score (p = 0.022) and HER2 status (p = 0.049) were identified as
independent predictors of pCR. The logistic regression model including these two variables
yielded predicted probabilities for achieving pCR after NAC.
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Table 3. Univariate and multivariate logistic regression analyses for clinical characteristics and
radiomics score in the training cohort.

Variables
Univariate Logistic Analysis Multivariate Logistic Analysis

OR (95% CI) p Value OR (95% CI) p Value

Age 1.04 (0.97–1.11) 0.273 -
CA15-3 0.90 (0.74–1.08) 0.799 -
Stage 0.49 (0.11–2.16) 0.335 -
ER positive 1.80 (0.45–7.23) 0.576 -
PR positive 3.43 (0.78–15.17) 0.193 -
HER2 positive 8.82 (1.89–41.09) 0.003 433.82 (1.03–182,988.53) 0.049
TNBC 0.37 (0.04–3.26) 0.320 -
Radiomics score 9.71 (2.01–46.91) <0.001 38.33 (1.70–866.00) 0.022

OR, odds ratio; CI, confidence interval; CA, cancer antigen; ER, estrogen receptor; PR, progesterone receptor;
HER2, human epidermal growth factor receptor 2; TNBC, triple-negative breast cancer.

3.4. Model Performance and Validation

The radiomic-score model demonstrated excellent discriminative performance for
predicting pCR in the training cohort (AUC: 0.963, 95% CI: 0.871 to 0.996). The radiomics
model achieved satisfactory discrimination in internal and external validation cohorts,
with AUCs of 0.731 (95% CI: 0.552 to 0.868) and 0.729 (95% CI: 0.529 to 0.878), respectively
(Figure 3). The combination model showed improved predictive performance compared to
the radiomic-score model alone, with AUCs of 0.993 (95% CI: 0.920 to 1.000), 0.772 (95% CI:
0.597 to 0.898), and 0.906 (95% CI: 0.735 to 0.983) in the training, internal validation, and
external validation cohorts, respectively (Figure 3). The calibration curve of the combination
model also revealed good agreement between the observed outcome and prediction in all
three cohorts (Figure 4). Additionally, the Hosmer–Lemeshow test yielded a non-significant
statistic in all three cohorts (p = 0.998, p = 0.501, and p = 0.618, respectively), indicating that
the model fit well.
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4. Discussion

Achievement of pCR after NAC has been proposed as a surrogate endpoint for pre-
dicting long-term clinical benefit in breast cancer patients [3,4]. In this regard, studies have
tried to develop biomarkers for predicting pCR using various medical data. Recently, the
use of radiomic features extracted from 18F-FDG PET/CT has emerged as a promising tool
for predicting treatment outcomes in various cancers [25,26]. Therefore, we developed
and validated a predictive model using 18F-FDG PET-based radiomics with the LASSO
method for pCR following NAC in breast cancer. Our radiomic-score model demonstrated
satisfactory discriminative performances in the training, internal validation, and external
validation cohorts. Furthermore, the integrated radiomic model incorporating the HER2
status showed improved performance compared to the radiomic-score model alone in
all cohorts.

Some studies have explored the predictive model using 18F-FDG-based radiomics
for pCR after NAC in breast cancer patients. Lee et al. constructed a clinical model
using 18F-FDG radiomic features [17]. However, this study demonstrated a suboptimal
performance for predicting pCR (AUC = 0.623 in the training split set and AUC = 0.640
in the independent validation set). Li et al. developed a model using baseline 18F-FDG
PET/CT derived radiomic features and revealed a good performance to predict pCR prior
to NAC (AUC = 0.844 in the training split set and AUC = 0.722 in the independent validation
set) [15]. However, the lack of model calibration and external validation may limit the
generality and robustness of their findings [27]. Our model exhibited excellent performance
for predicting pCR in the training cohort (AUC = 0.963). It also showed satisfactory
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performances in the two validation cohorts (AUC = 0.731 in the internal validation set and
AUC = 0.729 in the external validation set). Additionally, our model was well-calibrated in
calibration analysis.

Conventional 18F-FDG parameters such as maximum SUV, MTV, and TLG reflect
the metabolic activity and burden within tumor cells. Many studies have reported the
usefulness of these parameters as predictive biomarkers for treatment outcome and survival
prognosis in various cancers [28–30]. Some studies have reported that a high SUVmax
or TLG may help predict pCR after completion of NAC in breast cancer patients [31,32].
However, in our study, these parameters were not included in significant features for
predicting pCR. Unlike previous research, which mainly focused on hormone-positive
breast cancer, our study included a broader range of breast cancer subtypes, such as
HER2, TNBC, and hormone-positive tumors. This difference in population contributed to
the contrasting results. Furthermore, our findings suggest that conventional parameters
may have limitations in assessing intra-tumor heterogeneity, a crucial factor in predicting
therapeutic resistance in breast cancer [33].

Intra-tumor heterogeneity of 18F-FDG uptake can potentially be quantified with textu-
ral features extracted from obtained PET images through complex mathematical models of
the relationship between multiple image voxels [34]. Such texture parameters are classified
into first-order features and higher-order features. First-order features describe the overall
distribution of voxel intensities in the image, while higher-order features describe spatial re-
lationships between the voxels’ intensities. In the present study, seven higher-order features
including low-intensity zone emphasis, short-run emphasis, max spectrum, strength, and
three TFCC features were selected as significant relevant features with pCR following NAC
in breast cancer. Some studies have also reported that higher-order 18F-FDG texture features
have closer associations with achievement of pCR following NAC in breast cancer [15–17].
These findings may suggest that achieving pCR of breast cancer following NAC is linked to
spatial heterogeneity of tumor cell metabolism [35,36]. However, further research is needed
to directly investigate the association between these features and tumor biology to gain a
better understanding of this relationship and its potential clinical implications.

The use of texture analysis in PET/CT images can yield a very large number of
parameters that can be theoretically calculated [37]. In high-dimensional data, selecting
appropriate features plays an essential role in improving the discriminative power of
predictive models. Previous studies have employed logistic regression analysis to select
significant 18F-FDG texture features to predict pCR following NAC in breast cancer [16,17].
However, this method may cause multiple testing issues, increasing the risk of false-positive
findings when testing many hypotheses [38]. Recently, LASSO regression has been used
extensively in radiomics studies to reduce data dimensions and multicollinearity among
features [19]. Therefore, we constructed the predictive model using seven textural features
selected by LASSO regression in the training cohort. Furthermore, this method contributes
to improving the predictive performance in the validation cohort by minimizing overfitting
in the training cohort. However, despite using the LASSO method, our predictive model
showed some validation loss, which might be attributed to the small sample size of the
validation set. Our results should be validated in future studies with larger populations.

Although there is a wide range of tumor delineation methods available, the optimal
segmentation method for PET radiomics research remains a topic of debate. In our study,
we utilized a threshold-based segmentation method, specifically using SUV 2.5, to delin-
eate breast lesions on PET images. The use of a cutoff value of SUV 2.5 is a commonly
employed fixed thresholding approach for malignant tumor delineation [39–41]. Addi-
tionally, the fixed threshold method using SUV 2.5 demonstrates superior inter-observer
agreement compared to other threshold methodologies [42]. This method allows for easy
reproducibility, as the same threshold value can be consistently applied for clinical utility
and the development of the predictive model. However, it is important to acknowledge
that different tumor delineation methods can impact radiomic feature values [43]. In future
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studies, it is essential to investigate the influence of segmentation methods on our results
to gain a comprehensive understanding of their potential implications.

External validation is crucial in prediction model research to evaluate the reliability
and generalizability of the developed model. However, there is a lack of studies that
have externally validated predictive models using 18F-FDG-derived radiomics for pCR in
breast cancer. Therefore, we conducted external validation of our predictive model using
independent data from a different center. Radiomic features are sensitive to differences
between centers caused by scanner models, acquisition protocols, and reconstruction set-
tings, known as the “center effect” [44]. To address this, we used a modified version of the
ComBat harmonization method called M-ComBat [21]. M-ComBat allows for flexible and
robust adjustment of data to a specific reference center, overcoming the limitations of tradi-
tional ComBat. Recent research supports the effectiveness of M-ComBat in harmonizing
data from different centers [22,45]. By employing M-ComBat, we addressed the potential
confounding effects arising from scanner variations and ensured a consistent and standard-
ized comparison across datasets. Our predictive model maintained high performance even
when applied to this independent dataset, further validating its reliability.

Our study also examined clinical variables associated with pCR following NAC in
patients with breast cancer. Consistent with previous studies [34], we found that HER2-
positive status was strongly associated with achieving pCR. Additionally, integrating HER2
status into a radiomic model significantly improved the model’s predictive performance
for pCR after NAC. However, hormone receptor status, TNBC, CA15-3 level, tumor stage,
and age did not demonstrate a significant association with achieving pCR following NAC.
Although some previous studies have investigated Ki67 expression as a potential predictor
of pCR after NAC [35], it was not included in our analysis. At our institution, Ki67 was not
routinely assessed in the pretherapeutic stage due to its limited value for treatment decision-
making and questionable analytical validity [36]. Consequently, our finding suggests that
HER2 status is an important clinical variable in predicting pCR after NAC, and radiomic
models incorporating HER2 status might be useful in improving predictive performance.

The limitations of this study include inherent biases due to the retrospective design
with the limited and unbalanced sample size. In addition, this study has some limitations
in terms of methodology. First, CGITA used for the feature extraction does not comply
completely with all the recommendations of the Imaging Biomarker Standardization Ini-
tiative (IBSI). This represents a clear limitation from the perspective of standardization in
radiomics research. However, the clinical utility of the extracted PET radiomic features from
CGITA has been validated in numerous studies, including breast cancer research [41,46–48].
Future research should include comparisons with features presented by IBSI. Additionally,
some radiomic features may be influenced by variations in tumor volume. Partial-volume
effects, particularly in smaller lesions, can increase heterogeneity due to the limited spatial
resolution of PET scanners [49,50]. A previous study included only lesions with a volume
greater than 1.5 cm3 to mitigate the impact of partial-volume effects considering the spatial
resolution of the scanner [51]. Another study on 18F-FDG radiomics strictly included
subjects based on a minimum volume criterion of 4.2 cm3 [52]. In our study, all tumors had
a volume larger than 1.5 cm3, with the majority (90%) exceeding 4.2 cm3. However, further
investigations considering changes in tumor volume are necessary to gain deeper insights
into this issue.

5. Conclusions

An 18F-PET-based radiomic model using the LASSO algorithm exhibited good per-
formance in predicting pCR following NAC in breast cancer. Furthermore, the combined
model incorporating HER2 status showed improved performance compared to the ra-
diomic model alone. It might enable a more accurate and personalized assessment of
the tumor response to neoadjuvant chemotherapy in breast cancer. Further prospective
validation studies are needed to confirm the practical applicability of this potential imaging
biomarker.
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