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Simple Summary: The cells of the immune system can exert a dual effect on cancer development
and growth. On the one hand, the immune system can be activated by tumor antigens and can elicit
an antitumor response. On the other, the inflammatory milieu in the tumor microenvironment can
trigger immune effector mechanisms that promote tumor growth. In the oral cavity, the balance
between protumor and antitumor immunity can influence the progression from premalignancy to
carcinoma. In this article, we review the cells and mechanisms that are thought to be the most
important immune determinants of oral cancer development and progression.

Abstract: A still unresolved issue surrounding tumor formation concerns the role that the immune
system plays in preventing the formation and progression of neoplasia, including oral squamous
cell carcinoma (OSCC). Antitumor immunity has historically been seen as a critical barrier for
cancer cells to develop, grow and spread, and this can be modulated using immunotherapies to
achieve antitumor clinical responses. However, it has recently become clear that tumor-associated
immunity, particularly the inflammatory microenvironment, has the paradoxical effect of enhancing
tumorigenesis and progression. In this review, we discuss the multifaceted function of infiltrating
immune cells in suppressing or promoting premalignancy and cancer. In particular, we report on the
evidence supporting a role for T lymphocytes, dendritic cells, macrophages, and neutrophils in the
development and progression of oral potentially malignant disorders (OPMD) and OSCC. We also
draw attention to the clinical relevance of immune cell phenotypes and associated molecules for use
as biomarkers and to the translatability of current research findings to improve classification systems
and precision medicine in patients with OSCC.

Keywords: lymphocytes; macrophages; oral cancer; oral potentially malignant disorders; tumor
microenvironment; tumor immunoediting

1. Introduction

Head and neck cancer (HNC) is one of the most common malignancies worldwide,
with the majority of HNCs arising from the stratified epithelium of the oral cavity. Worry-
ingly, over 300,000 new cases of oral squamous cell carcinoma (OSCC) are diagnosed every
year, particularly in the Indian subcontinent and Southeast Asia, where OSCC is overall
the third most common type of cancer [1]. Current evidence supports the existence of a
multi-step process of oral carcinogenesis, which clinically translates into the onset of oral
potentially malignant diseases (OPMDs) in the early stages of progression to malignancy.
OPMDs eventually progress to oral cancer following the acquisition of a number of addi-
tional mutations [2]. Thanks to the relatively easy inspection of the oral cavity, it is possible
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to detect early changes in the oral mucosa before these progress to overt malignancy, and
thus reduce mortality [3]. However, while oral carcinogenesis consists in an accumulation
of genetic and epigenetic alternations, growing evidence calls into question the role of the
surrounding microenvironment in the development of malignancy [4].

The microenvironment is a complex milieu of extracellular matrix components, blood
vessels and non-malignant cells, such as immune cells and fibroblasts, that surround the
tumor [5] or its pre-malignant lesion (Figure 1). The continuous exchange of different signals
among these components leads to changes in the environment, which keep evolving during
the progression from normal to cancerous tissue [6]. For example, we have shown that
stromal fibroblasts found in cancer tissues (cancer-associated fibroblasts, CAFs) promote
epithelial cancer progression via paracrine mechanisms that involve oxidative stress and
cellular senescence [7,8].
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depicted on top of the panel (T lymphocytes, macrophages and activated fibroblasts) play a key role
in cancer progression.

As knowledge of cancer mechanisms progresses, it has become apparent that the
normal cell progressively evolves to a neoplastic state by evading growth suppression,
enabling replicative immortality and resisting apoptosis (cell-intrinsic mechanisms) as
well as via cell-extrinsic mechanisms, such as escape of immune surveillance [9]. In this
scenario, inflammation has acquired a paradoxical role, since the immune cells involved
in the elimination of altered cells may be educated to promote carcinogenesis by different
mechanisms [10]. In agreement with this view, higher incidence of OSCC is observed
in OPMDs characterized by chronic inflammation [11], and concomitant production of
anti-inflammatory, immunosuppressive molecules is observed in cancer tissues, including
OSCC [12]. Strikingly, cancer cells can themselves produce immunomodulatory molecules,
such as cortisol [13], hence driving the immune response to facilitate or repress cancer
growth and immune surveillance.

In this review, we will examine the immune cells involved in OSCC-associated in-
flammation, their role in oral carcinogenesis, as well as their clinical significance from a
prognostic standpoint.
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2. Immune Cells of the Tumor Microenvironment in Oral Cancer Development
and Progression

The idea that the immune system can recognize and destroy nascent-transformed cells
finds its roots in the nineteenth century with Virchow’s work and was later conceptual-
ized in the cancer immunosurveillance hypothesis of Burnet and Thomas [14]. In the last
30 years, this hypothesis has been substantiated by a growing body of experimental evidence.
Interestingly, this work has shown that the immune system can also function to promote or
select tumor variants with reduced immunogenicity, thereby providing cancer cells with a
mechanism to escape immunologic detection and elimination. These findings have led to
the development of the cancer immunoediting hypothesis, which acknowledges both the
antitumor and tumor-promoting actions of the immune system in tumor development. Here,
we discuss the role that immune cells play in the multistep process of oral carcinogenesis.

2.1. T Lymphocytes

A key immune-modulatory element in oral precursor lesions is the tumor-infiltrating
lymphocytes (TILs), particularly CD8+ T lymphocytes, which are abundant in OPMDs [15].
Several studies have revealed an association between TILs and higher grading in dysplastic
lesions [16–18]. In one example, the ratio between CD8+ T lymphocytes and CD4+ cells
increased following dysplastic change, which may represent an attempt of the immune
system to eliminate altered cells [18,19]. Similarly, Gannot et al. found an increase of CD4+
CD8+ T lymphocytes and B cells in moderate and severe dysplasia and OSCC compared to
hyperkeratotic lesions [20], suggesting that antitumor immune response mounts during the
development of OSCC. Conversely, IgA and IgG-secreting B cells were found in leukoplakia
with dysplasia and were decreased during the progression to malignancy [21], which might
signal a reduction in humoral antitumor immune surveillance.

Crucially, Strauss et al. demonstrated a switch towards an infiltrating CD25+FoxP3+
CD4+ phenotype in patients with HNSCC. This unique subpopulation of T cells secret-
ing interleukin-10 (IL-10) and transforming growth factor (TGF)-β1 mediates immune
system suppression in the tumor microenvironment and hence favours pro-tumour im-
munity [22]. Consistently, other studies have found that CD25+ and FoxP3+ lymphocytes
were associated to OPMD progressing to OSCC [15,23,24]. Gan et al. recently performed
an immunohistochemical and transcriptomic profiling of diverse severity OPMDs and
early OSCCs. They found that infiltrating lymphocytes were present in 80% of high-risk
OPMDs and OSCCs, compared to 9% of benign lesions. In high-risk OPMDs, transcrip-
tomic profiling revealed the existence of T-cell inflamed and non-immune reactive subtypes.
T-cell inflamed subtype was characterized by T lymphocytes, interferon and PD/PD-L1
pathway signatures, suggesting the presence of an impaired immune surveillance [25].
This study supported the results from Yagyuu et al., who found increased immunohisto-
chemical expression of PD-L1, CD163+ macrophages and CD8+ lymphocytes in high-grade
dysplasia [12].

The results of these studies have informed the recent development of an immunore-
activity score based on the expression of PD1, PD-L1, FoxP3, IL-6, IL-10 and TGF-β1. A
higher number of T-reg cells and the expression of such markers correlated to higher grades
of dysplasia in OPMDs and the strongest correlation was found between PD1 and PD-L1.
Collectively, these results would suggest that immune suppression and PD1/PD-L1 axis
are instrumental in the progression of OPMDs to OSCC [17].

2.2. Macrophages

Tumor-associated macrophages (TAMs) are the most abundant immune cells in the
tumor microenvironment and act in concert with TILs. In particular, complex interactions
between lymphocytes and macrophages can either promote or contrast the formation of a
pro-inflammatory and immunosuppressive environment [26].

Oral dysplastic lesions can recruit macrophages by expression of human beta-defensin
3 [27], and an increase in macrophages and myeloid-derived suppressive cells (MDSCs) corre-
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lates with malignant progression, in particular by M2 macrophage polarization [12,24,28–31]. In
several studies, M2 were characterized by CD163+ and CD204+ and correlated with the presence
of FoxP3 and CD25+ lymphocytes; specifically, both cell types increased with the worsening of
dysplasia [15,30]. Despite the strong evidence of a pro-tumor activity of M2 macrophages [32],
conflicting results have also been reported. In contrast to their own results in a smaller cohort
of patients, Yagyuu et al. could not confirm a prognostic role of M2 CD163+ in malignant
transformation although some differences in study design and inclusion might have led to this
inconsistency [12,33]. In a mouse study, M2 signatures were predictive of longer oral cancer-free
survival [34]. Nevertheless, canonical markers of M2 might be functionally associated to an
M1 phenotype. For example, Weber et al. found CD163+ macrophages co-expressing CD11c,
which is also known to be a marker for M1 polarization [29]. Mori et al. observed an increase of
CD163+ macrophages in higher grade dysplasia, but this occurred in an immunosuppressive
environment regulated by CD4+ lymphocytes and associated with the expression of CXCR3,
CCR5, CXCL9, STAT1 and interferon-induced gene products [35].

The role of external etiopathogenetic factors in the modulation of the cancer immune
response has also been considered. For example, smoking was shown to determine an
immunosuppressive environment characterized by M2 infiltration, arginase-1 and IL-10
and lower TNFα and iNOS [36]. Stasikowska-Kanicka et al. found an increase in CD68+,
CD163+ (M2), iNOS+ (M1), CD4+, CCR4+ (Th2) and CCR5+ (Th1) in the progression to
metastatic OSCC, whereas the presence of CD8+ cells negatively correlated to both CD163+
and iNOS+ macrophages regardless of the presence of metastasis [37]. Ye et al. showed that
signal regulatory protein α (SIRPα) correlated with the number of CD68+ macrophages
while advancing from normal to OPMD to OSCC, while CD163+ negatively correlated
with SIRPα expression. In an in vitro model of co-culture of macrophages with oral cancer
cells, the blockade of SIRPα led to M2 polarization with inhibition of phagocytosis, IL-6
and TNF-α, and secretion of IL-10 and TGF-β [38]. Hence, M1-M2 phenotype switch might
be overlapping during the whole process of oral carcinogenesis [39]. Moreover, another
important detail to be considered is that all these different studies evaluated and character-
ized different makers of expression and different tissue localization of macrophages, such
as stroma, periphery, sub- and intraepithelial which may contribute to these contrasting
results and differential M1-M2 phenotype characterization [12,18,28–30,33,35,37,39–41].

2.3. Dendritic Cells

While macrophages and lymphocytes may be considered the main characters of the
immune microenvironment, many other cells types contribute to immunosurveillance, and
their reciprocal interaction may promote or suppress OPMD/OSCC development [42].
In the context of mucosal microenvironment, dendritic cells (DCs) are involved in major
histocompatibility complex call I pathway by presenting antigens to T cells [43,44]. The
most abundant type of DC in the oral cavity is dendritic Langerhans cells (LCs) [45] and
current evidence demonstrates contrasting roles in malignant progression. Specifically,
several studies found an increase of CD1a+ LCs while progressing from normal to mild and
severe dysplasia [18,45–49] while others found a decrease of this cell population [50,51]. Of
interest, in the study of Wang et al., nine patients going towards malignant transformation
reported significantly lower LCs. It is plausible, therefore, that changes in the number of
infiltrating LCs affects the immunosurveillance ability during early carcinogenesis [46,51].

2.4. Mast Cells

Another supporting component in this multicellular microenvironment are mast cells
(MCs), which have been emerging as possible players in the malignant progression from
OPMD to OSCC. Telagi et al. found an increase of MCs in patients with dysplasia and oral
submucous fibrosis, which was particularly prominent in the presence of inflammation [52].
Mast cells were also increased in leukoplakia, lichen planus and actinic cheilitis [47,53–58].
Mechanisms by which MCs might contribute to malignant progression are still not well
understood [52,59]. Piecemeal degranulation is an unconventional secretory pathway char-
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acterized by vesicular transport of small packets of selected materials from the cytoplasmic
secretory granules to the cell surface and might represent one of the main mechanisms by
which MCs contribute to cancer progression. These granules may be enriched of cytokines,
proteases, arachidonic acid derivates and growth factors, representing a heterogeneous
phenotypic expression of MCs [59–62]. A systematic review on this topic showed that
the highest number of MCs was found in OPMD while their presence declined in OSCC.
Indeed, it appears that MCs are abundant in an inflammatory tumor microenvironment
although it is not clear whether these cells exert an anti- or pro-tumor activity [59]. Several
studies found an increase of MCs’ density while moving from normal mucosa to dysplasia
to OSCC, which positively correlated to microvessel density (CD34+/CD31+). This would
suggest MC activity parallels neo-angiogenesis [63–71]. Oliveira-Neto found a decrease of
MCs in OSCC and transforming OPMDs, as a consequence in microenvironment changes,
and reported an inhibition of MC migration that could reflect impaired control during
tumor initiation [72]. Similar results were documented by Singh et al. [73]. This dichoto-
mous role may reflect an attempt of the immune system to fight altered cells by promoting
cytotoxic effect in the early phases; however, once the tumor is established, MCs become
educated to produce pro-angiogenic and pro-tumoral factors [59].

2.5. Myeloid-Derived Suppressive Cells (MDSCs)

MDSCs have recently gained a more prominent role in the pro-tumorigenic tumor
microenvironment, although current studies are limited to patients with a diagnosis of
OSCC or in vivo animal models of OPMD [28,74]. MDSCs’ accumulation and malignant
progression was associated to porphyromonas gingivalis infection by increase in CXCL2,
CCL2, IL-6 and IL-8, which drew malignant progression [75]. The presence of MDSCs also
correlated with CD4+FoxP3+ lymphocytes and IL-1β secretion in a dectin-1 depending
signal in a model of fungal infection [76].

2.6. Neutrophils and Eosinophils

Scarce evidence exists with regards to neutrophils and eosinophils as very few studies
have explored their role in the malignant progression of OPMDs [77]. Neutrophils were
mostly investigated by their ability to form extracellular traps (NETs) which was observed
to be a prominent ability in patients with oral lichen planus, thus suggesting a possible
role in the progression to OSCC [78]. Eosinophils were also found increased in patients
with leukoplakia and the mean number correlated to the advancement of dysplasia [77]
although this finding was not confirmed in other studies [65,79,80].

2.7. The Immune Function of Cancer-Associated Fibroblasts

Although not properly considered part of the immune system, fibroblasts represent
the main cellular component of extracellular matrix and are known to produce several
cytokines with emerging roles in innate immune response [81–83]. Fibroblasts/CAFs are
prominent cell types in the tumor microenvironment and hence could interfere in the
immunosurveillance mechanisms in cancer involving a cross-talk with primary immune
cells [84–87]. While these α-smooth muscle actin positive (α-SMA) (myo)fibroblasts are
virtually absent in the normal oral mucosa [88,89], it has been reported that myofibroblasts
significantly increase in number while progressing to OPMD and to OSCC [88–93]. Other
authors could not find evidence of myofibroblasts in normal mucosa or in patients with
oral leukoplakia or dysplasia but only in OSCC [94–96]. Current evidence shows a wide
heterogeneity in the role of myofibroblasts in the progression to malignancy [97]. In this
regard, a recent systematic review suggested that myofibroblasts may be involved in the
progression of oral submucous fibrosis but not in patients with leuko-erythroplakia [97].
Indeed, it has been reported that increased inflammatory response in the stroma is inversely
associated to myofibroblasts [98,99], and OSCC—fibroblasts contact is necessary for in-
duction of myofibroblast phenotype [100,101]. Conversely, findings from our group show
that a paracrine cross-talk between malignant keratinocytes and fibroblasts is sufficient
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to drive tumor migration and invasion in a TGF-β-dependent manner [7,8]. These data
are in line with the results obtained in an in vitro model where OSCC cell line was able to
transdifferentiate fibroblasts to myofibroblasts via secretion of TGF-β1 [99].

3. Immunopathogenic Mechanisms in OSCC and Precursor Lesions

Although a functioning immune system is instrumental for the elimination of neoplastic
cells, when the immune response becomes regulated by the tumor microenvironment, this
produces an opportunity for the development of malignant cells that are capable of escaping
the destructive effects of the immune system. The immune microenvironment contributes
to tumorigenesis by impairing normal immune cell activity via immune suppression and
tolerance, as well as by enhancing angiogenesis and ROS production [102–104].

The mechanisms of this dual pro- and anti-cancer role of the immune cells will be
discussed here.

3.1. Acquisition of Tolerance during the Progression to Malignancy

While forming cancer cells express antigens that are recognized and targeted by the
immune system, it is more difficult to explain why a similar immune dysregulation is
witnessed in OPMD. One fascinating hypothesis on how transforming cells evade the
immune surveillance is that precursor lesions express tumor antigens, which facilitate the
acquisition of tolerance over time. Consistently, a pattern of different tumoral antigens has
been shown in OPMDs, such as MAGE cancer testis antigens, NY-ESO-1, MUC1 and neo-
antigens [105–107]. It is possible that the emergence of CD25+ and FoxP3+ lymphocytes
observed in OPMD progressing to OSCC [15,23,24] might represent the immune system
adaptation and education provided by the transformation of premalignant cells [28]. One
of these adaptive changes includes CD8+ T-lymphocytes’ ability to recognize antigens
and deliver their cytotoxic effect [108]. The functional activity exerted by cytotoxic CD8+
T-lymphocytes in this context has not been definitively proven [109]. More likely, inflamma-
tion may promote genomic instability in the early stages; while later, once genomic changes
have occurred, new mechanisms might exert an immunosuppressive conditioning, which
facilitates the progression from OPMD to over carcinoma [28,110].

3.2. Expression of Immune Checkpoint Markers

Immune checkpoints are stimulatory and inhibitory pathways that modulate the
immune response while maintaining self-tolerance. However, the expression of some of
these immune-checkpoint proteins by malignant epithelial cells (rather than immune cells)
dysregulates the antitumor immunity and favors the growth and expansion of cancer cells.
In the context of oral carcinogenesis, it has been shown that the elevated number of T-reg
cells and the expression of immune checkpoint markers correlated to higher grades of
dysplasia in OPMDs, with the strongest correlation found between PD1 and PD-L1 [19].
This suggests that the PD1/PD-L1 axis may be responsible for the progression of OPMDs
to OSCC, possibly leading to T-cell exhaustion and immunosuppressive environment [17].
Strategies that target these regulatory pathways to enhance immunological activity against
tumor cells are being developed, with mixed results [111,112]. The most successful im-
mune checkpoint blockade strategy is anti-PD-1/PD-L1 therapy that has been approved to
treat a wide variety of cancer types, such as blood, skin, lung, liver, bladder and kidney
cancers. While the more durable response of checkpoint blockade compared to chemo- or
targeted therapies may be related to mechanisms of immunological memory, a relatively
low response rate has been observed in most cancers, including HNSCC [113]. Therefore,
further immune checkpoint inhibitors besides those targeting the PD-L1/PD-1 pathway
need to be explored for therapeutic use.

3.3. Role of Cancer Stem Cells in Immune Evasion

Cancer stem cells (CSCs) play a critical role in carcinogenesis, progression to metastasis,
and resistance to antineoplastic treatment of head and neck tumors [114]. Since CSCs act as
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tumor-initiating cells, these cell populations may develop intrinsic mechanisms to evade
immune surveillance both via direct contact and paracrine regulation of immune cells
involving secreted molecules and exosomes (Figure 2).
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(CSCs). CSCs promote an immunosuppressive microenvironment via direct interaction with T
cells (A,B), genetic regulation leading to reduced immunogenicity (C) and paracrine mechanisms
provoking immune cells anergy and suppression of the immune response (D). MDSC, Myeloid-
derived suppressor cells; TME, tumor microenvironment.

Studies have shown that CSCs express low levels of molecules involved in processing
and presenting tumor antigens to T cell receptors (TCRs), a crucial stimulatory signal to
T-cell response, and escape from recognition by anti-tumor immunity [115]. In addition,
enriched PD-L1 expression in CSCs has been suggested to facilitate CSC immune evasion
in head and neck cancers by suppressing T-cell-mediated immunity [116]. Subsequent
studies characterized these TIL subsets and found that T cell infiltration was enriched in
an effector memory phenotype (CD45RA−/CCR7−). Naïve T cells (CD45RA+/CCR7+)
were decreased in the microenvironment compared to PBMC of patients while regulatory
T cells (CD4+/CD25+/CD127 low and CD4+/CD39+) were elevated [117]. Notably, the
immunomodulatory molecule cortisol induces the formation of stem cell-like populations in
epithelial cancers [118] and glucocorticoid receptor inhibition by mifepristone mediates anti-
proliferative effect on ovarian mesenchymal stem cells [119]. It is possible, therefore, that
cancer-derived cortisol promotes immune evasion both directly by immune suppression
and indirectly by enriching CSC subpopulations.

3.4. Role of Immune Modulatory Cytokines

The role of cytokines in cancer, including OSCC, has been studied extensively and the
main effector molecules regulating the pro-tumor immune activity are CSF-1, IL-6, VEGF,
PGE-2, TGF-β and IL-10 [120]. The immune modulatory role of these cytokines in the tumor
microenvironments of head and neck squamous cell carcinomas has been reviewed in detail
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recently [121]. Notably, the clinical prognostic value of tumor-infiltrating cell types depends
on their secretory cytokine profile. For example, the negative correlation between patient
outcome and level of tumor-associated macrophages (TAM) is reliant upon TAM expression
of PDGF, TGF-β, EGF, IL-1, IL-6 and TNF-α, which generates a favorable environment
for tumor growth [122]. In one example, TGF-β produces an immunosuppressive and
tumor-promoting microenvironment in OSCC tissues by stimulating the production of
Treg cells and CAFs, which then results in the inhibition of cytotoxic T lymphocytes
(CTLs) and natural killer cells. We have shown that CAFs, in turn, produce high levels
of TGF-β1 and TGF-β2 and promote oral carcinogenesis and local invasion via TGF-β-
dependent mechanisms [8,123,124]. Therefore, the tumor-limiting vs. tumor-promoting
action of cytokines is not necessarily related to their production by the immune infiltrate;
rather, it will result from the interplay between different cell types in the context of tumor
microenvironment.

4. Clinical Significance of Immune Biomarkers in OSCC

While considerable effort has been directed to the study of the tumor-related host
response to OSCC, the principles, mechanisms and molecules governing this process have
not been translated to clinical practice to date. In one example, the 8th Edition of the
American Joint Committee on Cancer (AJCC) has provided some important novelties in
prognostic stratification, including the addition of depth of invasion (DOI) and extranodal
extension (ENE) for the evaluation of T (Tumor) and N (Nodal) parameters [125]; however,
no immune-related features have been included. Furthermore, prognostication is still based
on staging at the time of diagnosis, which only represents a “snapshot” of dimensionality
and site involvements of the disease. In other words, the current approach still lacks a
“global” assessment of tumor aggressiveness, which makes it difficult to inform precision
treatments. For example, tumors presenting at the same stage tend to be treated with the
same therapeutic means, yet they show very different biological behaviour and clinical
responses. This exemplifies the clinical importance of diving deeper into the discovery and
validation of new biomarkers that can reliably predict tumor behaviour and prognosis.

Prognostic biomarkers may be defined as specific biological characteristics that can be
quantified at baseline and that could help predict clinical outcomes (e.g., death, recurrence,
progression) occurring in the future. A preliminary assessment of future disease behavior
may be useful in tailoring clinical decision making and in modulating treatment approaches.
The study of the tumor-related immune response seems to be one of the most promising
sources of information for prognostic stratification, as it provides information that is not
captured by the current TNM classification system, such as the ability of the host’s immune
system to fight against cancer cells.

Several studies have proven that tumors at the same stage differ in their immune
response capability, which has led to the definition of three different cancer-immune
phenotypes: the immune-desert phenotype, the immune–excluded phenotype, and the
inflamed phenotype [126]. Each of these profiles seems to be associated with specific
pathological mechanisms that may hamper the host immune response’s ability to kill
cancer cells [127]. Such profiles can be easily assessed through a comprehensive analysis
of spatial immune infiltration patterns (“topography”) and across various immune cell
types [128]. A study from our group revealed that this approach is easily applied in routine
histological analysis and can detect a subgroup of immune-desert tongue squamous cell
carcinoma characterized by a very poor prognosis [129]. However, a simple histologic
evaluation has its own limitations and may not be useful for more accurate stratification
among different immune cell types.

Recent guidelines of the International Immuno-oncology Working Group have been
extensively utilized for the analysis of tumor-infiltrating lymphocytes (TILs) and should
be used as a milestone for implementation in clinical practice [130]. More broadly, the
identification of specific immune subpopulations of immune cells through the use of molec-
ular biomarkers seems to be a promising approach. An ever-increasing number of studies
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has been published on this topic, thus raising the need of literature synthesis through
data meta-analysis, and good quality evidence is present for some of these immune cell
subpopulations. In particular, prognostic studies of OSCC tumors with stromal abundance
of CD163+ tumor-associated macrophages (TAMs) evaluated by immunohistochemistry
showed a significantly worse prognosis [131].

Another important aspect to take into consideration is the possibility of making a systemic
assessment of the tumor immune response by evaluating the population of cells present in
the blood. Among these, pre-treatment quantification of the neutrophil-to-lymphocyte ratio
significantly impacts the prognosis of head and neck SCC patients [132]. Studies on such
a type of prognostic biomarkers are abundant and dispersive, and they represent just an
intermediate step toward biomarker implementation in clinical practice [133]. The next step
should be to combine multiple predictors in a prognostic model whereby risk of a specific
endpoint can be calculated for individual patients [134]. The routine application of such
tools requires multiple validations from diverse patient cohorts in different countries and the
implementation of their graphical representation for an easier use by physicians [135].

Ultimately, these efforts should be aimed at developing a staging system that includes
immune-related features, so that a TNM-Immune Staging System can be implemented [136].

5. Conclusions

In this article, we presented evidence supporting the role of immune cells in oral
carcinogenesis. Lymphocytes and macrophages are key actors in this process and have
gained an important role in OPMDs and in immunoediting. The switch from CD8+ to CD4+
and cytokine profile have been associated with malignant progression. Another mechanism
may involve the communication between FoxP3+ CD4+ T lymphocytes, which increase in
the progression from OPMD to OSCC, together with the abundanceof CD68+ macrophages
in an IL-10-enriched environment. Fibroblasts and secreted molecules including cortisol
may exert immunoregulatory functions that are crucial for promoting immune escape and
cancer development. So far, the advances in the understanding of the immune function of
the TME have led to relatively little improvements in treatment modalities for OSCC and
have not been translated into more accurate diagnostic/staging systems. Filling this gap
will be instrumental for the development of precision oncology.
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