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Simple Summary: Although immunotherapy and targeted therapy have dramatically improved
melanoma survival, some patients rapidly progress and decease within a few months after a stage IV
diagnosis. Up until now, pathological, clinical and biological markers are known prognostic factors
for survival of melanoma, while still no prognostic genetic alterations have been identified. Therefore,
we aimed to find genetic alterations that predict a short or long survival by sequencing 190 melanoma-
related genes of tumor material from 79 patients to contribute to the growing body of knowledge
regarding mutational profiling. While no individual gene mutations or combinations of alterations
could be linked to overall survival in our study cohort, a clock-like mutational signature according to
the Catalog of Somatic Mutations in Cancer (COSMIC) was associated with poor survival whereas a
UV mutational signature was prognostic for a longer survival. Those findings are congruent with
earlier findings of other authors. Therefore, the prognostic relevance of mutational signatures must
be further evaluated in prospective studies.

Abstract: Novel treatment modalities comprising immune checkpoint inhibitors and targeted thera-
pies have revolutionized treatment of metastatic melanoma. Still, some patients suffer from rapid
progression and decease within months after a diagnosis of stage IV melanoma. We aimed to assess
whether genomic alterations may predict survival after the development of stage IV disease, irre-
spective of received therapy. We analyzed tumor samples of 79 patients with stage IV melanoma
using a custom next-generation gene-sequencing panel, MelArray, designed to detect alterations in
190 melanoma-relevant genes. We classified the patients: first, as short survivors (survival ≤6 months
after stage IV disease, n = 22) and long survivors (survival >6 months, n = 57); second, by using a
cut-off of one year; and third, by comparing the longest surviving 20 patients to the shortest surviving
20. Among analyzed genes, no individual gene alterations, or combinations of alterations, could be
dichotomously associated with survival. However, the cohort’s mutational profiles closely matched
three known mutational signatures curated by the Catalog of Somatic Mutations in Cancer (COSMIC):
UV signature COSMIC_7 (cosine-similarity 0.932), clock-like signature COSMIC_5 (cosine-similarity
0.829), and COSMIC_30 (cosine-similarity 0.726). Patients with UV signature had longer survival
compared to patients with clock-like and COSMIC 30 (p < 0.0001). Subgroup dichotomization at
6 months showed that 75% of patients with UV signature survived longer than 6 months, and about
75% of patients with clock-like signature survived less than 6 months after development of stage IV
disease. In our cohort, clock-like COSMIC_5 mutational signature predicted poor survival while a
UV signature COSMIC_7 predicted longer survival. The prognostic value of mutational signatures
should be evaluated in prospective studies.
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1. Introduction

The treatment of metastatic melanoma has been revolutionized in the past decade. Com-
pared to chemotherapy, which has a median overall survival (mOS) of 9 months [1], novel
therapies such as immune checkpoint inhibitors (ICI) or MAPK pathway-targeting inhibitors
(MAPKi) have improved 5-year overall survival to 50–60% in metastatic melanoma [1–10].
However, approximately 20% of patients experience a rapid progression under treatment,
independent of therapy type [11–15]. The identification of prognostic factors for survival is
therefore of interest to both patients and clinicians.

Currently, known negative prognostic survival markers include clinical factors, such
as disease burden, elevated baseline lactate dehydrogenase (LDH) levels, poor Eastern
Cooperative Oncology Group (ECOG) performance status, amount of involved organs,
presence of brain metastasis, male gender and increased age [16–20], as well as absence of
tumor-infiltrating lymphocytes or low tumor mutational burden (TMB) [21,22]. Indeed,
immunogenicity of the tumor plays a crucial role in response to ICI treatments: tumors
with high lymphocytes and tumor-infiltrating T-cells (TILs) in tumor microenvironment, as
well as high levels of anti PDL-1 expression on the tumor, are predictive for response to
ICI [3,22]. Further, negative 10-year survival is associated with histopathological findings
like increased primary tumor thickness (>1 mm), presence of ulceration and mitotic rate
(number of mitosis/mm2) [23].

In the recent years, genetic profiling of melanoma patients using Next Generation
Sequencing (NGS) has found its way into clinical practice. It is expected to contribute to
the adoption of “precision medicine” tailored to the specific needs and genetic profile of
individual patients in near future. MelArray is a custom NGS-sequencing panel consisting
of >4000 exons across 190 melanoma-relevant genes and is routinely used at University
Hospital Zurich. Very recently, genome expression analysis (GEP), through which not only
altered genes but also effectively expressed altered genes can be detected, draws attention.
Based on this, novel promising therapies like messenger ribonucleic acid (mRNA)-based
individualized neoantigen therapy were recently established and probed in clinical trials
(e.g., KEYNOTE-942). Those therapies consist of synthetic, patient-specific mRNA coding
for neoantigens expressed in the respective tumor [24].

The aim of the current study is to identify possible prognostic genetic markers for the
survivorship of melanoma patients using molecular profiles derived from MelArray.

2. Materials and Methods
2.1. Patients and Samples

In this retrospective, cross-sectional, single center study, we included 79 patients
with stage IV melanoma, with available tumor material. All patients were treated at the
Department of Dermatology, University Hospital of Zurich, between January 2008 and
December 2020, and have consented to using their data for research. Due to the different
prognosis than for cutaneous melanoma, we excluded patients with acrolentiginous, mu-
cosal and unknown types of melanomas and metastatic melanoma with unknown primary
origin. Due to the small study cohort, no further stratification according to known prog-
nostic survival factors, such as histopathological findings, patient characteristics and/or
biological markers (LDH), was performed. Either primary tumor or metastatic tissue was
analyzed, depending on the availability. From each patient, one sample was analyzed.
Whenever possible, we analyzed metastatic material, since this displays more accurate
tumor biology in a metastatic setting. However, in most patients, no metastatic material
was available, since invasive procedures are not necessary in the vast majority of cases for
the diagnosis of stage IV melanoma.

The main reason for patient exclusion was the lack of available histological material,
due to collection before more than ten years (in Switzerland, patient-related data/samples
are not stored longer than 10 years). This further explains the clearly higher number of
unavailable tumor specimen in the long survivor group.
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We classified patients as short survivors (SS), with an overall survival ≤6 months
after stage IV diagnosis (22 patients), and long survivors (LS), with an overall survival
>6 months (57 patients). The cut-off at 6 months was chosen based on historical OS
curves, which flatten at 6 months following a steep drop (e.g., [11–13]). In addition,
we assessed differences between LS and SS by dichotomizing the groups at one-year
survival, and by comparing the 20 longest-surviving to the 20 shortest-surviving patients.
Further, to avoid somewhat arbitrary groupings, we assessed survivorship as a continuous
function potentially explained by gene alterations and manifestation of different mutational
signatures (Figure 1).

Figure 1. Flow chart showing patients included in the study. ALM—acro-lentiginous melanoma,
MM—mucosal melanoma, and UM—uveal melanoma.

2.2. NGS Analysis Using MelArray

DNA of tumor tissue was isolated using the Maxwell 16 FFPE Tissue LEV DNA Purifi-
cation Kit (Promega, Madison, WI, USA) and quantified using a fluorometric assay (Qubit,
Thermo Fisher Scientific, Waltham, MA, USA). The KAPA HyperPlus Kit was used to frag-
ment the DNA and build sequencing libraries. Unique sequencing adapters were ligated to
the libraries to allow pooling of up to 12 libraries for target capture, which was performed
using a customized probe set by Roche NimbleGen (Basel, Switzerland). Batches of samples
were sequenced paired-end (150 bp) on one lane of a HiSeq4000 Illumina machine (Illumina,
San Diego, CA, USA), resulting in a target sequencing depth of ca. 500 to 1000×.
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Raw sequencing data was analyzed using custom bioinformatic pipelines and open-
source software. After de-multiplexing, samples were quality controlled using Picard Tools.
Reads were then trimmed using skewer v0.22 [25] and aligned using the Burrows-Wheeler
aligner (bwa-mem) v0.7.17 [26]. Tools from the Genome Analysis Tool Kit (GATK4) [27]
were used to then mark and remove duplicates, perform Base Quality Score Recalibration
(BQSR), and detect somatic mutations using MuTect2, according to the Broad Institute’s Best
Practices [28]. Putative mutations were annotated using the Variant Effect Predictor version
94 [29]. Variants were then filtered, and a final set of high-confidence non-synonymous
variants was prepared per sample.

2.3. Statistical Analysis

Gene-level survivorship analysis. We assessed the prognostic power of each individual
gene using survivorship analysis. For each gene, patients were divided into “mutated”
vs. “wild-type” groups according to whether or not they harbored non-synonymous
mutation(s), and the survivorship of these groups was compared using log-rank tests.
The p-values from these tests were adjusted using the Benjamini–Hochburg procedure
to account for multiple testing. To avoid excessive loss of power from the multiple test
correction and to avoid including genes that were rarely mutated and which therefore also
lacked sufficient patients to ensure adequate power, tests were limited to the top 30 most
frequently mutated genes, which corresponded to being mutated in at least 12 patients.
Further, we sought prognostic sets of two genes that may have effects on survivorship
when mutated in tandem. For the same genes above, we tested whether double-mutated
patients differed in survival time as compared to double-wild-type patients.

Long vs. Short Survivors. We divided the patients into “long” vs. “short” survivors in
three ways: first, by using an arbitrary cut-off of 6 months; second, by using a cut-off of one
year; and third, by comparing the longest surviving 20 patients to the shortest surviving
20. In each case, the fraction of patients bearing mutations on each gene was compared
between LS and SS using Fisher’s Exact Test.

Mutational signatures. We assessed whether we could detect known somatic signa-
tures of mutational processes [30] and whether these signatures may affect survivorship
time. To do so, we first extracted bases adjacent to each variant (using Human Genome
Reference HG19) to classify each variant as one of 96 possible tri-nucleotide substitu-
tions, and created a matrix of base substitutions. We then performed non-negative matrix
factorization (NMF) on the base substitution matrix, using possible numbers of factors
(i.e., signatures) ranging from one to ten. The most likely number of signatures present
was estimated using Cophenetic correlation, and NMF was again used to extract these
signatures from the overall matrix. These extracted signatures were compared to the known
COSMIC signatures using cosine similarity. The above steps were performed using the
R/Bioconductor package “maftools” [31]. Finally, patients were assigned signatures based
on their contribution to each of the extracted signatures, as long as at least 90% of their
variants contributed to a single signature. Survivorship analysis was then performed to
compare the effects of the different signatures.

3. Results
3.1. Melanoma-Typical Mutations Are Represented in Patient Cohort

Across all samples, most of the non-synonymous mutations were missense, followed
by splice site and nonsense mutations (Figure 2a). The dominating variant type of mutations
across cohort was in-frame single nucleotide polymorphisms (SNPs). In-frame oligo
nucleotide polymorphisms (ONPs), frame-shifting insertions and frame-shifting deletions
were far less common (Figure 2b). The predominant single nucleotide variants (SNV)
across cohort were C > T transitions, which are known to be a hallmark for a UV-damage
mutational signature (Figure 2c) [32]. Among individual samples, two patients showed a
total of >400 mutations, while most patients showed less than 100 mutations (Figure 2d,e).
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The highest frequency of mutations affected the KMT2D-gene with 125 mutations, followed
by BCLAF1. BRAF is at sixth position (Figure 2f).

Figure 2. Genetic variant overview in patient cohort. (a) Total number of each variant classification
detected in the cohort. (b) Total number of each variant type detected in cohort. (c) Single nucleotide
variant (SNV), total number of each nucleotide substitution detected in cohort. (d) Total number of
variants detected per sample, colored by variant classification. (e) Boxplot of the number of variants
detected per patient, colored by variant classification. (f) Bar length: total number of variants found
on each gene, summed across the cohort. Bars are annotated with the percentage of patients who
bear a variant on each gene.

3.2. The 30 Most Frequent Mutations—Overall and Subgroup Analysis

Figure 3 provides an overview of the genomic alterations of the 30 most frequently
mutated genes and type of single nucleotide transition (e.g., C > T). Two patients showed
impressively high TMB of >400 mutations. One was a short survivor (highest TMB) and
the other (second highest TMB) a long survivor. Of the eight patients with the lowest
TMB, there were four LS and four SS. The most frequent mutation was BRAF mutation,
which was present in n = 46 (58%) of the patients. No significant difference in frequency
of BRAF mutations between survival subgroups was observed (Figure S1). The second
most frequent mutation was BCLAF1 n = 31 (39%), also without any significant difference
between the two subgroups (Figure S1).

3.3. Survivorship Analysis

No detected gene alteration was associated with survivorship (log rank tests, adjusted
p > 0.5, Figure S1).

3.4. Long vs. Short Survivors

Comparing the frequencies of mutated vs. wild-type patients for each gene in the
LS/SS categories did not reveal any significant associations (Fisher’s exact test, p > 0.1).
This was true whether the cohort was divided into LS/SS at 6 months or one year, or top
vs. bottom 20% survivorship.
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Figure 3. Most common genomic alterations: Rows (y-axis) represent genes and columns (x-axis) rep-
resent samples. Different types of genomic alterations, single nucleotide transitions and survival groups
are color-coded. The bottom line displays the type of base alteration in the corresponding sample.

3.5. Alignment of the Cohorts’ Mutational Profile with COSMIC Signatures

After 6 months, almost 30% of the study patients have died from melanoma (Figure 4a).
We first performed single gene analysis of the genes mutated in at least 14 patients and
looked for significant differences in overall survival (OS). However, no significant difference
in survivorship regarding all evaluated single genes (n = 30) was found (Supplementary
Figure S1). Next, we decomposed the mutational profiles of our cohort and attempted
to match them with the known signatures of the Catalog of Somatic Mutations in Cancer
(COSMIC). Three mutational signatures from the catalog showed high similarity to our
study cohorts’. Concordance was assessed using cosine similarity analysis: COSMIC_7
(cosine-similarity 0.932), known as UV signature, COSMIC_30 (cosine-similarity 0.726)
and COSMIC_5 (cosine-similarity 0.829) (Figure 4b). In specific, COSMIC_5 signature was
associated with short survival, while COSMIC_7 signature showed an association with long
survival (Figure 4c). Patients with COSMIC_7-like signature showed statistically significant,
superior OS compared to patients with COSMIC_30-like and COSMIC _5-like signatures
(Figure 4d,e, p < 0.0001). Furthermore, 75% of patients with COSMIC_7 signature survived
longer than 6 months, while about 75% of patients with COSMIC_5 signature survived
shorter than or exactly 6 months.
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Figure 4. Mutational Signatures. (a) Survivorship curve of the whole patient cohort. The cut-off at
6 months (180 days) reflected by vertical line. (b) Alignment of mutational signature from our cohort
and validated COSMIC signatures [33]. (c) Sample-focused heat map indicating sample similarity to
COSMIC signatures (1.0 high similarity, 0 low similarity). (d) Presence of COSMIC signatures in short
and long survivors. (e) Survivorship curves of patients harboring different mutational signatures.

4. Discussion

In our study, we performed a custom NGS-sequencing panel, using MelArray, on 79 tu-
mor samples from patients with cutaneous melanoma with the aim to identify prognostic
biomarkers for short and long survival after developing stage IV disease. The identified
single gene alterations did not correlate with survival. However, we found associations
between survival and mutational signatures. Mutational signatures are characteristic com-
binations of different mutation types, e.g., DNA replication disloyalty, genotoxin exposure
and DNA repair and editing defectiveness. The presence of a mutational UV signature was
prognostic for longer survival compared to clock-like mutational signatures. UV signatures
are defined by high C > T and CC > TT dinucleotide transitions at pyrimidine dimers.
Pyrimidines highly absorb UVB radiation. The energy is absorbed by the double bond of
the pyrimidine ring and allows the pyridines to react with neighboring molecules. COS-
MIC_30 and COSMIC_5 mutations are both clock-like mutational signatures, meaning that
mutation frequency increases with age in a steady manner. Clock-like, in this context, does
not refer to a circadian rhythm and must be distinguished from circadian clock proteins.
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The opposite of clock-like in our context would be episodic accumulation of mutations over
a short period of time.

COSMIC_5 has further been associated with bladder cancer, cancer due to tobacco
smoking and NER (nucleotide excision repair) deficiency (COSMIC|SBS5—Mutational
Signatures www.sanger.ac.uk (accessed on 26 July 2023)) [34]. There have been recent
studies supporting our findings regarding UV signature as prognostic for a beneficial
survivorship [35,36].

Assigning of patients to prognostic groups aids in selecting the appropriate treatment
and follow-up approach. Clinical stages (e.g., AJCC 8th edition), laboratory parameters
(e.g., serum LDH), clinical characteristics (age and male gender) and tumor-specific features
are widely used, but cannot independently predict the survival outcome. The cancer
immunogram suggests a network of factors to predict the outcomes of patients with
cancers [37]. Failure to identify prognostic individual gene alterations (genomic level),
suggests that alterations at other levels (e.g., transcriptomic or methylomic) might play
a role in disease progression. In 2015, Hugo W. at al reported that up-regulation of gene
expression of C-MET, down-regulation of gene expression of LEF1, tumor cell-intrinsic
CpG site methylation and YAP1 pathway signature enrichment could be associated with
acquired MAPKi resistance [38]. Similarly, differential transcriptomic signatures showed
strong association with innate anti-PD-1 resistance in melanoma, but not single gene
alterations [39].

Consistent with other studies for prognostic markers in immunotherapy, we found out
that patients with tumors that display an enriched UV mutation signature were associated
with an improved prognosis, meaning a longer disease-free and overall survival and
a better response to immunotherapy [36,40]. Underlying immunological factors in UV
signatures showed more putative neoantigens presented via HLA and a favorable immune
cell infiltrate of CD4+ memory T cells and M1 macrophages [35]. Further, it has been shown
that UV signature is a more reliable prognostic marker than tumor mutational burden [35].
This finding is congruent with our data showing no prognostic benefit towards high
mutational burden.

Interestingly, an age-related clock-like mutational signature was associated with poor
survival in our study. Recently, Chong W. et al., have associated the same clock-like muta-
tional signature with poor immunotherapy outcome by curating mutational profiles from
previous immunotherapy studies of 216 melanoma samples and 113 non-small cell lung
cancer samples [36]. Moreover, Chong W. et al., showed that this clock-like signature corre-
lated with lower lymphocyte infiltration and suppressed immune modulation processes. In
a novel melanoma cohort, we independently showed that a clock-like mutation signature
is prognostic for poor survival, whereas a UV mutational signature predicts improved
survival. Our findings emphasize that the assessment of these two signatures may be of use
as prognostic biomarkers, if WES panels are applied in patient tumor characterization [36].

Clock-like mutations are understood as a result of environmental/external processes
leading to a steady accumulation of mutations and therefore an age-related matter [41].
However, clock-like signatures, like signature 5D, have recently been found by Kim et al.,
in a study of breast cancer patients to be related to NER and oxidative processes [42],
with the latter known as an age-related phenomena. Further, NER pathway among others
prevents DNA from oxidative damage. There exists supporting evidence that signature 5 is
associated with overload of oxidative stress (either due to exposure or lack of elimination
or both) [42].

Limitations of our study comprise a relatively small study cohort of 79 samples.
Further, no stratification according to clinical factors besides survival was performed (e.g.,
age, gender, serum LDH elevation, prior therapies, site of metastasis, amount of involved
organs and histopathological features of primary tumor). Strengths of the study are the
prior exclusion of patients with uveal and mucosal melanomas and metastatic melanoma
of unknown primary origin, which are all suspected to have a different tumor biology from
cutaneous melanoma.

www.sanger.ac.uk
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5. Conclusions

While no gene-specific mutations could be linked to overall therapy-independent
survivorship, a clock-like mutational signature was associated with poor survival whereas a
UV mutational signature was the best predictive marker for increased survival. Prospective
studies are needed to evaluate the prognostic value of our findings and the comparable
findings of earlier studies.

6. Statement of Translational Relevance

Despite a dramatic improvement of survival with targeted immune therapy, some
patients still passed away within months after the stage IV melanoma diagnosis. To date,
no biomarkers can reliably predict survivorship. We aimed to find genetic alterations that
are associated with survival and potentially unveil new therapeutic targets. We sequenced
tumors from short and long survivors and like earlier studies could not identify single gene
mutations that correlate with survival. However, we identified mutational signatures, described
in the Catalogue of Somatic Mutations in Cancer (COSMIC), which were associated with either
poor or beneficial outcome. We found significant associations between clock-like signature, UV
signature and patient survival after the development of stage IV cutaneous melanoma. With our
findings, we contribute to the collective effort to discover prognostic biomarkers for survival in
patients with cutaneous melanoma. If confirmed in prospective studies, these findings may be
used for prognostication and may contribute to treatment decisions.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers15153818/s1, Figure S1: Survivorship analyses for single gene muta-
tions in the whole study cohort. The most frequently mutated genes, affected in at least 14 patients.
Read from left to right.
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