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Simple Summary: Oncofusions, or cancer-associated fusion mutations, are driving forces in cancer
development. Advanced sequencing technologies have revolutionized their identification, opening
new avenues in cancer research. Oncofusions manipulate cellular signaling pathways and show
promise as targets for therapy and diagnostic markers. Further research is needed to understand
their functional impact and harness their potential for precision cancer treatment.

Abstract: Cancer-associated gene fusions, also known as oncofusions, have emerged as influential
drivers of oncogenesis across a diverse range of cancer types. These genetic events occur via chromo-
somal translocations, deletions, and inversions, leading to the fusion of previously separate genes.
Due to the drastic nature of these mutations, they often result in profound alterations of cellular
behavior. The identification of oncofusions has revolutionized cancer research, with advancements
in sequencing technologies facilitating the discovery of novel fusion events at an accelerated pace.
Oncofusions exert their effects through the manipulation of critical cellular signaling pathways that
regulate processes such as proliferation, differentiation, and survival. Extensive investigations have
been conducted to understand the roles of oncofusions in solid tumors, leukemias, and lymphomas.
Large-scale initiatives, including the Cancer Genome Atlas, have played a pivotal role in unraveling
the landscape of oncofusions by characterizing a vast number of cancer samples across different
tumor types. While validating the functional relevance of oncofusions remains a challenge, even
non-driver mutations can hold significance in cancer treatment. Oncofusions have demonstrated
potential value in the context of immunotherapy through the production of neoantigens. Their
clinical importance has been observed in both treatment and diagnostic settings, with specific fusion
events serving as therapeutic targets or diagnostic markers. However, despite the progress made,
there is still considerable untapped potential within the field of oncofusions. Further research and
validation efforts are necessary to understand their effects on a functional basis and to exploit the
new targeted treatment avenues offered by oncofusions. Through further functional and clinical
studies, oncofusions will enable the advancement of precision medicine and the drive towards more
effective and specific treatments for cancer patients.

Keywords: cancer; cancer driver; drug discovery; drug target; fusion mutation; immunotherapy;
oncofusion; protein kinase; proteomics; sequencing; transcription factor

1. Introduction

Cancer-associated gene fusions, also known as oncofusions (OFs), are hybrid genes
formed when two previously independent genes become juxtaposed (Figure 1). The
formation of these fusions can stem from structural rearrangements, transcription read-
through of neighboring genes, or the trans- and cis-splicing of pre-mRNAs. Gene fusions
with oncogenic properties are referred to as oncofusions, and often act as driver mutations
in different cancers [1]. The identification of the first oncofusion signifies a landmark
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in the study of cancer [2]. Since then, developments in the applicable methods have
enabled an accelerating pace of discovery of new oncofusions in cancer samples, with the
pace skyrocketing after massively parallel sequencing (MPS) became viable. Oncofusions
have been identified extensively in solid tumors, leukemias, and lymphomas, and in both
singular studies [3] and systemic sequencing studies [4,5]. In this review, we seek to
describe the current state of the field of oncofusions, with a focus on those oncofusions that
manifest as protein-level changes [6].
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Figure 1. Chromosomal instability produces gene fusions. Top panel: chromosomal rearrangements
leading to fusion mutations. Bottom panel: types of gene fusions. Depending on the specific fusion
sites in both genes, the result can be either a hybrid gene fusion or a promoter- or enhancer-hijacking
fusion. In both cases, the produced proteins can be either in-frame or out-of-frame. Images were
created using BioRender.com.

Oncofusions drive cancer development primarily through two mechanisms: dereg-
ulation and the creation of hybrid genes. Deregulation occurs when one gene becomes
linked to another’s regulatory region, typically resulting in the overexpression of an oth-
erwise normal gene. The first conclusive evidence for the deregulation mechanism was
provided by analyses of Burkitt lymphoma (BL) and chronic myeloid leukemia (CML).
These oncofusions link the coding region of the MYC oncogene to the regulatory region
of immunoglobulin, leading to MYC overexpression and subsequently oncogenesis [7–9].
The second oncogenic mechanism involves the fusion of the coding regions of two dif-
ferent genes to generate a hybrid gene, resulting in a functional chimeric protein such as
BCR::ABL [2]. This oncofusion results in a fully functional protein with aberrant kinase
activity, and is the best-described model example of abnormal protein function resulting
from an oncofusion [10–15]. Indeed, oncofusions are known to disturb multiple critical
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cellular signaling pathways regulating proliferation, differentiation, and survival (Figure 2).
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Figure 2. Hybrid oncofusions disrupt many receptor-dependent signaling pathways, whether down-
stream or upstream. Common fusion-affected pathways are highlighted along with well-known
fusions affecting the corresponding pathways. BA: BCR::ABL, E6N3: ETV6::NTRK3, NA: NPM::ALK,
T2E: TMPRESS2::ERG. Image was created using BioRender.com.

While oncofusions are typically somatic mutations, a few hereditary exceptions have
been described [16]. Guided genomic methods such as quantitative real-time PCR (qPCR)
and fluorescent in situ hybridization (FISH), together with extensive genomic research
efforts like the Cancer Genome Atlas Project (TCGA) and the more recent Japanese Can-
cer Genome Atlas (JCGA), have contributed significantly to the identification of tens of
thousands of oncofusions since the 1960s and 1970s [3–5]. The TCGA project has been
particularly influential in shedding light on the scale, prevalence, and impact of oncofu-
sions. The project propelled forward the development of both identification strategies
and treatment options by molecularly characterizing over 20,000 cancer samples from
33 different cancer types.

The combined knowledge of all known oncofusions supports the significance of
deregulation and hybrid gene formation in fusion oncogenicity, although other mechanisms
may also play a role. Moreover, some oncofusions can drive cancer development via the
inactivation of cancer suppressor genes, for example by coupling them to regulatory
elements of genes that are not usually expressed [17,18]. The major challenge with vast
numbers of possible, probable, and confirmed oncofusions is validation and relevance:
many could be functionally irrelevant or barely expressed passenger mutations, and most
have been described as random mutations arising from chance events [19]. However,
as several studies highlight, non-driver mutations can still be very valuable for cancer
treatment due to their role in producing neoantigens [20,21].

2. Oncofusion Formation

Integration of transcriptomic and genomic data has estimated that approximately two
thirds of fusion mutations stem from erroneous repair of DNA DSBs [19]. Erroneous DNA
DSB repair can lead to genome instability, inducing mutagenesis and genomic rearrange-
ments such as deletions, inversions, duplications, and translocations. All of these genomic
rearrangements can result in the formation of oncofusions [22].
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Although the majority of fusions transpire in “gene-rich” areas of the genome [19],
intragenic fusions have been assessed to constitute only 38% of fusion events [23]. These
involve the joining of one gene’s coding sequence with the coding sequence of another, re-
sulting in an in-frame gene fusion such as BCR::ABL1 or TMPRSS::ERG. A large proportion
of oncofusions have intergenic regions from at least one fusion partner (Figure 3A), but
can sometimes still produce proteins where the 3′ fusion partner is also in-frame [23,24].
Some intergenic oncofusions are the result of a gene with an otherwise weak promoter
fusing to a stronger promoter or enhancer (e.g., IGH-MYC in BL) [25]. These events are
known as promoter or enhancer swapping [23]. In this review, we do not focus on inter-
genic fusions or fusions which lead to truncation (reviewed recently in [26]). While some
fusion genes have distinct partnering patterns in cancer samples (e.g., FGFR3::TACC3),
most oncofusion-forming genes do not have strict requirements for their partner genes [27].
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Figure 3. General assessment of fusions from tumorfusions.org database. (A) Count of fusions based
on frame prediction. (B) Fusion distribution based on gene type. N/A denotes genes which could
not be categorized definitively as protein kinases, transcription factors, tumor suppressors, or other
oncogenes. (C) Distribution of fusions based on frame prediction and gene type. Only fusions that
could be assigned to one of the four gene groups are included.

For the purpose of a general assessment of fusions and participating genes, we down-
loaded data from tumorfusions.org. Although tumorfusions.org data only reflect data
from TCGA and different analyses can produce different results, these data were deemed
sufficiently accurate for an overall representation of oncofusions. We conducted an analysis
of data downloaded from tumorfusions.org, focusing on key genes participating in fusions.
This dataset was then cross-verified and annotated with information from the COSMIC,
ChimerDB, and Uniprot databases. The genes were subsequently categorized into four
main groups for an in-depth analysis: kinases, transcription factors, non-kinase or TF tumor
suppressors, and other oncogenes. The majority of genes participating in fusions, such
as VMP1 and TACC3, do not belong to any of these groups (Figure 3B). Of the annotated
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genes, in-frame fusions, kinases, and transcription factors are equally common, and thus it
is no surprise that much research has focused on them in recent years (Figure 3C).

On the kinase side, the majority of the in-frame fusions originated from combinations
of FGFR3, BRAF, RET, NF1, and FGFR2, with 36, 33, 28, 18, and 18 fusions, respectively,
with a variety of partners (FGFR3 combined in particular with TACC3) (Figure 4A). A group
that has often been identified as a major contributor to fusions, as well as cancers driven by
other mutations, is the RTKs, especially the FGFR and NTRK subfamilies, as well as RET
and ALK.
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While kinases hold significant attention in oncofusion research, transcription factors
also play a considerable role. For instance, the most common genes involved in oncofusions
were ERG, RARA, TFE3, and ETV6, with 65, 28, 18, and 17 fusions, respectively. The group
in general was driven by the TMPRSS2::ERG fusion, which was overall the most common
fusion found, with 60 in-frame fusions identified in the tumorfusions.org TCGA dataset.

Genomic rearrangements are present in roughly half of hematopoietic cancers as well
as up to 90% of solid tumors [28], many of which harbor oncofusions [29]. The products of
these oncofusions play pivotal roles in tumor evolution and progression [30,31].

3. Oncofusions’ Role in Cancer Development

Cancer development has historically been viewed as a slow accumulation of mutations
which increases genomic instability, ultimately resulting in both driver and passenger mu-
tations [32]. Instability takes place at the nucleotide level, causing small-scale changes such
as point mutations and minor deletions, as well as at the chromosomal level, prompting
more substantial rearrangements of entire chromosomal segments [33].

Following the first large-scale identification of oncofusions in MPS studies, it was esti-
mated in 2007 that fusions accounted for roughly 20% of cancer morbidity and represented
early events in cancer genesis [31]. More recently, during the JCGA project, known oncofu-
sions from a limited panel of 491 were identified as driver mutations in 12.9% of cancer
specimens [5]. Identification varies by cancer type. It is noteworthy that the prevalence
of fusions is significant in specific cancers—they are identified in over 90% of all lym-
phomas [34] and more than 30% of soft-tissue tumors [35]. Other research has suggested
that fusions drive 16.5% of human cancers and act as solitary drivers in 1% [36]. These
estimates are likely to be reasonably accurate; however, our understanding of oncofusions
and their significance in human cancer will undoubtedly trend towards greater precision
as sequencing depth increases and the scope of MPS efforts expands.

Prominent Oncofusions in Cancer

Various kinase and transcription factor fusions are frequently emphasized as driver
oncofusions [6,37–44]. In the case of transcription factor fusions, prevalent mechanisms of
cancer formation revolve around the DNA-binding domain. Kinase oncofusions often lead
to the loss of kinase domain regulation and the acquisition of an alternative dimerization
mechanism, such as the coiled-coil domain of TACC3 in the FGFR3::TACC3 oncofusion [45].

In addition to gene groups, specific oncofusions have been highlighted as crucial early
steps in the initiation of tumorigenesis, or as crucial contributors to tumor morbidity [46–49].
Furthermore, many oncogenes seem to require the occurrence of specific fusion events
to unleash their oncogenic potential. In such instances, there is minimal variability in
how the fusion occurs, and they are frequently recognized as recurrent oncofusions in
large-scale studies. For example, the oncogenic potential of the IGH::BCL2 oncofusion
is derived from the combination of the anti-apoptotic BCL2 with the highly expressed
immunoglobulin locus of IGH [50,51]. A similar mechanism is often present in prostate
cancer, where the TMPRSS2::ERG oncofusion is found in roughly 50% of tumors and
MAN2A1::FER, MTOR::TP52BP1, and SLC45A2::AMACR occur at lower frequencies. The
common factor uniting these fusions is the association of an oncogene with a more active
promoter region [52–55].

4. Fusion Identification

Although MPS has been used to identify the vast majority of currently known on-
cofusions, most have yet to be functionally analyzed or validated. Consequently, their
mechanisms of action and therapeutic potential remain uncertain. While many oncofusions
are strong cancer drivers [17,56,57], others are mutations that have been detected even in
normal cells [58–60]. Indeed, chimeric RNAs have been proposed to serve as mechanisms
of phenotypic plasticity, allowing more variable responses to environmental circumstances
without increasing the number of genes [61].
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4.1. Fusion Callers

The advent of massively parallel sequencing in early 2000s revolutionized the detection
of cancer-specific mutations. Genomic and transcriptomic data collected through MPS have
contributed to publicly available data repositories such as TCGA and JCGA. The success of
treatment approaches targeted towards NTRK, ALK, and RET fusions has heightened the
demand for rapid and robust fusion detection. RNA-seq data provide high resolution and
complexity with less background noise and a broader dynamic range of gene expression [62].
The RNA-seq data available from TCGA have been used to identify and describe gene
fusions in many different studies [63–65]. Furthermore, the TCGA data have been utilized
in the development of multiple different software packages focused on the detection of
oncofusions from RNA-seq data. These fusion caller algorithms have undergone rapid
development in the past decade, and play crucial parts in the outcomes of sequencing
studies [66–68].

Oncofusion identification from sequencing data varies based on the specific fusion
caller software employed. Numerous fusion caller algorithms have been published over
the past decade [66,67]. Generally, these callers search for reads corresponding to multiple
genes and subsequently identify reads that span the fusion breakpoint. However, composite
fusions, which involve the combination of more than two genome segments, are usually
not considered [24,69]. To best filter actionable and medically relevant oncofusions, various
statistical measures are applied alongside a threshold requirement for a minimum number
of reads spanning the breakpoint and surrounding regions. Following this, fusion detection
proceeds either by assembling sequences into transcripts from which fusions are identified,
or by first mapping reads to genes and only then assembling them into transcripts. The
former approach excels at recovering fusion transcripts, while the latter has a higher
sensitivity [66]. Given the abundance of fusion caller algorithms, variance in their results
has prompted the development of metacallers, which often take input from multiple
fusion callers and use the top-performing methods to rescore candidate fusions [67,70,71].
Ultimately, metacallers enhance the overall identification confidence by utilizing the most
effective algorithms [70]. Through sample collection, sequencing, and bioinformatics
analysis, it becomes feasible to examine the oncofusion expression landscape of a certain
tumor sample. Identifying oncofusions can inform clinicians about additional targets for
supplementary treatment options [72,73].

The significance of analyzing the mutation and fusion landscape is exemplified in
breast cancer research, where clinical trials have explored the use of FGFR inhibitors
(erdafitinib, AZD4547, PD173074, and infigratinib) in breast cancers that harbor FGFR am-
plifications, mutations, or gene fusions [74,75]. Combining novel oncofusion discovery and
the quantification of known oncofusions with rapid testing through sequencing represents
a key advantage of employing RNA-seq for clinical diagnosis, treatment, and research in
the case of fusion-positive cancers.

4.2. Protein-Level Analysis of Oncofusions

At the transcript and protein level, however, fusions become more complex. Even
fusion events which DNA-level analysis indicate should produce out-of-frame fusion
genes can produce in-frame transcripts and, presumably, proteins [76,77]. Decoding the
protein production of oncofusions is an important consideration from both academic and
clinical points of view. For instance, detectable and known proteins are required for use
as early neoantigens [78] and conducting protein-level functional studies is essential to
understanding the behavior of oncofusions. To address the former need, approaches have
been developed to work around and complement multiple fusion callers [78].

Numerous earlier studies have pinpointed transcription factors and protein kinases as
major gene groups of interest partaking in oncofusions [6,17,31], and these groups make up
a large portion of recurring fusions (Figure 4B) as well. A classic example of transcription
factor fusion is the EWSR1::FLI1 fusion, which is a common driver in Ewing sarcoma [79,80].
The most notable protein kinases involved in fusions include the MAST kinases in breast
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cancer [81], present in 3 to 5% of cases, as well as RET in various cancers (particularly
lung and thyroid) [76,82–84] and other RTKs in a variety of tumors [36,36,85–97]. Such
rearrangements are occasionally cancer-specific, or may be observable in distinctly different
cancer types. The fusion of MAN2A1 and the tyrosine kinase FER, for example, activates
EGFR-driven proliferation of the cell. Their fusion product MAN2A1::FER has been found
in several different types of tumors and even in patient serum samples [98–100]. The
presence of genes participating in fusions in multiple types of tumors probably points
towards a competitive advantage conferred by the recurring fusion mutations, and many
such recurring oncogenic fusions have been shown to drive cancer evolution (reviewed in
more detail by Glenfield and Innan in 2021 [101]).

While in the early decades of oncofusion identification, transcription factors and ty-
rosine kinases were the most prominent participating gene groups identified, the cast of
genes and the variety of their roles is now as wide as the genome: from R-spondins to nucle-
oporins [102–104]. Out of over 20,000 known fusion mutations, the majority are considered
passengers rather than driver mutations [19]. The vast majority of fusions identified in
MPS studies are non-recurring, and, as such, have been identified as stochastic events [19].
While large-scale MPS efforts have been enormously productive in identifying fusion break
points, novel oncofusions and their acting mechanisms are still being identified from MPS
data at an accelerating pace [85–88,105–120], and while multiple fusion databases are avail-
able [64,121,122], a centralized and standardized hub akin to, for example, IntAct [123] for
interaction data or UniProt [124] for protein information has yet to emerge.

5. Functional Validation of Gene Fusions

Despite the exponential increase in the number of identified gene fusions, only a small
number have been extensively characterized functionally. Within the Catalogue of Somatic
Mutations in Cancer (COSMIC), only 10 fusions out of 306 detected fusions have been
mentioned in more than 50 papers, among which we can find driver fusions identified in
the late 1900s such as BCR::ABL, EML4::ALK, CCD6::RET, EWSR::FLI1, NPM::ALK, and
TMRSS2::ERG. Recent analysis of TCGA RNA-seq data has demonstrated identifiable
effects of hundreds of protein kinase or transcription factor fusions, suggesting that even
mutations thought of as passengers have biological meaning in the case of fusions [6].

Relatively high-throughput functional characterization of oncofusions can be achieved
by integrating different omics approaches to gain insight into the roles these oncofusions play
in different cancers. Thus far, the major focus has been on genomic and transcriptomic ap-
proaches; even though these approaches can be used to determine the molecular environment
of the cells, they do not fully capture the dynamic landscape of the intracellular reality.

Proteomic approaches allow the investigation of a highly dynamic and structured
intracellular protein space. Extensive genomic perturbations such as gene fusions cause
major changes to two different proteins and thus result in an aberrant phenotype leading
to cancer. To best understand the actual molecular function of gene fusions, we need to
add proteomics to the transcriptomic and genomic information.

Advancements in mass-spectrometry-based methods have enabled the identification
and quantification of the majority of the proteome. These methods can be used to investigate
post-translational modifications, protein structure, and the composition stoichiometry and
topology of protein complexes [125]. Of major interest for chimeric proteins is the application
of proteomic approaches to identify fusion-specific protein signaling networks [126,127].
Traditional methodologies, such as Western blotting or co-immunoprecipitation, have been
and are still being used to identify fusion-specific signaling pathways. However, the higher
throughput of mass-spectrometry-based methods has relegated these methodologies mostly
to the role of orthogonal validation of identified interactions.

Oncofusion proteins are considered important for cancer initiation [101], progression,
and therapeutic resistance [128–130]. It has already been shown in the example of hemato-
logical malignancies that the eradication of oncofusions can lead to successful treatment
outcomes [31]. The goal of precision medicine for cancer is therapeutic intervention within
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the processes specific to cancer cells, and this is where the value of in-depth functional
investigation of oncofusions lies [131,132]. Understanding the mechanisms of oncofusions
can lead to the development of fusion-specific drugs. This is an attractive venture because
oncofusions are present only in cancer cells; the drugs could be less toxic and could lead to
remarkable treatment results in cases in which oncofusions are the sole cancer drivers [131].

6. Oncofusion-Specific Molecular Mechanisms

While deregulation is usually understood to refer to the deregulation of gene expres-
sion, in oncofusions there may be as many levels of deregulation as there are regulation.
In addition to promoters and enhancers [133], deregulation mechanisms that function
via transcript or protein stability have been identified and confirmed in many recurring
fusions [134–136]. Intergenic fusions often result in dysregulation of the affected genes
(referred to as promoter or enhancer swapping or hijacking), whereas intragenic fusions
more often result in the dysregulation of protein domains, such as constitutive activation of
a kinase domain. The retention of an intact kinase domain and its subsequent activation
or deregulation is an important facet of oncofusions, as it contributes directly to cancer
development [137].

Some oncofusion proteins have also been proven to be more stable than their wild-
type counterparts. For instance, the half-life of the ERG protein is 2.5 h, while that of
TMPRSS2::ERG is longer than 5 h [138]. The difference can be as drastic as almost triple in
time, as is the case for the PML protein, which has a lifetime of 8 h while that of its fusion
PML:RARA is almost 24 h [139]. There are two main mechanisms contributing to the high
stability of oncofusions: inactivation of ubiquitin-proteosome degradation and loss of the
protein-degradation domain altogether [140,141]. Evading degradation and maintenance
of stability makes oncofusions prominent oncogenes.

Many receptor tyrosine kinase (RTK) fusions result in a product that lacks the trans-
membrane domain and is thus no longer tethered on the cytoplasmic side of the plasma
membrane, or that gains a nuclear localization signal from the fusion partner. As an
example, ALK fusions in lung cancer have long been observed to have multiple differ-
ent phenotypes depending on the fusion partner, including cytoplasmic, nuclear, and
phase-separated [142–146].

RTK fusions are indeed often good examples of oncofusion-induced kinase activation.
A prime example is the identification of NTRK oncofusions as key drivers across diverse
cancer types. The NTRK gene family encodes three TRK receptors: TRKa, TRKb, and
TRKc. Each of the receptors is composed of an extracellular domain, a transmembrane
region, and an intracellular domain (ICD) which contains the tyrosine kinase domain and
its activation loop. Within the ICD, five critical tyrosine residues regulate the receptor’s
kinase activity: three on the activation loop and two flanking the kinase domain. While
the activation loop sites govern kinase activity, the remaining two tyrosine residues act as
phosphorylation-dependent docking sites for various adapters and enzymes essential to
the receptor’s signaling functions.

ETV6::NTRK3 fusions include the HLH domain from ETV6, which in WT-ETV6 acts as
a dimerization domain and can therefore serve as a way for the kinase domain of NTRK3 to
dimerize in the absence of the usual activation stimuli of the receptor. Indeed, fusions are
the most common mechanism of oncogenic NTRK activation, and these fusions are found
in ~0.31% of adult tumors (and 0.34% of pediatric ones) [147]. However, in certain cancer
types, they are nearly always present [147]. Their presence in cancers such as colorectal
cancer (CRC) is a well-defined diagnostic marker and indicates probable resistance to
EGFR-inhibitor treatment [91,148]. Similarly, RET fusions occur at a very low rate in CRC,
but are diagnostic due to being mutually exclusive with other driver mutations [149].

In addition to the diagnostic role of kinases involved in oncofusions, their impact can
generate measurable changes that lead to more rapid diagnosis. For example, PLAG1-
fusion-driven cancers feature a significant increase in Wnt and IGF signaling [150]. Similarly,
the BCR::ABL1 fusion in CML functions via constitutive kinase activation, which in turn
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drives proliferation by enhancing downstream signaling pathways [151–153]. The path-
ways affected are distinct from the similar SFPQ::ABL1 fusion [154]; thus, clinicians can
acquire valuable information regarding potential causes and treatment options for a tumor
prior to employing RNA or DNA sequencing methods.

7. The Importance of Oncofusion-Specific Molecular Mechanisms

Over the past two decades, intensive research has focused on uncovering the func-
tional roles of a select group of oncogenic fusions. More recently, large-scale sequencing
efforts such as TCGA and JCGA have detected hundreds of gene fusions in different
cancers with unknown oncogenic mechanisms. Oncofusions promote oncogenesis at the
transcriptional and phenotypic levels through a multitude of different mechanisms [155].
A robust understanding of the roles of OFs in different cancers calls for the integration of
high-throughput omics methods. Although large-scale genomic fusion identification has
been an ongoing effort, with whole repositories full of the resulting data, functional studies
are sorely needed. The following examples emphasize the intricate nature of oncogenesis
driven by gene fusions.

7.1. BCR::ABL

The discovery of the Philadelphia chromosome 1 (Ph1) and BCR::ABL gene fusion
sparked substantial interest in uncovering and exploring the roles of gene fusions in
cancer. Despite the limited resources and methodologies of the time, the discovery of
Ph1 revolutionized the diagnosis and treatment of many cancers [2]. Decades after the
discovery of Ph1, advanced cytogenic and cloning methods revealed that the chromosomal
translocation between chromosome 9 and 22 resulting in the formation of Ph1 forms a
chimeric fusion of the breakpoint cluster region (BCR) and Abelson tyrosine-protein kinase
(ABL) genes [156,157]. Simultaneously, Naldini et al. [158] were trying to identify the
functional effect of Ph1 and the resulting chimeric protein. With the use of Ph1+ leukemic
cell lines and simple proteomic methods such as Western blotting, immunoprecipitation,
and radioactive kinase activity assays, the researchers determined that there are two
isoforms of chimeric BCR::ABL, p210 and p190. P120 is a hallmark of chronic myeloid
leukemia and p190 occurs in Ph1+ acute lymphoblastic leukemia [159]. They also showed
that the ABL found in these chimeras is constitutively activated and that it phosphorylates
smaller substrates [158].

In contrast to the wild-type ABL found in both the nucleus and the cytoplasm, the
BCR::ABL fusion protein is strictly cytoplasmic, where it undergoes its primary functional
interactions [160]. Physiological ABL in the nucleus inhibits cell growth, a function that is
abolished once it is fused with BCR. However, inactivated BCR::ABL can enter the nucleus and,
once entrapped there, it results in the apoptosis of all fusion-positive cells [161,162]. The kinase
domain’s overactivation and the phosphorylation of BCR aberrantly activates the MAPK,
JAK/STAT, and PI3K/AKT pathways, enabling the cell to evade apoptosis while promoting
proliferation [163]. The discovery of BCR::ABL guided subsequent genomic discoveries which
resulted in the identification of hundreds of fusions in the following years.

7.2. ETV6::NTRK3

Among the oncofusions of the TRK family, ETV6::NTRK3 (E6N3) demonstrates trans-
formative capabilities in multiple cell types and can be found in numerous hematolog-
ical and solid tumors [164–166]. E6N3 is the product of a chromosomal rearrangement
t(12;15) (p13;q25) that has been identified in congenital fibrosarcoma, secretory breast carci-
noma, acute myeloblastic leukaemia, and gastrointestinal stromal tumors. E6N3 encodes a
chimeric oncoprotein consisting of the N-terminal SAM dimerization domain from ETV6
and the C-terminal protein tyrosine kinase (PTK) domain from NTRK3. The constitutively
active kinase domain in E6N3 has strong transforming abilities in vitro and in vivo.

ETV6 and NTRK3 exhibit preferred breakpoint sites—ETV6 up to exon 4 or exon 5,
NTRK3 from either exon 12 or exon 13—resulting in four different E6N3 fusion variants. The
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most frequently detected is the canonical E6N3 variant, which features a breakpoint between
ETV6 exon 5 and NTRK3 exon 13 [167]. The different fusion variants are distinguished
by the presence or absence of ETV6 exon 5 and NTRK exon 12. The ETV6 exon 5 forms
the interdomain between SAM and ETS necessary for transcriptional repression, while
the NTRK3 exon 12 contains the tyrosine 516 (Y516), an interaction site necessary for
downstream signaling.

The most common variant, known as canonical E6N3, promotes downstream Ras/ERK
and PI3K/AKT. The active kinase domain of NTRK3 combined with the intact SAM
oligomerization domain of ETV6 induces ligand-independent PTK dimerization followed
by kinase activation, leading to the stimulation of diverse signaling pathways [168].

In the early 2000s, Tognon et al. studied the E6N3 oncofusion extensively, using
different virally transduced cell models for Northern and Western blotting experiments,
co-immunoprecipitation, and different mutagenesis assays to describe how E6N3 exerts its
oncogenic activity. They found that both Mek1 and Akt are phosphorylated in a serum-
independent manner in E6N3-expressing cells, leading to constitutive activation of the
Ras–Erk1/2 and PI3K–Akt pathways. The subsequent overactivation of these pathways
can increase the expression of cyclin D1, promoting cell growth through the evasion of cell
cycle arrest [169].

In their effort to describe the exact mechanism underlying the functionality of E6N3, re-
searchers discovered that E6N3 does not interact with previously known NTRK3-associating
proteins such as Shc, Grb2, PI3K p85, ABL, SH2Bβ, Src, or Ship2, but rather requires a
functional insulin-like growth factor 1 (IGF1) axis to induce oncogenesis [170]. Subsequent
in vivo and in vitro functional assays revealed that E6N3 exerts its function through a
different pathway by interacting with IGF1R/INSR signaling. A decade later, Tognon et al.
demonstrated that inhibition of the IGFR/INSR pathway in E6N3 in vivo and in vitro mod-
els led to reduced tumor growth and cyclin D1 expression, suggesting a reliable alternative
target to TRK inhibitors or for combinatorial drug treatment [171].

7.3. NPM::ALK

Over 80% of ALK-positive anaplastic large-cell lymphomas (ALK + ALCL) are character-
ized by a chromosomal translocation t(2;5)(p23;q35) resulting in the nucleophosmin-anaplastic
lymphoma kinase NPM-ALK (NA) fusion protein. The presence of an intact NPM domain
causes the dimerization of the ALK kinase and leads to constitutive activation of the kinase
domain—a crucial event for oncogenesis. As NPM is a nuclear protein necessary for chain
elongation during DNA replication, it potentially mediates the nuclear localization of NA,
thereby exposing the fusion protein to a new assortment of kinase substrates.

Known ALK interactions have been tested in NA+ cell lines to identify the pathways
NA uses to exert its influence. While NA interacts with characteristic ALK partners such
as Shc and IRS, these interactions have been deemed non-essential for the transformation
potential of the oncofusion [172,173]. Early affinity purification and chromatography
separation methods revealed that NA interacts with the SH domains of Grb2 and PLC-
gamma, with PLC-gamma exhibiting the strongest interaction. Mutagenesis experiments
further demonstrated that disrupting the interaction with PLC-gamma via mutation of the
tyrosine 664 of NA was sufficient to inhibit mitogenesis [172].

Subsequent studies probing the function of NA indicated that different pathways
are utilized for the anti-apoptotic properties of NA-positive ALCL. High-throughput
proteomic methods revealed that NA associates with PI-3-kinase and Src kinase pp60 (c-Src)
to evade apoptosis and promote proliferation. Additionally, it was discovered that NA
activates JAK2 and phosphorylates STAT3 in the JAK–STAT pathway [174]. Mutagenesis
studies inhibiting NA’s interactions with PI3K, Src, and JAK2 resulted in diminished
cell growth in NA-positive samples, which highlighted these targets for the treatment of
NA+ cancers [172,175,176].
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7.4. TMPRSS2::ERG

In human prostate cancer, TMPRSS2::ERG (T2E) is the most commonly observed
oncofusion. T2E arises from an intrachromosomal deletion which results in the 3′ end
(C-terminal) of Transmembrane serine protease 2 (TMPRSS2) merging with the 5′ end
(N-terminal) of ETS-related gene (ERG). ERG is a proto-oncogene and part of the ETS tran-
scription factor family, which has been found to be consistently overexpressed in ~50% of
patients with prostate cancer (PC). TMPRSS2 is an androgen-regulated protein kinase essen-
tial in proteolytic cascades for the normal physiological function of the prostate [177]. The
T2E fusion serves as a central malignant regulatory switch in PCa by inhibiting androgen-
receptor-driven differentiation, which leads to the transformation of epithelial prostate
cells into undifferentiated, embryonic stem-like cells [55].

T2E induces ERG overexpression due to the androgen-responsive promoter of the
TMPRSS2 gene. Overexpressed ERG activates epithelial-to-mesenchymal transition (EMT)
pathways, which leads to cancer progression and metastasis. ERG achieves this through
different pathways: it promotes metastasis by upregulating the matrix metalloproteinases
and using the ZEB1/ZEB2 axis to promote mesenchymal cell transition. Additionally, ERG
hyperactivates inflammatory pathways by interacting with TLR-4, which subsequently
activates NF-kb, increasing the transcription of target genes which trigger tumor growth
and progression [177].

Furthermore, ERG activates the EZH2 promoter, leading to the inhibition of tumor
suppressor genes such as NKX3.1 and resulting in constitutive T2E expression [55,178].
Patient RNA-seq analysis has revealed that T2E-induced overexpression of ERG directly
correlates with different Wnt signals as well as the upregulation of frizzled receptors such
as FZD4. Wnt ligands bind to frizzled receptors and trigger a signaling cascade which
stabilizes B-catenin. Stabilized B-catenin acts as a transcription factor to increase gene
expression related to EMT [179,180].

Prostate cancer prognosis and mechanisms are not solely dependent on ERG expres-
sion. T2E is frequently followed by PTEN and TP53 loss, leading to overactivation of the
PI3K/Akt signaling pathways and progression into invasive carcinoma [181,182]. Recent
studies demonstrated that ERG increases expression of IGF1R via activation of the transcrip-
tion factor Sp1. Further mass spectrometry experiments subsequently revealed a possible
new multimeric complex in a PC cell line involved in ERG-mediated effects on the IGF1R
signaling axis [183]. Since targeting androgen receptors alone often results in resistance to
treatment, identifying different interactors and pathways affected is a key method in the
development of novel treatment strategies. In conclusion, T2E and ERG overexpression
promote cell proliferation, survival, and angiogenesis while modulating tumor progression
and aggressiveness. Clinical treatment of PC has already taken advantage of the informa-
tion uncovered thus far, indicating that a richer treatment landscape will become available
for clinicians as the amount of information grows [184].

The increased workload required to describe the functionality of OFs using low-
throughput methods, together with the high occurrence of specific fusions such as BCR::ABL
or TMPRSS2::ERG, explains why functional studies in the past have focused on a handful of
prominent fusions. Simultaneously, advanced genomic and transcriptomic approaches have
been successfully used to understand the function of OFs at the genetic and transcriptomic
levels. However, these methods do not reflect the direct intracellular consequences or
detailed molecular mechanisms of OFs. To depict a complete picture of OF function,
the inclusion of functional proteomic studies alongside high-throughput genomics and
transcriptomics is imperative. The aforementioned examples illustrate how the integration
of different methods leads to a deeper understanding and characterization of the molecular
properties of gene fusions. This yields clinically relevant insights, leading to better diagnosis
and new avenues for the development of treatment.
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8. Gene Fusions as Neoantigens

The genetic alterations that accumulate in cancerous cells give rise to tumor-specific
antigens (TSA), or neoantigens. Neoantigens are presented by MHC (major histocompat-
ibility complex) proteins to T cells, subsequently eliciting an immune response. Innate
immune cells kill cancer cells; however, cancer cells inevitably acquire methods to evade the
immune response. A multitude of therapeutic strategies are under development to boost
the anti-cancer response of the immune system, including tumor vaccines, transference of
tumor-infiltrating lymphocytes, TCR-transduced T cells, immune checkpoint blockades
(ICBs), bispecific antibodies, CAR-T cells, and modulators of the tumor microenviron-
ment [185,186].

Neoantigens originate from the mutational burden of the cancer cells. They can be
shared between different cancers [187] or cancer-specific [188]. They hold promise for pre-
cision oncology because they are cancer-specific and absent in healthy cells. Neoantigens
arise at the genomic level from SNVs (single-nucleotide variants), INDELs (base insertions
and deletions), and gene fusions, whereas at the transcriptomic level, they can arise from
alternative splicing, polyadenylation, RNA editing, and non-coding regions. Additionally,
protein-level alterations such as the dysregulation of proteins or post-translational modifi-
cations can also produce neoantigens [186]. Even though transcriptomic and proteomic
determinants may offer high specificity and a large pool of targets, they remain mostly
unexplored. Currently, INDELS and gene fusions represent the best-understood sources
of neoantigens [186]. Similarly to neoantigens, fusions also offer other fusion-specific
opportunities for treatment, such as abnormal splice sites and other sequence features that
may represent therapeutic vulnerabilities in cancer cells [189].

8.1. Neoantigen Immunogenicity

Among these sources of neoantigens, gene fusions hold significant advantages due
to their elevated immunogenicity: They offer more neoantigens per mutation, they rarely
occur in healthy cells, and they can be shared between tumors. A comprehensive analysis of
TCGA data demonstrated that gene fusions generate 6-fold more neoantigens and 11-fold
more fusion-specific neoantigens compared to SNVs and INDELs [190,191]. Gene fusions
are a rich resource for highly immunogenic neoantigens, as illustrated by only 5.8% of the
shared recurring fusion neoantigens detected in the TCGA having a low immunogenic
potential [186,190]. Another possible result of an intergenic fusion event is the creation
of an out-of-frame fusion protein, in which the 3′ gene experiences a frame shift and
contributes nonsense to the resulting protein sequence. Previously, such out-of-frame
fusions have been shown to be stable, i.e., not rapidly degraded, but the specific function
of the out-of-frame fragment remains unknown [192]. Fusions from this group are often
assumed to be inactivating mutations [193], or are labeled passenger mutations or ignored
altogether in analysis [135,194]. However, stable out-of-frame fusions with drastically
distorted downstream amino acid sequences and passenger mutations possess the highest
immunogenicity [190].

Kinase and oncogene fusions are likely to retain their ORFs to maintain their onco-
genic function and promote cell growth, compared to tumor suppressors and passenger
mutations [190]. Oncofusions containing oncogenes have a very low immunogenicity,
which indicates that they undergo selection pressure during tumorigenesis. Although
studies thus far have often focused on driver mutations, it is interesting that cell growth
and immune resistance increase the amount of passenger fusions, which makes them highly
immunogenic and thus very interesting for vaccine development.

In 32.2% of TCGA patients, highly immunogenic neoantigens were generated due
to oncofusions, rendering them suitable for neoantigen vaccine development [190]. Pedi-
atric patients with metastatic Ewing sarcoma and alveolar rhabdomyosarcoma generally
have a 5-year survival rate of less than 25%. However, an already concluded clinical
trial using EWS-FLI1 and PAX3/FKHR breakpoint peptides (NCT00001566) as a vaccine
in combination with supplementary immunotherapies resulted in a 43% 5-year overall
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survival rate [195]. Since then, there have been follow-up clinical trials using similar pep-
tide vaccines (NCT00001564). A BCR::ABL fusion peptide vaccine has also been tested in
clinical trials (NCT00267085). Currently, one clinical trial testing a peptide vaccine against
DNAJB1::PRKACA for patients with fibrolamellar hepatocellular carcinoma (NCT04248569)
is in the recruitment phase. The low number of clinical trials investigating fusion vaccines as
single treatments is likely attributable to the aggressiveness of fusion-positive cancers [191].

8.2. Treatment Potential for T-Cell Therapies

The potential of gene fusions in adoptive T-cell therapy has been predominantly
investigated in vitro. Highly immunogenic neoantigens produced by TMPRSS2::ERG2 in
pancreatic cancer, DEK::AFF2 in metastatic head and neck cancer, and CBFB::MYH11 in
acute myeloid leukemia have been used to generate neoantigen-reactive T-cells. Cytotoxic
T cells specific for fusion antigens, tested on cell models, in vivo, and in xenografts, have
exhibited promising results for the use of fusion neoantigens in development of neoantigen
reactive (NRT), T-cell receptor (TCR), and chimeric antigen receptor (CAR) T cells [196–198].
In short, fusions, particularly ones previously dismissed as of little interest, hold huge
potential for cancer immunotherapy. A challenge remains in identifying broadly applicable
neoantigens with high immunogenic potential, rather than patient-specific ones.

9. Clinical Implications

Oncofusions have long been tempting targets for cancer therapeutics and diagnostics
due to their significance and cancer-specificity [199]. The world of cancer diagnostics and
treatment is always looking for new biomarkers that can help to diagnose accurately or
early, indicate prognostic or therapeutic attributes, or indicate a relapse or response, among
other information [200]. For example, the BCR::ABL1 rearrangement of the Philadelphia
chromosome has become an early biomarker for chronic and acute myeloid leukemias, as
well as for monitoring in the case of a relapse or incomplete response [201]; in prostate
cancer, TMPRSS2::ERG fusion detection has been suggested as a screening tool [202].
However, the detection of fusions beyond diagnostic sampling has also been shown to yield
results, and fusions contribute to the mutational burden of tumors post-treatment [203].
Moreover, oncofusions are some of the most cancer-specific biomarkers identified thus far,
rendering them immensely valuable tools to detect both tumors and their driver genes.
Although many fusions have also been detected in normal tissues [58], even passenger
fusion mutations can still provide powerful and cancer-specific neoantigens for therapeutic
use [204]. Overall, the development of methods relating to fusion detection and targeting
is changing the treatment landscape of multiple cancer types [27,143,205–207].

As a diagnostic tool, DNA sequencing alone has been shown to be unreliable for
determining prognostic outcomes and treatment efficacy in at least some fusion-driven
cancers [76,77,208]. However, for in-frame fusions, DNA-seq works roughly as well as
RNA-seq, and is still an important tool particularly for patients who do not have suffi-
cient tumor sample mass for concurrent DNA- and RNA-seq [76]. For example, in lung
cancer, one of the main activation mechanisms of the common driver gene BRAF is a
fusion mutation [209,210]. BRAF fusions have also been identified as mechanisms of sec-
ondary resistance after treatment of EGFR-driven cancer with tyrosine kinase inhibitors
(TKIs) [211]. Fusions as mechanisms of treatment resistance independent of original driver
genes have been reported for multiple types of cancer [94,211–214], and some secondary
RTK oncofusions in particular act as mechanisms of acquired TKI resistance [94,212,215].

Specific fusions are associated with particularly difficult cancers. For example, while
NRG1 (which encodes the ligand for ErbB2 and -3 RTKs) fusions are found in 0.2% of solid
tumors [216], they can be found in 25% of cases of the uncommon invasive mucinous lung
adenocarcinoma [217]. The presence of the TMPRSS2::ERG fusion in prostate cancer is
associated in part with cancer recurrence, and commonly corresponds to a more aggressive
malignancy and overall poorer clinical prognosis [31,54,218–222]. Generic attributes such
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as fusion type (intra- or intergenic) alone have thus far not been shown to be reliable
characteristics for prediction, e.g., of treatment outcomes or cancer progression [223].

However, detection in a clinical setting mostly relies on low-throughput methods such
as FISH or immunohistochemistry, which require relatively high amounts of tissue sample
and can only test for one fusion at a time [224,225]. The exception to this is qPCR, which,
while still low-throughput, is more sensitive and can be somewhat multiplexed [224,225].
More recently, RNA-seq methods have been shown to be both rapid and equally sensitive
for fusion detection, while being able to identify any fusion genes present in the patient
sample with little starting material and with impressive specificity [96,226,227]. The meth-
ods applied can be successfully deployed for all oncofusions; however, those with low
expression levels remain a challenge [226,228]. This concern can be somewhat mitigated by
using targeted MPS methods [227]. In general, RNA-seq approaches still benefit from faster
turnaround time, the ability to detect multiple kinds of mutations from a single sample,
and requiring a small amount of sample material [224]. In addition, it may be possible to
gain additional insights about the tumor microenvironment as well [229].

The presence and specific detection of oncofusions may guide the treatment process
from diagnosis to prognosis, and may help to inform clinical actions as well as set expecta-
tions for patient response and further treatment [224]. Given the cancer-specific nature of
oncofusions, targeting them and their protein products has been proposed as a strategy to
minimize off-target side effects, which are very often present in cancer therapeutics [95].
Oncofusion-specific therapies have indeed already been developed; however, all of them
target RTKs, partly due to the strong oncogenic potential of RTKs and partly due to the
availability of existing kinase inhibitors such as imatinib [89,230–234]. Unfortunately, in-
hibitor treatments are also effective at generating selective pressure, which can lead to
evolution of the cancer into a version that is resistant to the applied therapy, thereby buying
valuable time, but ultimately not curing the cancer [151,235–237]. Recently, a lower dosage
of inhibitors has been suggested as a therapeutic regimen aimed at containing the tumor
rather than eliminating it and causing higher selective pressure [238]. Meanwhile, later-
generation tyrosine kinase inhibitors have been shown to somewhat mitigate the risk of
acquired resistance [151]. Oncofusion-specific treatment options, therefore, are still in their
early days as a way of curing the disease, while the treatment of kinase fusions with kinase
inhibitors is an evolving, mature field with many drugs already available [42,44,239–241].

10. Conclusions and Future Directions

Integrative omics studies hold immense potential for the development of cancer-
specific drugs. An example of a targeted treatment is the breakthrough discovery of
imatinib. Imatinib is an ABL kinase inhibitor targeting BCR::ABL and it was the first exam-
ple of a targeted cancer therapy. This discovery prompted the exponential development of
kinase inhibitors (KI) for many mutated kinases, including OFs. The development of omics
approaches and their application in clinical settings will expand the growth of precision
medicine, especially in the sphere of tumors harboring gene fusions. A practical example
can be seen in a recent study combing high-throughput patient-derived organoid drug test-
ing and sequencing conducted by Murumägi et al. in 2021 [242]. RNA sequencing revealed
the presence of a STERN-ALK fusion in a malignant peritoneal mesothelioma (MpeM)
in a pediatric patient. Patient cells were used to generate organoid cultures to test over
500 drugs. The results identified ALK inhibitors as efficient drugs with variable efficacy
between different inhibitor types. Interestingly, most cytotoxic drugs had low efficacy, but
multiple other effective drugs that inhibited ALK downstream pathways were identified.
The standard first-line treatment for mPeM is cytoreductive surgery (CRS) with heated
intraperitoneal chemotherapy (HIPEC), and the prognosis is less than 12 months after
diagnosis. However, after detailed molecular profiling, the patient was treated with the
ALK inhibitor citrozininb in combination with chemotherapy; at the time of writing, they
had reached complete cancer remission with no recurrence 3 years after diagnosis [242].



Cancers 2023, 15, 3678 16 of 27

Although kinase inhibition is an effective and currently the only more or less oncofusion-
specific approach, it inevitably culminates in drug resistance [89,236]. A potentially fruitful
alternative avenue for small-molecule inhibitors are cancer-specific protein–protein interac-
tions, for example on the IL-6/JAK/STAT axis. FDA-approved agents for inflammatory
diseases targeting the IL-6/JAK/STAT axis are being evaluated together with novel STAT3-
specific inhibitors for the treatment of hematological malignancies and solid tumors [243].
Several trials are also exploring multi-axis targeting in cancer therapeutics. For instance, a
2022 phase 1 clinical trial (NCT05010005) investigated a combinatorial treatment of the JAK
inhibitor ruxolitinib and the PI3K inhibitor duvelisib for different lymphomas, including
ALCL. Another clinical trial study in 2018 tested the combination therapy of ruxolitinib
and the BCR::ABL inhibitor nilotinib in CML patients, resulting in positive outcomes which
warranted progress to the next phase [244]. The evaluation of targetable signaling axes spe-
cific to oncogenes is paramount to steering cancer therapeutics toward precision medicine
and fostering the development of novel drugs and drug repurposing.

Some oncofusions are left without an effective treatment option. Cancers harboring
transcription factor fusions such as EWS::FLI1 in Ewing sarcoma lack easily targetable
pockets in their structure. Furthermore, many kinases in OFs can experience partial or
complete kinase domain loss, which can render kinase inhibitors ineffective in treating
these cancers. The limitation of inhibitor drugs can be surpassed by the development of
directed protein-degradation molecules. In the era of development of molecular glues
and proteolysis-targeting chimeras (PROTACs), attacking these undruggable targets is
becoming an achievable goal [245,246]. Protein degraders are a promising treatment option
not only for the direct eradication of oncoproteins but also for overcoming drug resistance.
With the advancements in the field since the first PROTAC, ARV-471, entered clinical
trials, many degrader compounds have been developed to target different proteins from
kinases to transcription regulators [245,246]. These treatments cause a significant drop in
the stability of the mutated proteins [247].

The most up-to-date research on the use of protein degraders for oncofusion proteins
is still in the preclinical phase. Nevertheless, the results are promising. PROTACs targeting
BCR-ABL [248,249] and ALK fusions [250,251] already show potent degradation activity. Since
the PROTAC small-molecule warheads are made of existing kinase inhibitors, they currently
focus on kinase fusions. In these instances, PROTACs not only degrade the oncofusions,
but also inhibit drug resistance [252,253]. The development of protein degraders such as
molecular glues [254] and PROTACs shows promising potential for targeting oncofusion
proteins, overcoming drug resistance, and expanding treatment options in cancer research.

Overcoming resistance and achieving precision therapy towards only cancer cells is an
important, yet still overall unmet clinical need in the cancer field [212]. Considering the role
of fusions as primary drivers and mechanisms of resistance to treatment, more functional
information for the development of alternative treatment strategies is required. However,
in contrast to troublesome resistance mechanisms, a promising use case for fusions is in
their role as diagnostic markers, and neoantigens for precise immunotherapy [204]. For
patient monitoring, continuous sampling, especially during treatment progress, may be
required to identify additional mutations, including fusions (discussed in more detail by
Powers [200]), which could be utilized to target the cancer instead of the initially identified
driver mutations.

To conclude, addressing the challenge of resistance and advancing precision therapy
for cancer cells requires a deeper understanding of oncofusions. Information about onco-
fusions at the sequencing level is already spectacular and increasing steadily. However,
the protein-level implications of oncofusions and their specific mechanisms of interaction
remain largely unknown. OF-specific features such as splice sites and neoantigens are
already attractive potential targets for current and future treatment regimens. Therefore,
the ever-increasing amount of patient-specific data together with future functional studies
relating to the protein level of OFs seems promising for ushering in a wealth of therapeutic
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avenues for future exploitation and, ultimately, an increasing proportion of cancers that are
successfully treated.
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