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Simple Summary: G-quadruplexes (G4s) are guanine-rich, four-stranded nucleic acid structures that
are abundantly found in the promoter region of various oncogenes (cMYC, cKIT, KRAS, etc.) and
in the telomeric region. The ligand-induced stabilization of G4s is shown to be efficient in targeted
cancer therapy, and simultaneously targeting multiple G4s is beneficial. Thus, this study aimed to
achieve the ‘stabilization of G4s with multi-target directed ligands (MTDL)’. We have developed
different multi-tasking QSAR models to predict G4 interaction, G4 stabilization, G4 selectivity, and
cytotoxicity and we have implemented them in the first computational tool, ‘G4-QuadScreen’, derived
from this robust methodology with the functionality to screen-out a library of small-ligand molecules
against G4 DNAs. A virtual screening using this ‘G4-QuadScreen’ server and a posterior experimental
validation has allowed us to identify a total of three compounds with strong inhibitory effect on
various human cancer cell lines, demonstrating the usefulness of computational tools to accelerate
the discovery of novel anticancer therapies.

Abstract: The study presents ‘G4-QuadScreen’, a user-friendly computational tool for identifying
MTDLs against G4s. Also, it offers a few hit MTDLs based on in silico and in vitro approaches.
Multi-tasking QSAR models were developed using linear discriminant analysis and random forest
machine learning techniques for predicting the responses of interest (G4 interaction, G4 stabilization,
G4 selectivity, and cytotoxicity) considering the variations in the experimental conditions (e.g.,
G4 sequences, endpoints, cell lines, buffers, and assays). A virtual screening with G4-QuadScreen and
molecular docking using YASARA (AutoDock-Vina) was performed. G4 activities were confirmed via
FRET melting, FID, and cell viability assays. Validation metrics demonstrated the high discriminatory
power and robustness of the models (the accuracy of all models is ~>90% for the training sets and
~>80% for the external sets). The experimental evaluations showed that ten screened MTDLs have
the capacity to selectively stabilize multiple G4s. Three screened MTDLs induced a strong inhibitory
effect on various human cancer cell lines. This pioneering computational study serves a tool to
accelerate the search for new leads against G4s, reducing false positive outcomes in the early stages
of drug discovery. The G4-QuadScreen tool is accessible on the ChemoPredictionSuite website.
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1. Introduction
1.1. Cancer

According to the most recent report provided by GLOBOCAN 2020, the International
Agency for Research on Cancer estimates that there will be approximately 21.9 million new
cases of and 11.4 million deaths resulting from cancer worldwide by 2025 [1]. Although
current anticancer treatments have significantly improved in recent times, many issues
still need to be resolved, such as resistance development, efficiency, and toxic side effects.
Cytotoxic agents are generally used in cancer therapy; however, their nonspecific modes
of action lead to highly toxic side effects. The development of resistance is also a major
hurdle. Thus, finding a more suitable, effective, and least toxic anticancer therapy is an
urgent need.

Targeting proteins that are associated with various cancer biochemical pathways is
accepted as an efficient alternative to overcome the inconveniences caused by cytotoxic
agents. Nevertheless, the literature presents plenty of examples of drugs that show thera-
peutic efficacy against individual aberrant proteins involved in cancer end up losing their
effectiveness due to the appearance of resistance [2–5]. This resistance can arise from sec-
ondary mutations in the target itself, the activation of adaptative loops, or the engagement
of alternative oncogenic pathways.

As an alternative, direct targeting the transcription of the protein will help to over-
come these resistance issues, especially those derived from the appearance of secondary
mutations and the activation of adaptative loops. DNA transcription can be controlled by
targeting the canonical secondary structure of DNA, which, despite being a more direct
strategy, imposes a hurdle of non-selectivity, making the structure more prone to toxic side
effects. Alternatively, the binding of ligands with the non-canonical DNA structures termed
“G-quadruplexes” can resolve this non-selectivity issue in cancer therapies.

1.2. G-Quadruplex as a Potential Anticancer Target

In the guanine-rich DNA sequences form of the non-canonical G-quadruplex (G4)
structure, four guanine bases form a planar tetrad through the Hoogsteen hydrogen-
bonding pattern (Figure S1A). Multiple tetrads align over each other and are stabilized via
π–π stacking interactions. Partial negative charges accumulated towards the central core
of the tetrad because carbonyl oxygen atoms are further counterbalanced by coordination
bonds formed with the channel metal ions (Figure S1B). These stacked tetrads are further
interconnected by linking loop bases that generate grooves of different dimensions. Topo-
logical variations in G4 are offered by various arrangements of connecting loop bases and
orientations of guanine strands, denoting the high polymorphic nature of G4s depending
on the sequence and conditions (Figure S1C). Thus, these higher-order globular structures
of DNA can offer adequate and selective binding sites equivalent to protein targets [6].

Guanine-rich, single-stranded DNA is present at the telomeric end of the chromosome;
it is non-replicative and becomes shorter with each cell cycle. Once the length of the
telomeric region is shortened beyond a certain threshold, it initiates cell cycle arrest and
cell death. However, in cancer cells, telomerase binds and maintains the length of the
telomeric end, thus leading to immortality of the cells. The ligand-induced stabilization
of G4 at telomeric DNA impairs the binding of telomerase, thus recovering the normal
shortening of telomeric DNA; then, further normal cell cycle arrest and cell death occur [7]
(Figure S2A). Also, G4-forming motifs are abundantly present in the promoter region
of various oncogenes (cMYC, cKIT, KRAS, BCL2, etc.), and the dynamic structure of G4
regulates the expression of these oncogenes (Figure S2B). Oncogenes play a crucial role in
cell proliferation, cell differentiation, and cell death and are overexpressed in cancer. The
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ligand-induced stabilization of respective G4s can downsize this overexpression, further
bringing the functioning of the cell cycle to a normal state. Thus, telomeric G4 and G4
motifs from the promoter regions of various oncogenes are considered significant targets in
cancer therapy [8].

Generally, G4 ligands share some chemical features, such as planar aromatic rings,
to form the crucial π–π stacking interactions with guanine planes, as well as positively
charged groups to form the electrostatic interactions with negatively charged backbone
phosphate groups [6,9–13]. Though these features facilitate great G4 binding capacity, they
exert poor cell permeability, which is their main biopharmaceutical limitation [14]. Thus, it
is necessary to find an adequate balance between the G4 binding capacity and druggability
of the lead molecules. Also, the selectivity of ligands towards G4s over the duplex DNA is
a critical factor for avoiding off-target activities and normal cell toxicities. In the current
study, while a virtual screening, we have paid keen attention to the drug-likeness of the
compounds and their selectivity towards G4s over duplex DNAs.

1.3. Multi-Target Drug Designing

For the treatment of complex diseases (such as cancer, multiple sclerosis, Alzheimer’s
disease, etc.), drugs acting on a single-target enzyme or receptor are often found insufficient.
Multi-target drug design is an emerging rational approach that focuses on the development
of drug candidates that can simultaneously act on multiple targets [15]. In this context,
various oncogenes playing key roles in cell cycle functioning are deregulated and overex-
pressed in various types of cancers. Table 1 lists some of the oncogenes whose expression is
regulated by the presence of G4s within their promoter regions (their roles in the cell cycle
and a few of the associated cancer conditions are also enlisted).

Table 1. Multiple targets crucial in cancer therapy.

Gene Function Cancer Type

cMYC Cell proliferation, differentiation, and
apoptosis (PDA)

Cervical carcinoma, myeloid
leukemia (MyL)

cKIT Cell PDA, motility, adhesion,
angiogenesis Gastrointestinal cancer, MyL

KRAS Cell PDA Lung, pancreatic cancer, MyL

BCL2 Oncogenesis through cell death
resistance Small-cell lung cancer, breast cancer

hTel Cell cycle arrest and cell death Numerous types of cancer

Thus, for the efficient treatment of complex and multifactorial diseases like cancer, the
current study focuses on multi-target directed ligands (MTDL) that can simultaneously
target multiple (two or more) G4 motives located in the promoter regions of respective
oncogenes and/or telomeric regions.

1.4. Multi-Target, Multi-Tasking QSAR Modeling

Quantitative structure–activity relationship (QSAR) modeling is a widely used compu-
tational technique to develop a quantitative relationship between the descriptors represent-
ing chemical features and the activity/property variable for a series of compounds. The
resulting models can then be used to predict the behavior of other compounds for which
the descriptors are easy to calculate. In the present scenario, the QSAR models that are
already reported in the literature are limited to individual G4 targets [16–19], and thus the
studied compounds or leads might have activity against respective individual oncogenes.
With regard to quadruplexes, G4 studies have a vast number of variables; the activity of
one molecule is defined by many factors such as the type of oncogene, sequence of the
DNA, buffer conditions, type of cell lines, type of assay, etc. The classical QSAR approach
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can only accommodate one single experimental condition at a time; therefore, it cannot be
applied in addressing data related to G4.

In the current study, multi-target QSAR (mtQSAR) models were developed to identify
potential MTDLs for different types of human G4s. At the initial stages of the usual drug
discovery process, G4 ligands were evaluated based on their capacity to interact with G4,
their capacity to stabilize G4, their selectivity towards G4 over duplex DNAs, and their
cellular activity. All these aspects of evaluation were taken into consideration in these
mtQSAR models. Instead of classical QSAR, a multi-tasking QSAR approach was adopted
in the development of mtQSAR models. The Box–Jenkins moving average approach [20,21]
was employed; using this approach, compounds cannot only be merged with response
data determined in diverse experimental conditions but also derive a mtQSAR model by
employing multiple biological responses against different G4 targets.

1.5. Aim of the Study

The goal of this study is to provide an easy solution towards identifying potential
small lead molecules against human G4 DNA structures from various gene areas. We
introduce ‘G4-QuadScreen’, a user-friendly, web-based computational tool for identifying
MTDLs against G4s. The mtQSAR models developed in the study were compiled together
and used as a knowledge base in ‘G4-QuadScreen’. This tool facilitates the screening of
a library of molecules against G4-forming motifs belonging to telomeres (hTel) and four
oncogenes: cMYC, KRAS, cKIT1, and cKIT2. Also, it evaluates four properties of ligands
such as G4 binding, G4 stabilization, G4 selectivity, and cytotoxicity.

Virtual screening was performed with the help of ‘G4-QuadScreen’ as well as molecular
docking. Selected chemicals from the screened MTDLs were further evaluated using FRET
melting experiments. Then, top hits from the analysis of the FRET melting values were
further evaluated using a TO displacement assay and cell-based assays.

This study introduces several novel steps. First, from a methodological point of
view, completely novel mtQSAR models were developed in this study, thus going beyond
the traditional molecular simulations of individual endpoints. Secondly, these models
were made accessible for virtual screening purposes in a completely new web-based
platform, ‘G4-QuadScreen’, integrating a collection of QSAR predictive models focused
on the anticancer potential of chemicals. This study also offers a robust protocol of how to
collectively utilize various machine learning approaches and molecular modeling tools in
the early stages of drug discovery, which can be implemented in tackling other complex
diseases. Finally, the originality of this study derives from the fact that this is the first
in-depth computational study to identify novel potential compounds that can stabilize
multiple G4s simultaneously and become leads in cancer treatment.

2. Materials and Methods
2.1. Dataset Collection and Curation
2.1.1. Dataset Collection

The data were collected from the G4 ligand database, G4LDB (https://www.g4ldb.
com/, accessed on 30 September 2021), and each datapoint was re-confirmed from the
respective scientific study [22,23]. Initial raw data comprised 2485 datapoints with avail-
able activity information of ligands for several G4s. These datapoints represent the G4
interaction, G4 stabilization, G4 selectivity, and cytotoxicity of these G4 ligands determined
in different experimental protocols and conditions. The distribution of data as per the eval-
uation criteria and information regarding respective assays and experimental conditions
is illustrated in Figure 1. The data of various experimental assays and their contribution
towards each evaluation criteria of the concerned models are shown in Table 2.

https://www.g4ldb.com/
https://www.g4ldb.com/
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Figure 1. Distribution of data: complete data of 2485 datapoints are distributed for developing
four models, e.g., G4 selectivity (1722 datapoints), G4 interaction (202 datapoints), G4 stabilization
(1301 datapoints), and cytotoxicity (982 datapoints). Assays covered in each model are highlighted in
cyan-colored boxes. Conditions covered in each model are enlisted in each section. These number of
datapoints are arrived after data curation; the original data collected were higher in number.

Table 2. Brief details of experimental assays considered in each evaluating model.

Model Experiment Outcome

G4 interaction UV, SPR, fluorescence
titrations

The absorption and fluorescence response of the
molecules upon binding with G4s and duplex
structures allow us to determine binding affinity
constants, thus providing information about
interaction capacity and the selectivity of ligands
towards G4.

G4 stabilization UV, FRET, CD melting
data

∆Tm (change in melting temperature)
quantitatively determines the stabilization effect
of ligands over the secondary structure of DNA.
Thus, the G4 stabilization effect and G4
selectivity can be evaluated.

G4 selectivity Combination of above
experiments

When the interaction capacity and stabilization
effect are one order higher in G4 than that for
duplex DNA, the ligand is considered selective.

Cytotoxicity MTT, CCK8, MTS

These assays provide IC50 values of ligands
against various cancer cell lines, thus providing
information on the activity of ligands at a
cellular level.

2.1.2. Data Curation

Data curation is a crucial task, especially while handling “big data”. We followed the
protocol outlined by the guidelines offered by QSAR experts [24,25]. The quality of the
data was analyzed for both chemical as well as biological aspects. The steps we followed
for the curation of the data are illustrated in Figure 2.
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curation’.

The curation of the chemical data was performed using the KNIME workflow devel-
oped by Ambure and collaborators [26]. The curation of chemical data includes various
steps, such as checking and rectifying the errors in the chemical structure, the exclusive
handling of inorganic/organometallic/salts, the normalization of the chemical structures,
and, finally, the addition of explicit hydrogens atoms.

The curation of biological data was performed using an in-house Python script. This
script can handle big data in standard, single experimental condition as well as complex
data with multiple experimental conditions (the same as the data used in the current study).
Firstly, data with missing endpoints were removed, and then a duplicate analysis was
performed in two steps. In the “duplicate analysis I” step, the datapoints were considered
duplicates only if they were exactly identical in the structure, all experimental conditions,
as well as if the endpoint values matched among them. Then, only one of the duplicates
was kept, and the other datapoints were removed. In the “Duplicate analysis II” step, if
the experimental conditions and structure were exactly the same but the endpoint values
were slightly different (difference less than 0.5), the average of the endpoint values was
considered and assigned to one of the duplicates, and the rest of the duplicate data were
removed. However, if duplicates had a difference in the endpoint values of more than 0.5,
they were processed cautiously. In such cases, if all the endpoint values placed the data
into a similar category (based on the activity threshold of the respective model), e.g., active
or inactive, then one datapoint was kept and the other datapoints were removed. However,
if they were classified differently, then all such datapoints were removed. In studies of
G4 ligands, endpoint values are highly dependent on each experimental condition and
changing just one experimental condition can drastically affect the endpoint value; thus,
though activity cliff analysis is a major part of biological data curation, it was not used in
the current study.

2.2. Descriptor Calculation and Data Preprocessing

Using an in-house Python script, 12,810 PaDEL descriptors (including fingerprints) [27]
and 4776 other structural descriptors were calculated. The constant and highly inter-
correlated descriptors were removed with a variance cut-off of 0.0001 and a correlation
coefficient cut-off of 0.99 using the V-WSP data pretreatment tool (DPT) [28]. Further data
with missing descriptors were removed using an in-house Python script.

2.3. Model Development and Validation

Four multitasking mtQSAR models, which can predict G4 selectivity, G4 interaction,
G4 stabilization, and cytotoxicity, were developed. The Box–Jenkins moving average
approach was employed to calculate modified descriptors that integrate structural infor-
mation with experimental conditions. The experimental conditions incorporated in each
model are illustrated in Figure 1. In the case of G4, the topology (thus ligand binding) is
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defined by buffer conditions and the DNA sequence under consideration. Thus, in three
of the models, ‘G4-Selectivity, G4-Interaction, and G4-Stabilization’, buffer conditions and
sequence information are enforced (Figure 1). In the case of the cytotoxicity model, the
type of cell line indicates the type of cancer; thus, the prediction of the model can assist
in inferring if the G4 ligand is effective against a particular type of cancer. Exposure time
definitely has an impact on the IC50 values. Thus, these two experimental conditions are
enforced in the cytotoxicity model. The classes (positive = 1 and negative = 0) were assigned
according to the predefined cut-off values, as shown in Table 3.

Table 3. Pre-defined threshold values for classifying the data into active and inactive categories for
each evaluating model.

Model Threshold

G4 selectivity When ∆Tm and Kd values are higher in G4 than those in duplex
DNA, the ligand is considered selective, or else non-selective.

G4 interaction Positive: Kd < 1 µM
Negative: Kd ≥ 1 µM

G4 stabilization Positive: ∆Tm ≥ 15 ◦C
Negative ∆Tm < 15 ◦C

Cytotoxicity Positive: IC50 < 10 µM
Negative: IC50 ≥ 10 µM

All tasks related to the development of the mt-QSAR model were performed using
QSAR-Co software (v. 1.1.0) [29]. The modified descriptor set was based on the Box–Jenkins
moving average approach. Further steps involved dataset division, variable selection,
model development, validation, and the determination of the applicability domain. The
tasks performed right from the dataset collection to model development are listed in
Figure 3.

In this study, the dataset was divided into a modeling set (80% of the entire data) and
an external set (20% of the entire data) with an activity-based stratified division approach.
In the calculation of modified descriptors, the information from both training and test sets
were utilized, provoking a data leakage to a small extent. Thus, one external set was kept
aside for validation purposes, which was completely untouched while training the model.
Furthermore, modified descriptors were calculated and processed in the modeling. The
modified modeling set was divided into a training set (80%) and a test set (20%) using the
random approach (except in the case of the G4 interaction model, where data was divided
based on the Euclidean-distance-based similarity approach). Both division approaches are
achievable in QSAR-Co software (v. 1.1.0). The training set was employed for the develop-
ment and selection of the optimal model, whereas the test set was exclusively utilized to
validate it. The genetic algorithm (GA) was used as a variable/feature selection technique.
The final mtQSAR models were developed using two machine learning techniques, namely
linear discriminant analysis (LDA) and random forest (RF), which were implemented
from QSAR-Co with default parameters [30–32]. Firstly, GA-LDA was run to check the
most contributing descriptors, and both Mathew’s correlation coefficient (MCC) and Wilks
lambda (λ) parameter [33] were employed to compute the fitness score in the GA. Based
on the fitness score, the best model was selected in each generation. Top descriptors were
selected based on the results of the GA-LDA (e.g., from the model with good fitness scores),
which were then utilized to derive an RF model. Parameters for RF were optimized to
obtain the best internal validation results. The optimal LDA and RF models were evaluated
and selected on the basis of qualitative validation metrics computed for the training set,
and then the selected models were externally validated using the test set. The models
generated in QSAR-Co were remodeled with the LDA and RF machine learning methods
implemented in scikit-learn (version 0.24.2) since the final screening tool ‘G4-QuadScreen’
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was built with Python and scikit-learn functionalities. The modeling parameters used for
each model are listed in Table S1.
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2.4. Applicability Domain

Three different approaches to estimate the applicability domain (AD) of the QSAR
models were implemented: (i) The first is based on the structural similarity of the compound
to that present in the training set. MACCS fingerprints were used to define the structure
and similarity based on the Tanimoto distance. (ii) The second is a distance-based method
using Euclidean distance. (iii) The third is also a distance-based method that uses the
Leverage approach [34,35]. One compound is considered to be inside the AD if it fits at
least one of the three methods.
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2.5. G4-QuadScreen Web-Based Computational Tool

The web-based G4-QuadScreen application was developed using Python as a back-end
language and a Django framework as a front-end language.

2.6. Virtual Screening and Molecular Docking
2.6.1. Virtual Screening

A library of 631,475 natural compounds was obtained from ligand databases, namely
ZINC [36] and COCONUT [37]. The curation of the chemical data of the library was
conducted using the same protocol followed for the modeling part (refer to Section 2.1.2).
With the help of an in-house KNIME workflow, curated data were further passed through
the criteria of Lipinski’s rule of 5, and 354,415 compounds passed the criteria. These
compounds were further screened using four multitasking mtQSAR models, and 981 of
them were predicted as positive in all models. Among these 981 molecules, 62 molecules
were selected for further study with the following selection criteria: (i) molecules have
aromatic and or planar rings, (ii) they are non-racemic, and (iii) molecules are structurally
diverse. The complete workflow followed by virtual screening is illustrated in Figure 4.
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G4 ligands.

2.6.2. Molecular Docking

All 62 molecules were docked against G4 structures of telomere/oncogenes, viz., hTel,
cMYC, cKIT1, cKIT2, and KRAS; the details of the used PDB files are listed in Table S2.
The pKa of ionizable groups within selected molecules was estimated using the graph-
convolutional neural network provided by the web server ‘MolGpKa’ [38]. Charges over
ionizable groups at a pH value of 7.4 (experimental condition) were determined using the
predicted pKa values with the formula:

Charge over acid group = (−1) × (α) (1)

Charge over base group = (+1) × (1 − α) (2)

α (degree of dissociation) =
1

10(pKa−pH) + 1
(3)
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Molecular docking was performed using AutoDock Vina [39] as implemented in
YASARA [40]. The simulation cell was built at a 0.3 Å distance around all the atoms of the
receptors. The designed functionality ‘dock_runscreening’ using the standard values of the
macro file (AMBER03 force field with rigid receptor and flexible ligand) was employed to
dock the selected compounds.

2.7. FRET Melting Experiments of Screened Compounds

The 62 molecules were purchased from Molport and used without further purification.
The DNA oligonucleotides were purchased from IDT (Integrated DNA Technologies,
Belgium) and were of HPLC purity grade. Labeled DNA was dissolved as a 20 µM stock
solution in MilliQ water, annealed with a 400 nM concentration in potassium cacodylate
buffer (10 mM KCl, 90 mM LiCl, 10 mM LiCac, pH 7.3) at 90 ◦C for 10 min, and then slowly
cooled to room temperature overnight. Ligands were dissolved from stock solutions to final
concentrations in the buffer. Each well of a 96-well plate (Applied Biosystem, Waltham,
MA, USA) was prepared with 60 µL, with a final 200 nM DNA concentration and two
concentrations of tested ligands (2 µM and 4 µM). Measurements were performed on a
PCR AriaMx (Agilent Technologies, Santa Clara, CA, USA) with excitation at 450–495 nm
and detection at 515–545 nm. Readings were taken from 25 ◦C to 95 ◦C at intervals of
0.5 ◦C, maintaining a constant temperature for 30 s before each reading. Each measurement
was carried out in triplicate. The normalized fluorescence signal was plotted against the
compound concentration, and the ∆Tm values were determined.

2.8. TO Displacement (FID) Assay of Selected Compounds

The top ten hits from the analysis of the FRET melting values were further evaluated
using a TO displacement assay and cell-based assays.

The TO assay follows the decrease in the fluorescence emission of the thiazole orange
(TO) upon the ligand-induced displacement of TO from the DNA-TO adduct. Measure-
ments were performed on a Varian Cary Eclipse Spectrometer following the protocol
reported by Teulade-Fichou’s team [41]. Oligonucleotides were prepared via heating at
90 ◦C in LiCaco buffer (100 mM KCl, 10 mM LiCaco pH 7.2), and then slowly cooled to
room temperature overnight. Oligonucleotide structures were formed at a 250 µM strand
concentration. The test was designed as follows: a mixture of pre-folded quadruplex (1 µM)
and TO (2 µM), in LiCaco buffer (100 mM KCl, 10 mM LiCaco pH 7.2), was titrated with
an increasing amount of ligand (from 0.25 to 20 equiv.), in which a 2 min equilibration
period elapsed before the fluorescence spectrum was recorded. The fluorescence area
(FA, 510–850 nm) was converted into a percentage displacement (PD) using the following
formula:

PD = 100−
[(

FA
/

FA0

)
× 100

]
(4)

FA0 is FA before the addition of a ligand.

2.9. Cell-Based Assays of Selective Compounds
2.9.1. Cell Culture

Cervical (HeLa), breast (MCF-7), and lung (A549) cancer cell lines were provided
by the Central Service for Experimental Research (SCSIE) at the University of Valencia.
The cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) with 4.5 g/L
glucose (Gibco, Waltham, MA, USA), supplemented with penicillin (100 U/mL) plus
streptomycin (100µg/mL) (Gibco) and 10% fetal bovine serum (FBS), using standard
cultivation conditions (37 ◦C, 5% CO2). Cells were kept continuously under confluence
before splitting twice a week. The possibility of contamination was excluded by performing
regular mycoplasma tests.

Human GIST cell lines were kindly provided by Dr. S. Bauer (University Duisburg-
Essen, Medical School, Essen, Germany). Imatinib-sensitive GIST-T1 (KIT mutation exon
11 Val560_Tyr578del) cells were cultured in IMDM media supplemented with 15% FBS,
1% L-glutamine, 50 U/mL penicillin, and streptomycin [42]. GIST430/654 (KIT mutation
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Exon 11 Val560_Leu576del, exon 13 Val654Ala) cells were cultured in IMDM media sup-
plemented with 15% FBS, 1% L-glutamine, 50 U/mL penicillin and streptomycin, and an
additional 200 nM imatinib mesylate (Sigma-Aldrich, St. Louis, MO, USA) to maintain
selective pressure [43]. The mycoplasma test was routinely performed in all cell lines used.

2.9.2. Cell Viability Assay

HeLa, MCF-7, and A549 cancer cells were seeded at a density of 5000 cells/well
and maintained in an incubator overnight at 37 ◦C with 5% CO2. The compounds were
suspended in a medium at final concentrations of 100 mg/mL in DMSO and analyzed in a
decreasing dose curve from 50 to 100 µM. As a control, cells were treated with 1–2% DMSO.
The number of viable cells in the culture was determined via the quantification of ATP,
using the Cell Titer-Glo luminescent assay kit (Promega, Madison, WI, USA). Following
the manufacturer’s instructions, the cells were plated in 96-well plates and treated 24 h
later with the compounds for 48 h and concentrations, followed by the addition of a Cell
Titer-Glo reagent. Luminescence was detected using a multi-well Synergy Mx scanning
spectrophotometer (Bio-Tek, Winooski, VT, USA).

GIST cell lines were seeded in 96-well plates (10,000 cells/well) and treated with the
compounds for the indicated concentrations. Cell viability was measured using the colori-
metric WST-1 assay (Roche™ Diagnostics, Mannheim, Germany) upon 72 h of treatment
according to the manufacturer’s protocol. Data were expressed as the mean ± standard
deviation (mean ± SD) from three independent experiments.

3. Results and Discussion
3.1. G4 Selectivity Model

Among the developed LDA and RF models, the RF model was selected as the best
one since its validation parameters were better. The optimal values obtained for statistical
parameters such as accuracy, precision, sensitivity, specificity, F-measure, and Mathew’s
correlation coefficient (MCC) are indicative of the good discriminatory power of the RF
model (refer to Table 4). The statistical parameters were further obtained for 10-fold cross
validation, test set, external set, and external set compounds within the applicability domain
of the model. Except for decreased specificity, the performance of the model is satisfactory
in all the sets. Thus, it can be concluded that the RF mtQSAR model can differentiate
between selective and non-selective G4 ligands.

Table 4. Internal and external validation parameters of the G4 selectivity model.

Model
Category Parameters Train Train 10-Fold CV Test Ext Ext in-AD

I. G4 Selectivity
Descriptor: 15
Random forest

No. of
Compounds

P: 493
N: 175

Total: 668

P: 493
N: 175

Total: 668

P: 127
N: 39

Total: 166

P: 159
N: 58

Total: 217

P: 156
N: 50

Total: 206

Accuracy% 99.850 81.280 ± 5.250 86.747 90.320 91.260

Precision% 99.800 83.860 ± 4.600 90.700 92.590 92.590

Sensitivity% 100 92.890 ± 4.600 92.130 94.340 96.150

Specificity% 99.430 48.370 ± 17.250 69.230 79.310 76.000

F-measure 0.9999 0.880 ± 0.035 0.914 0.935 0.943

MCC 0.996 0.485 ± 0.158 0.625 0.749 0.755

P = number of datapoints with positive class, N = number of datapoints with negative class, Train = training set,
CV = cross validation, Test = test set, Ext = external set, in-AD = inside applicability domain.

The model comprises fifteen descriptors combined with four experimental conditions:
gene sequence, type of buffer, type of assay, and type of oncogene. In Table S3, the meaning,
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importance of each feature, corresponding experimental condition, source, and type of
each descriptor are summarized.

3.2. G4 Interaction Model

Among the developed LDA and RF models, the LDA model was selected as the
best one as the validation parameters were better (refer to Table 5). The optimal values
obtained for statistical parameters support the good discriminatory power of the model.
The statistical parameters obtained for 10-fold cross validation, test set, external set, and
external set compounds within the applicability domain of the model further indicate
that the performance of the model is acceptable in all the sets. Thus, it can be concluded
that the developed LDA mtQSAR model is able to differentiate between G4 binders and
non-binders.

Table 5. Internal and external validation parameters of the G4 interaction model.

Model
Category Parameters Train Train 10-Fold CV Test Ext Ext in-AD

II. G4
Interaction

(Kd)
Descriptor: 10

LDA

No. of
Compounds

P: 100
N: 95

Total: 195

P: 100
N: 95

Total: 195

P: 21
N: 27

Total: 48

P: 29
N: 25

Total: 54

P: 23
N: 16

Total: 39

Accuracy% 92.821 86.340 ± 9.734 85.417 83.330 89.740

Precision% 93.000 84.014 ± 11.390 75.000 88.460 95.240

Sensitivity% 93.000 91.999 ± 7.483 100.000 79.310 86.960

Specificity% 92.632 80.670 ± 14.942 74.074 88.000 93.750

F-measure 0.930 0.875 ± 8.660 0.857 0.836 0.909

MCC 0.856 0.736 ± 18.770 0.745 0.672 0.796

P = number of datapoints with positive class, N = number of datapoints with negative class, Train = training set,
CV = cross validation, Test = test set, Ext = external set, in-AD = inside applicability domain.

The model is comprised of ten descriptors combined with three experimental condi-
tions, viz., gene sequence, type of buffer, and type of oncogene. In Table S4, the meaning,
LDA coefficient, corresponding experimental condition, source, and type of each descriptor
are summarized.

3.3. G4 Stabilization Model

Among the LDA and RF models developed, the RF model was selected as the best one
(validation parameters are shown in Table 6). The optimal values obtained for statistical
parameters support the good discriminatory power of the developed RF model. The
statistical parameters obtained for the 10-fold cross validation, test set, external set, and
external set compounds within the applicability domain of the model further indicate that
the performance of the model is acceptable in all the sets. Thus, it can be concluded that
the developed RF mtQSAR model is aptly capable of differentiating between G4 stabilizers
and non-stabilizers.

The model comprises ten descriptors combined with five experimental conditions:
ligand to G4 ratio, gene sequence, type of buffer, type of assay, and type of oncogene. In
Table S5, the meaning, feature importance, corresponding experimental condition, source,
and type of each descriptor are summarized.
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Table 6. Internal and external validation parameters of the G4 stabilization model.

Model
Category Parameters Train Train 10-Fold CV Test Ext Ext in-AD

III. G4
Stabilization

(∆Tm)
Threshold

Positive: ∆Tm
≥ 15 ◦C

Negative: ∆Tm
< 15 ◦C

Descriptor: 10
Random Forest

No. of
Compounds

P: 498
N: 394

Total: 892

P: 498
N: 394

Total: 892

P: 129
N: 93

Total: 222

P: 154
N: 121

Total: 275

P: 119
N: 85

Total: 204

Accuracy% 99.890 85.540 ± 4.970 90.540 85.091 85.440

Precision% 100.000 86.990 ± 7.170 92.860 88.970 88.650

Sensitivity% 99.800 88.335 ± 7.790 90.700 83.770 85.030

Specificity% 100.000 81.885 ± 11.860 90.320 86.780 85.960

F-measure 0.999 0.872 ± 0.044 0.918 0.863 0.868

MCC 0.998 0.714 ± 0.098 0.807 0.701 0.707

P = number of datapoints with positive class, N = number of datapoints with negative class, Train = training set,
CV = cross validation, Test = test set, Ext = external set, in-AD = inside applicability domain.

3.4. Cytotoxicity Model

The RF model was also selected when considering the validation parameters (refer
to Table 7). The optimal values obtained for the statistical parameters support the good
discriminatory power of this model. The statistical parameters obtained for the 10-fold
cross validation, test set, external set, and external set compounds within the applicability
domain of the model further indicate that the performance of the model is acceptable in
all the sets. Thus, it can be concluded that the RF mtQSAR model is able to differentiate
between cytotoxic and non-cytotoxic ligands.

Table 7. Internal and external validation parameters of the cytotoxicity model.

Model Category Parameters Train Train 10-Fold CV Test Ext Ext in-AD

IV. Cytotoxicity
(MTT, MTS, CCK8)

Threshold
Positive: IC50 < 10 µM

Negative: IC50 ≥ 10 µM
Descriptor: 9

Random Forest

No. of
Compounds

P: 244
N: 219

Total: 463

P: 244
N: 219

Total: 463

P: 71
N: 44

Total: 115

P: 79
N: 65

Total: 144

P: 74
N: 65

Total: 139

Accuracy% 100.000 69.740 ± 6.520 84.348 83.330 82.730

Precision% 100.000 74.285 ± 12.010 92.060 85.710 83.560

Sensitivity% 100.000 71.000 ± 18.620 81.690 83.540 83.560

Specificity% 100.000 68.440 ± 20.270 88.640 83.080 81.820

F-measure 1.000 0.870 ± 0.088 0.866 0.846 0.836

MCC 1.000 0.426 ± 0.144 0.687 0.665 0.654

P = number of datapoints with positive class, N = number of datapoints with negative class, Train = training set,
CV = cross validation, Test = test set, Ext = external set, in-AD = inside applicability domain.

The model comprises nine descriptors combined with three experimental conditions:
exposure time, type of cell line, and type of assay. In Table S6, the meaning, feature
importance, corresponding experimental condition, source, and type of each descriptor are
summarized.

3.5. G4-QuadScreen Web-Based Computational Tool

As shown, the four models were found to be robust and have good discriminatory
power. Subsequently, these models were deployed in the form of a user-friendly web-based
computational tool, viz. ‘G4-QuadScreen’.

Though the models were built incorporating numerous experimental conditions and
numerous oncogene G4 targets (refer to Figure 1), in the final deployed tool, screening is
offered against the specific G4 targets and specific experimental conditions listed in Table 8.
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The specific experimental conditions and G4 targets selected for the screening module are
based on their abundance in the modeling data; that way, the offered activity predictions
are more reliable. Also, some conditions are selected as they were found to be majorly used
by G4 researchers in the laboratory.

Table 8. Screening criteria of specific G4 targets, experimental conditions, etc., for each evaluating
model.

G4 Model Screening Criteria Rationale

Selectivity

G4 Sequences: hTel: AGGGTTAGGGTTAGGGTTAGGG
hTel: GGGTTAGGGTTAGGGTTAGGG
cMYC: TGAGGGTGGGTAGGGTGGGTAA
cKIT1: GGGAGGGCGCTGGGAGGAGGG
cKIT2: GGGCGGGCGCGAGGGAGGGG
KRAS: AGGGCGGTGTGGGAAGAGGGAAGAGGGGGAGG

~50% of the modeling data comprise
these sequences.

Buffer: KCl 10 mM LiCl 90 mM Lithium Cacodylate (10 mM)
NaCl 100 mM Lithium Cacodylate (10 mM)
KCl 100 mM Lithium Cacodylate (10 mM)

Frequently adopted in FRET experiments,
and cover parallel, antiparallel, and
hybrid topology of G4.

Assay: FRET melting ~43% of the modeling data are derived
from FRET experiments.

Interaction

G4 Sequences: hTel: AGGGTTAGGGTTAGGGTTAGGG
hTel: GGGTTAGGGTTAGGGTTAGGG
cMYC: TGAGGGTGGGTAGGGTGGGTAA
cKIT1: GGGAGGGCGCTGGGAGGAGGG
cKIT2: GGGCGGGCGCGAGGGAGGGG
KRAS: AGGGCGGTGTGGGAAGAGGGAAGAGGGGGAGG

~50% of the modeling data comprise
these sequences.

Buffer: KCl 100 mM Lithium Cacodylate (10 mM)
NaCl 35 mM KCl 50 mM Tween20 0.05% HEPES (10 mM)
NaCl 100 mM Tris-HCl (50 mM)
KCl 100 mM Tris-HCl (10 mM)

Frequently adopted in G4-Kd studies, and
cover parallel, antiparallel, and hybrid
topology of G4.

Stabilization

G4 Sequences: hTel: AGGGTTAGGGTTAGGGTTAGGG
hTel: GGGTTAGGGTTAGGGTTAGGG
cMYC: TGAGGGTGGGTAGGGTGGGTAA
cKIT1: GGGAGGGCGCTGGGAGGAGGG
cKIT2: GGGCGGGCGCGAGGGAGGGG
KRAS: AGGGCGGTGTGGGAAGAGGGAAGAGGGGGAGG

~55% of the modeling data comprise
these sequences.

Buffer: KCl 10 mM LiCl 90 mM Lithium Cacodylate (10 mM)
NaCl 10 mM LiCl 90 mM Lithium Cacodylate (10 mM)

Frequently adopted in FRET experiments,
and cover parallel, antiparallel, and
hybrid topology of G4.

Assay: FRET melting experiments ~88% of the modeling data comprise this
assay condition.

Ligand to G4 ratio (LGR): 5, 10
~53% of the modeling data were obtained
for these LGRs, and they have
well-balanced class distribution.

Cytotoxicity

Cell lines: HELA, A549, MCF7, A375, HCT116 ~48% of the modeling data have the cell
line condition of these cell lines.

Exposure time: 48, 72 h ~95% of the modeling data have these
exposure time conditions.

Assay: MTT ~90% of the modeling data are derived
from the MTT assay.

‘G4-QuadScreen’ (see Figure 5) works in a systematic way, which makes it extremely
user-friendly and efficient. It predicts the essential G4-oriented properties such as G4
selectivity, G4 interaction, G4 stabilization, and cytotoxicity for an input molecule. The
first node, “INPUT MOLECULES”, offers users three ways to provide information about
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molecules. Firstly, the user can browse and read the input file with a list of molecules in a
SMILES format; it accepts files in various forms. Secondly, the user can draw a 2D chemical
structure of interest and fetch the SMILES for the same model using the tab “Get SMILES”.
Thirdly, for an individual molecule, the user can just type SMILES in a text field. The
second node, “MODEL SELECTION”, offers a checklist, where the user can select which
G4 property needs to be evaluated for their ligand of interest. The “CHECK INPUT DATA”
tab scrutinizes if there are any errors (e.g., disconnected structures, mixtures, big molecules,
etc.) in the input SMILES. After the verification of the input data, the user can “SUBMIT”
the job. This tool offers inbuilt functionality for calculating the descriptors needed for
predicting the respective properties. Output is in the form of prediction matrices for G4
properties selected in a “MODEL SELECTION” node. Each table contains the SMILES
notation of the input molecule, experimental conditions, activity prediction for those
specific conditions, and the denotation of whether the query molecule is inside or outside
of the applicability domain of the respective G4 model (refer to Figure 6). Also, the user
can fetch the predictions in the form of an Excel file by the tab “Get results table in an XLSX
file”. Thus, the tool is extremely functional; anyone can use it without any prior training.
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3.6. Molecular Docking

The molecular docking results suggest that all 62 ligands bind to DNA motifs with
similar binding energies; the average binding energies (kcal/mol) of 62 ligands and their
binding sites are listed in Table 9. The ensembles of the docked poses of the 62 ligands in
each G4 are illustrated in Figure 7.

Table 9. Summary of molecular docking results; average binding energies of 62 ligands in their
respective G4 receptors and their respective binding pockets.

G4 Motif Average Binding Energies
(kcal/mol) G4 Pocket

hTel (antiparallel) 9.11 5′end, Groove

hTel (3+1 hybrid) 7.63 Groove

hTel (parallel) 7.63 3′end, Groove

cMYC 7.83 5′end, 3′end, Groove

cKIT1 8.41 3′end, Groove

cKIT2 7.46 5′end, 3′end, Groove

KRAS 7.77 5′end, 3′end, Groove
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When the G4 interaction screening results were compared with the docking results,
it was observed that the 62 molecules seemed to be active against hTel (antiparallel) in
screening and have good docking scores. However, in other G4 domains, docking failed
to distinguish between active and inactive molecules (refer to Figure S3). Details of the
binding energies of each ligand and binding residue with respective DNA motifs are
provided in the supplementary information (Supplimentary_Docking-results.xlsx).

3.7. FRET Melting Experiments of Screened Compounds

An initial screening experiment was conducted by FRET melting experiments to assess
the stabilization and selectivity effect of the ligands with the G4 DNAs. The G4-forming
sequences found in the promoter region of cMYC and cKIT2, telomeric region hTel, and
the ds26 as a duplex DNA were taken into consideration (see Table S7 for nucleic acid
sequences, topology, and genome localization). The threshold of ∆Tm > 4 ◦C was assigned
to consider the ligand as a G4 stabilizer. The ligands, Lig-41, Lig-46, and Lig-54, stabilized
hTel G4 at a higher ligand concentration (4 µM) (see Figure 8A); the strongest stabilization
was seen with Lig-48 at both the ligand concentrations. With regard to cMYC G4, the
ligands Lig-5, Lig-11, Lig-12, Lig-15, Lig-16, Lig-46, Lig-48, and Lig-54 showed the highest
stabilization effect among all the ligands (Figure 8B). Lig-5, Lig-46, and Lig-48 showed the
highest cMYC G4 stabilization. Interestingly, the ligands Lig-46, Lig-48, and Lig-54 were
identified as G4 stabilizers for both cMYC and hTel G4s, suggesting that these ligands are
multi-targeted G4 stabilizers. The stabilization effect of the ligand over ds26 is illustrated
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in Figure S4. The average ∆Tm observed for ds26 was <2 ◦C, thus supporting the selectivity
of the screened ligands.
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Furthermore, we investigated the G4 stabilizers found for hTel and cMYC against the
G4-forming sequence in the promoter region of cKIT2 using FRET melting experiments
(refer to Figure 9). Additionally, we analyzed Lig-57 against cKIT2 as it was classified as a
cKIT2-stabilizer using the G4 stabilization model. According to the set threshold, ligands
Lig-16, Lig-41, Lig-48, Lig-54, and Lig-57 stabilized this G4 significantly.
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3.8. FID-TO Displacement Assay of Selective Compounds

To investigate the binding capacity of ligands showing G4 stabilization in FRET
melting experiments (Lig-5, Lig-11, Lig-12, Lig-15, Lig-16, Lig-41, Lig-46, Lig-48, Lig-54
and Lig-57), fluorescence indicator displacement (FID) assays were performed with hTel
and cMYC G4s. All of these ligands showed a low TO displacement, hampering our
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calculations of DC50 values from these titrations. Therefore, the percentage of displacement
at the highest concentration used for each ligand is taken as a comparative measure, which
is listed in Table S8. The largest TO displacement in cMYC corresponds to the ligand Lig-5
followed by Lig-48, whereas in hTel, Lig-46 shows the highest TO displacement but at a
high ligand concentration.

Though all 10 ligands showed adequate G4 stabilization in the FRET melting experi-
ments, the weak displacement of TO with the addition of the ligands was observed in FID
assays. Thus, the binding poses of these ligands obtained via molecular docking against
cMYC and hTel were thoroughly scrutinized. FID assays were conducted in a potassium
buffer and hTel G4 attains ‘3 + 1 hybrid’ and ’parallel’ topologies in potassium; thus, both
topologies of hTel were considered in the analysis of molecular docking. As shown in
Table S9, the best docked poses show that ligands were majorly binding in the groove
region and partially stacking to ends. Also, when an ensemble of other feasible docked
poses of each ligand was analyzed (refer to Supplimentary_Docking-results.xlsx), it was
found that the percentage of ligands solely interacting through end stacking was lower
compared to that of groove binding and partial end stacking. The poor displacement of
TO in the FID assays reflects that the interaction of the ligands occurred in different modes
than end stacking.

3.9. Cell-Based Assays of Selective Compounds

Once we investigated the binding of the ligands to G4s, we assessed the cell viability
of the ligands, Lig-5, Lig-11, Lig-12, Lig-15, Lig-16, Lig-41, Lig-46, Lig-48, Lig-54, and Lig-57,
in cancer cell lines. We used HeLa (overexpress cMYC), MCF-7 (overexpress cMYC), A549
(overexpress cMYC), GIST-T1 (overexpress cKIT), and GIST430/654 (overexpress cKIT)
derived from cervical, breast, lung, and gastrointestinal stromal cancers, respectively [44].

Among the tested ligands, Lig-46 and Lig-48 have a strong inhibition effect on all
the cancer cell lines, making Lig-46 the most cytotoxic (Figures S5 and S6). We calculated
the IC50 values for the ligands Lig-5, Lig-46, and Lig-48 (Figure 10), which are gathered
in Table 10. These findings are in agreement with the previous results of FRET melting
experiments because both Lig-46 and Lig-48 showed the highest stabilization effect on
cMYC G4 and HeLa; MCF-7 and A549 overexpress these oncogenes. Moreover, Lig-46 and
Lig-48 had a strong cytotoxic effect on GIST-T1 and GIST430/654, which agrees with the
high cKIT G4 stabilization discovered via FRET experiments and cKIT overexpression in
these cancer cell lines. Interestingly, Lig-48 yielded a larger stabilization effect on cKIT
G4 and lower IC50 values in GIST cancer cell lines than Lig-46, suggesting a mechanism
involving cKIT. Thus, according to our results, Lig-46 and Lig-48 can be assigned as multi
target ligands because of the high G4 interaction and cytotoxicity in both hTel, cMYC, and
cKIT G4s (see Figure 11). Also, Lig-5 showed activity against G4s and in three types of
cancer cell lines. These three MTDLs can be explored further as positive G4 ligands.

Table 10. IC50 values obtained from the lead compounds in the indicated cell lines treated for 48 (a)
or 72 h (b).

Compounds
IC50 (µM)

A549 a MCF-7 a HeLa a GIST T1 b GIST
430/650 b

5 >100 11.8 >100 16.01 22.94

46 12.24 6.02 15.17 25.11 8.495

48 51.58 25.95 62.64 15.74 26.65
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Figure 11. Summary of the G4 stabilization and G4 selectivity over duplex DNA derived by FRET
experiments and G4 interaction capacity derived by FID assay and cytotoxicity observed against
5 cancer cell lines. The positive activity is denoted as 1 and highlighted in grey, and the inactive
status is denoted as 0.

4. Conclusions

In the current study, four multi-tasking, multitarget, classification-based QSAR models
were developed to predict four essential G4-oriented properties of ligands: G4 selectivity, G4
interaction, G4 stabilization, and cytotoxicity. Their structural features were integrated with
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diverse experimental conditions by means of the Box–Jenkins moving average approach;
the prediction of the activity of a ligand against multiple G4 targets was also made via
a single model. The LDA and RF approaches of machine learning were employed to
derive the four mtQSAR models. Based on the internal and external validation matrices,
the models are found to be robust and have substantial discriminatory power. A user-
friendly web platform, ‘G4- QuadScreen’ (as a part of ChemoPredictionsuite platform
(https://chemopredictionsuite.com/, accessed 1 June 2023), was developed to screen
libraries of compounds against all four mtQSAR models. This tool calculates structural
descriptors and predicts G4 selectivity, G4 interaction, G4 stabilization, and cytotoxicity
in one single operation and at a fast pace. These four properties are key in defining the
G4-mediated anticancer therapeutic effect of any ligand; therefore, the G4-QuadScreen
platform offers an easy solution for finding lead molecules against multiple G4s.

Based on the predictions of G4-QuadScreen and results of molecular docking, 62 natural
compounds were found to be active against multiple G4s (among hTel, cMYC, cKIT1, cKIT2,
and KRAS). The stabilization capacity and selectivity of the 62 screened compounds against
hTel, cMYC, and cKIT2 were further evaluated using biophysical assays. Twenty-six out
of the sixty-two screened compounds showed a selective stabilization of cMYC-G4, and
sixteen compounds showed a selective stabilization of hTel-G4 (selectivity towards G4 over
duplex DNA). Ten compounds (Figure S7) showed stabilization against hTel, cMYC, and
cKIT2 G4s. However, it should be noted that 10 ligands did not show activity against all
3 tested G4s; instead, 8 out of 10 ligands stabilized cMYC-G4, 4 ligands stabilized hTel-
G4, and 5 ligands stabilized cKIT2. The molecular docking and FID results suggest that
10 ligands were bound at multiple binding sites over the respective G4s, such as groove
regions and end regions. Furthermore, a cell-based analysis of these 10 ligands suggested
that Lig-5, Lig-46, and Lig-48 were active against multiple cancer cell lines. Thus, based
on our in silico and in vitro findings, Lig-5, Lig-46, and Lig-48 can be considered lead
molecules and must be further explored as potential cancer therapeutic agents.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers15153817/s1. Figure S1. Structural features of G4: (A) Hoogsteen
hydrogen-bonding among guanine bases form a planar arrangement, and partial negative charges be-
come accumulated towards the central core of the tetrad due to carbonyl oxygen atoms. (B) Guanine
planes stack over each other and become intercalated via counterbalancing metal ions. (C) Few among
various topologies of G4, based on the orientation of guanine strands (green arrows) and arrangement
of interconnecting loops (blue dotted line), have variations in topologies. Figure S2. (A) Schematic
representation of significance of G4 at the 3′ telomeric end in cancer therapy. (B) Schematic represen-
tation of significance of G4 at the promoter region of oncogenes in cancer therapy. Figure S3. The
binding energy of each ligand against various DNA motifs was estimated using molecular docking.
Each graph has binding energies of a set of molecules as labeled over a respective graph. Color codes
for each DNA motif are enlisted at the right bottom. Figure S4. Representation of FRET melting
values (∆Tm) for the interaction between the ligands and ds26. The concentration of DNA was
0.2 µM, and the [DNA]/[Ligand] ratios were 1:10 and 1:20. Errors denote the standard deviations of
at least three independent experiments. Figure S5. Plots of dose–response curves of the ligands for
A549 (top panel), MCF-7 (middle panel), and HeLa (bottom panel) cancer cell lines. The mean ± SD
values from three independent experiments, each conducted in triplicate, are shown in the graph,
representing the percentage of viable cells. Figure S6. Plots of dose–response curves of the ligands
for GIST T1 (top panel) and GIST 430/650 (bottom panel) cancer cell lines. Data are expressed as
mean ± SD (n = 3 independent assays). The mean ± SD values from three independent experiments,
each conducted in triplicate, are shown in the graph, representing the percentage of viable cells.
Figure S7. Chemical structures of the hit ligands. Table S1. Parameters of each evaluating model.
Table S2. PDBs utilized in molecular docking. Table S3. Information of each descriptor contributing to
the G4 selectivity model. Table S4. Information of each descriptor contributing to the G4-interaction
model. Table S5. Information of each descriptor contributing to the G4-stabilization model. Table S6.
Information of each descriptor contributing to the cytotoxicity model. Table S7. Sequences of the
nucleic acids, topology and genome localization. Table S8. Percentages (%) of TO displaced upon
addition of the ligands, concentration for each ligand is as indicated in the bracket (in µM). Table S9.

https://chemopredictionsuite.com/
https://www.mdpi.com/article/10.3390/cancers15153817/s1
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Binding sites of hTel and cMYC where selected ligands are interacting in their best-docked pose.
Supplimentary_Docking-results.xlsx. Details of the binding energies of each ligand and binding
residue with respective DNA motifs.
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