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Simple Summary: Prostate cancer is currently treated with different radiotherapy fractionations,
including extreme hypofractionation. Some studies suggest that the response to large radiation doses
per fraction may depart from the response predicted by the widely used linear–quadratic (LQ) model.
In this study, we analysed a large dataset of dose–response data to evaluate departures from the LQ
behaviour at large doses. In general, the response of prostate cancer to large doses of radiotherapy
is best described by the LQ model, even though we observed some discrepancies at large doses
for intermediate-risk patients, which merit further investigation. In addition, we characterised the
radiobiological response of prostate cancer according to risk (low, intermediate, or high) and the
addition or not of ADT to treatment.

Abstract: The purpose of this work was to investigate the response of prostate cancer to different
radiotherapy schedules, including hypofractionation, to evaluate potential departures from the linear–
quadratic (LQ) response, to obtain the best-fitting parameters for low-(LR), intermediate-(IR), and
high-risk (HR) prostate cancer and to investigate the effect of ADT on the radiobiological response.
We constructed a dataset of the dose–response containing 87 entries/16,536 patients (35/5181 LR,
32/8146 IR, 20/3209 HR), with doses per fraction ranging from 1.8 to 10 Gy. These data were fit to
tumour control probability models based on the LQ model, linear–quadratic–linear (LQL) model, and
a modification of the LQ (LQmod) model accounting for increasing radiosensitivity at large doses. Fits
were performed with the maximum likelihood expectation methodology, and the Akaike information
criterion (AIC) was used to compare the models. The AIC showed that the LQ model was superior to
the LQL and LQmod models for all risks, except for IR, where the LQL model outperformed the other
models. The analysis showed a low α/β for all risks: 2.0 Gy for LR (95% confidence interval: 1.7–2.3),
3.4 Gy for IR (3.0–4.0), and 2.8 Gy for HR (1.4–4.2). The best fits did not show proliferation for LR and
showed moderate proliferation for IR/HR. The addition of ADT was consistent with a suppression of
proliferation. In conclusion, the LQ model described the response of prostate cancer better than the
alternative models. Only for IR, the LQL model outperformed the LQ model, pointing out a possible
saturation of radiation damage with increasing dose. This study confirmed a low α/β for all risks.

Keywords: radiobiological modelling; radiotherapy; prostate cancer; LQ model; LQL model;
meta-analysis; hypofractionation; SBRT
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1. Introduction

The response of prostate cancer to radiotherapy has been extensively analysed in the
radiobiological modelling literature [1–11]. Most studies report a low α/β (typically in the
1–3 Gy range) and high sensitivity to fractionation, even though some studies suggest that
the α/β may not be that low and the reported low values may be caused by hypoxia [8].

A low α/β for prostate cancer, lower than the α/β associated with the late toxicities of
nearby tissues, may favour hypofractionated regimes. In recent years, stereotactic body
radiotherapy (SBRT) has become widely used to treat many cancers [12], and several
trials have explored the response/toxicity of hypofractionation in prostate cancer [13–15],
with doses per fraction reaching up to 10 Gy.

The validity of the linear–quadratic (LQ) model for large dose fractions has been
questioned [16–18]. Some studies point out a moderation of the LQ cell-killing effect with
increasing dose, an effect that has been modelled with the linear–quadratic–linear (LQL)
model and other approaches [19,20]. Furthermore, recent in vivo studies have shown an
enhanced cell-killing effect at large doses attributed to indirect effects such as vascular
damage and radiation-induced immune response [21–23], which has led to novel models
including such effects [24–27].

Because the implementation of hypofractionation for prostate cancer is relatively
new, there are not many radiobiological modelling studies investigating the response of
prostate cancer to hypofractionation. We have to note two recent studies: Datta et al. [10]
analysed eight isoeffective schedules (conventional and hypofractionated) and obtained
a α/β value in the 1.3–8.2 Gy 95% confidence interval (CI); Vogelius and Bentzen [11]
analysed 14 randomised trials of dose scalation and hypofractionation and obtained a
tighter 95% CI of 1.3–2.0 Gy. Furthermore, a recent study by Royce et al. [28] analysed the
tumour control probability (TCP) of 25 hypofractionated clinical studies and obtained the
EQD2 needed to reach 90–95% control by assuming α/β = 1.5 Gy.

In this work, we further explored the radiobiology of prostate cancer with a large
dataset of treatments, with doses per fraction ranging from <2 Gy to 10 Gy. Our aim was
two-fold: on the one hand, we evaluated whether the addition of dose–response data for
severely hypofractionated schedules leads to deviations from the LQ model, by comparing
the best fits obtained with the LQ model and other models. On the other hand, we
determined the best-fitting radiobiological parameters that describe the response of prostate
cancer to fractionation, split by risk level, in a large dataset containing a wide range of
fractionations, and we investigated the effect of ADT on the radiobiological response.

2. Materials and Methods
2.1. Clinical Dataset

We analysed the dose–response data from 55 trials of prostate radiotherapy, building
on data previously compiled in several radiobiological studies by Royce, Miralbell, Datta,
Pedicini and colleagues [4,9,10,28] and reviewing recent articles from Pubmed. For each
schedule, we extracted the number of patients, the distribution of patients with respect
to the risk level, the number or percentage of patients receiving androgen deprivation
therapy (ADT), the dose per fraction, the total dose, the treatment time, and the control
at 5 years. Some studies included slightly different fractionations, and in those cases, the
most-used fractionation was included. Control can be named differently in publications,
but it generally refers to freedom from clinical or biochemical failure, with biochemical
failure defined as PSA nadir + 2 ng/mL. We restricted our analysis to studies reporting
Kaplan–Meier control values at 5 years: prostate cancer is usually a slow-growing disease,
and differences in the control between different schedules may not be significant at 3 years.
On the other hand, some studies also reported control at 7–7.5 years, but those data were
discarded because there were very few of them. Kaplan–Meier control values were generally
reported in the text, but sometimes were extracted from figures by using image analysis
software (g3data, version 1.5.4). The original references are [4,14,29–50].
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When separated by risk, we analysed 35, 32, and 20 schedules and 5181, 8146, and
3209 patients for low risk (LR), intermediate risk (IR), and high risk (HR), respectively.
Some studies included extra groups, such as “favorable intermediate risk”, “unfavorable
intermediate risk”, and “very low risk”. In such cases, those results were merged into
a single group weighting with the number of patients (favourable and unfavourable
intermediate risk merged in “intermediate risk”; very low risk and low risk merged in
“low risk”).

Several of the clinical protocols included androgen deprivation therapy (ADT). In gen-
eral, LR patients did not receive ADT; some schedules for IR patients included ADT; a
majority of HR patients received ADT. For IR and HR patients, we also analysed separately
schedules that included ADT for most patients (≥50%) and those that did not: 9/32 IR and
15/20 HR schedules included ADT according to this definition.

An overview of the schedules included in the analysis is presented in Table 1, and fur-
ther detailed information is presented in Table S1.

Table 1. Overview of the characteristics of the schedules included in the analysis.

Risk Number of
Schedules

Number of
Patients
(Range)

Dose per
Fraction
(Range)

Total Dose
(Range)

Treatment
Time

(Range)

ADT
(Fraction of
Schedules)

Control at
5 Years
(Range)

LR 35 3–550 1.8–10 Gy 33.5–81 Gy 3–62 days 3/35 0.59–1.00

IR 32 7–839 1.8–10 Gy 34–81 Gy 3–62 days 9/32 0.38–1.00

HR 20 12–812 1.8–8.5 Gy 34–81 Gy 3–62 days 15/20 0.28–0.908

2.2. Radiobiological Modelling: Dose–Response

We relied on the LQ model to fit the dose–response. The surviving fraction of tumour
cells after a dose d is

log SFLQ = −αd− βd2 (1)

with α and β being the linear and quadratic parameters of the LQ model.
The LQL model [19], which includes a moderation of the LQ-predicted cell death with

increasing dose, characterised by the parameter δ, was also investigated:

log SFLQL = −αd− 2β

δ2 (δd + exp (−δd)− 1) (2)

In addition, we investigated an ad hoc modification of the LQ model presented in [26],
which includes an increasing effective β term with increasing dose to account for indirect
cell damage at large doses, an effect that is characterised by a parameter b:

log SFLQ = −αd− β(1 + b
√

d)d2 (3)

When delivering a treatment of n fractions, the overall surviving fraction is given by:

SFtreat =

(
n

∏
i=1

SFi

)
exp (λ max(0, T − Tk)) (4)

where SFi is the surviving fraction associated with each fraction, T is the treatment time,
and proliferation is modelled as exponential with rate λ after a kick-off time Tk.

The tumour control probability was modelled using a logistic function [51]:

TCP =
1

1 +
(

D50
EQD2

)4γ50
(5)
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where D50 is the dose corresponding to 50% control (in 2 Gy fractions) and γ50 is the
normalised dose–response gradient. EQD2 is the equivalent dose in 2 Gy fractions of a
given schedule, which is model-dependent. For example, for the LQ model, it can be
calculated as:

EQD2LQ =
D + dD

α/β −
λ
α max(0, T − Tk)(

1 + 2
α/β

) (6)

where D, d, and T are the total dose, dose per fraction, and treatment time of the radio-
therapy schedule. Similar equations can be written for the LQL and LQmod models using
Equations (2) and (3):

EQD2LQL =
D +

2(δd+exp (−δd)−1)D
(α/β)dδ2 − λ

α max(0, T − Tk)(
1 + 2δ+exp (−2δ)−1

(α/β)δ2

) (7)

EQD2LQmod
=

D + dD(1+b
√

d)
α/β − λ

α max(0, T − Tk)(
1 + 2(1+

√
2b)

α/β

) (8)

2.3. Statistical Methods

Fitting was performed by using the maximum likelihood methodology, assuming
binomial statistics for the reported control values. The optimisation (minimisation of the
− log L function, where L is the likelihood) was performed with an in-house-developed
simulated annealing algorithm.

The free parameters of the fit are α/β, λ/α, Tk, γ50, and D50 for the LQ model. For the
LQL and LQmod models, there is an extra parameter, δ and b, respectively. Notice that, in
this fit, the value of α cannot be determined, only α/β (which conditions the response to
different fractionation). The proliferation rate cannot be determined either, as it is entangled
with α. We define λ′ = λ/α, which has units of Gy/day, and it is related to the dose needed
to compensate for repopulation.

The profile likelihood method was used to obtain 95% confidence intervals (CIs) of
the best-fitting parameters [52,53]. The implementation of the profile likelihood method is
presented in more detail in the Supplementary Materials, including Figure S1.

The Akaike information criterion with sample size correction was used to rank differ-
ent models [54]. The AICc is given by:

AICc = −2 log L + 2k +
2k(k + 1)
S− k− 1

(9)

where k is the number of parameters of the model, S is the sample size, and L is the
maximum of the likelihood function. Models with lower AICc are preferred. In this
regard, ∆AICc is defined as

∆AICmodel
c = AICref

c − AICmodel
c (10)

where AICref/model
c refers to the AICc of the reference model (the LQ model in this work)

and the model under study.
The implementation of the methodology was performed in Matlab (Mathworks,

Natick, MA, USA).
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2.4. Radiobiological Modelling: α and Number of Clonogens

Some further information on the radiobiology of the tumours can be obtained from
the analysis of the best-fitting parameters. Combining the TCP Poisson formulation [55]
and the definition of D50, we can write (using the LQ model)

TCP(D50) = 0.5 = exp (−N × SF(D50)) = exp
(
−N exp

(
−α

(
D50 +

2D50

α/β

)))
(11)

We can use here the definition of biologically equivalent dose (BED) [56] to calculate
the BED associated with D50 as:

BED50 = D50 +
2D50

α/β
(12)

Developing Equation (11), we obtain:

N = exp (−0.37 + αBED50) ' exp (αBED50) =⇒
log N

α
' BED50 (13)

This expression provides a qualitative relationship between the number of clonogen
cells (N), their radiosensitivity (α), and D50 (obtained from the fit to the dose–response
data). Notice that, for simplicity, we ignored the radiosensitivity averaging methodology,
which is usually included in the computation of TCP values with the Poisson model; thus,
Equation (13) has to be taken as a simple qualitative approximation.

3. Results

In Table 2, we present the best-fitting parameters and the goodness-of-fit (− log L and
AICc) obtained with the LQ, LQL, and LQmod models for low, intermediate, and high risk.
For IR (HR), we also present separately the fits for schedules that did not include ADT
(included ADT).

For LR and HR, the best fits obtained with the LQL model have δ ∼ 0, and therefore,
the best-fitting solutions are almost identical to those obtained with the LQ model. Be-
cause the LQL model has one extra degree of freedom, this results in higher AICc than those
obtained with the LQ (∆AICc < 0) model. For IR, the LQL model clearly outperformed the
LQ (and LQmod) model, with ∆AICc ' 36 (Table 2 and Figure S2). On the other hand, the
best fits obtained with the LQmod model showed a very modest improvement over the LQ
model for LR and HR when comparing the likelihood, but due to the extra parameter, this
did not lead to ∆AICc > 0.

The best-fitting parameters obtained with the LQ model are presented in more detail in
Table 3, including the 95% CIs. The results for intermediate and high risk are also presented
separately for cohorts including/not including ADT as part of the treatment. The best
fits showed low α/β values (2.0 Gy for LR, 3.4 Gy for IR, and 2.8 Gy for HR), while the
95% CIs were [1.7–2.3] Gy for LR, [3.0–4.0] Gy for IR, and [1.4–4.2] Gy for HR. The D50
values ranged from 56.2 Gy for LR to 59.8 Gy for HR. The results showed no proliferation
for LR tumours and proliferation rate (kick-off time) values of 0.41 Gy/day (24 days) for
IR and 0.35 Gy/day (21 days) for HR. It is important to notice that we implemented a
minimum constraint of 21 days for Tk.

When analysing separately the data for IR/HR patients that were treated with ADT
or not, we obtained α/β = 2.8 Gy, D50 = 58.1 Gy, λ′ = 0.32 Gy/day, Tk = 21 days for IR
“only RT”, and α/β = 2.1 Gy, D50 = 58.5 Gy and no proliferation for HR “RT+ADT”. The
best fits for IR “RT+ADT” and HR “only RT” are also presented in Table 3, but due to the
low number of schedules involved (9 and 5, respectively), the confidence intervals are
very wide.

In Figure 1, we show the best fits to the prostate carcinoma dose–response data
obtained with the LQ model. The results are presented separately for LR, IR, and HR.
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In Figure 2, the best fits for IR and HR are shown separately for cohorts including ADT and
cohorts not using ADT in addition to radiotherapy.

We investigated the dose per fraction versus number of fractions that would be neces-
sary to obtain 90% control for HR patients treated with radiotherapy and ADT according
to the best-fitting parameters obtained with the LQ model. These results are presented in
Figure 3, where we also present the experimental fractionations included in the dataset
for “RT+ADT”.
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Figure 1. Best fits to prostate carcinoma dose–response data obtained with the linear–quadratic
model. Results are presented separately for low risk (left panel), intermediate risk (central panel),
and high risk (right panel).
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with the linear–quadratic model. Results are presented separately for cohorts that used androgen
deprivation therapy (ADT) and cohorts that did not use ADT in addition to radiotherapy.
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Applying Equations (11) and (13), which qualitatively link the number of clonogens
and the radiosensitivity of the tumour cells, to the best-fitting parameters obtained with
the LQ model, we obtain:

log N
α

=


112.2 Gy (LR)
89.9 Gy (IR)
101.4 Gy (HR)
99.2 Gy (IR no ADT)
114.4 Gy (HR no ADT)

(14)

If we assume NLR < NIR < NHR (which is supported by the analysis of Pedicini
et al. [9], who reported NLR = 4.5×105 , NIR = 3×106, NHR = 2×107), we may conclude
that LR cells might be less radiosensitive than HR/IR cells (by using the numbers of cells
reported in [9], we obtained αLR ∼ 0.12 Gy−1, versus αIR/HR ∼ 0.17 Gy−1).

Table 2. Best fits obtained with the LQ, LQL, and LQmod models to prostate carcinoma dose–
response data, separated by risk (low, intermediate, and high risk). For intermediate risk, results are
also presented separately for schedules not including ADT. For high risk, results are also presented
separately for schedules including ADT. The table shows the best-fitting parameters, maximum
likelihood, and AICc values. Improvements on the performance of the LQ model (∆AICc > 0) are
highlighted in bold and italics. The symbol * indicates that the best-fitting parameter reached the
edge of the constraint window.

Risk Model

Parameters

α/β λ′ Tk δ b D50
γ50 −logL AICc ∆AICc(Gy) (Gy

day−1) (day−1) (Gy−1) (Gy−1/2) (Gy)

LR
LQ 2.0 0.00 - - - 56.2 2.17 89.4 190.8 -

LQL 2.0 0.00 - 0.00 - 56.2 2.17 89.4 193.7 −2.9
LQmod 2.6 0.00 - - 0.07 55.8 2.11 89.2 193.4 −2.6

IR
LQ 3.4 0.41 24.0 - - 56.9 2.14 220.9 454.2 -

LQL 0.4 0.00 - 0.28 - 62.8 2.18 201.3 418.0 36.2
LQmod 3.5 0.41 23.9 - 0.00 56.8 2.15 220.9 457.2 −3.0

HR
LQ 2.8 0.35 21.0 * - - 59.8 1.45 105.0 224.4 -

LQL 2.8 0.35 21.0 * 0.00 - 59.8 1.45 105.0 228.5 −4.2
LQmod 11.2 0.34 21.0 * - 0.75 58.7 1.47 103.9 226.2 −1.8

IR LQ 2.8 0.32 21.0 * - - 58.1 1.85 157.6 328.7 -

(no ADT) LQL 0.5 0.00 - 0.24 - 63.6 2.01 138.7 294.6 34.1
LQmod 2.8 0.32 21.0 * - 0.00 58.1 1.85 157.6 332.4 −3.7

HR LQ 2.1 0.00 - - - 58.5 0.95 72.6 161.8 -

(ADT) LQL 2.1 0.00 - 0.00 - 58.5 0.95 72.5 167.6 -5.8
LQmod 18.7 0.00 - - 1.99 56.8 0.88 71.2 164.9 −3.1
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Figure 3. Modelled dose per fraction versus number of fractions to achieve 90% control for HR
patients treated with radiotherapy and ADT (dashed line). The circles represent the experimental
fractionations included in the dataset.

Table 3. Best-fitting parameters and 95% confidence intervals (within parentheses) of prostate
carcinoma dose–response data obtained with the linear–quadratic model. Results are separated by
risk and for intermediate and high risk are also presented separately for schedules that included or
did not include ADT. Data for IR with ADT and HR with no ADT are shown only for illustrative
purposes, because, due to the low number of schedules, the confidence intervals are very wide.

α/β (Gy) λ′ (Gy
day−1) Tk (day−1) D50 (Gy) γ50

LR 2.0 0 - 56.2 2.17
(1.7, 2.3) (0, 0.13) (54.4, 58.0) (1.90, 2.47)

IR 3.4 0.41 24.0 56.9 2.14
(3.0, 4.0) (0.31, 0.49) (21.0, 25.5) (55.5, 57.9) (1.92, 2.40)

HR 2.8 0.35 21.0 59.8 1.45
(1.4, 4.2) (0, ∞) (21.0, ∞) (57.1, 63.9) (1.07, 1.83)

IR 2.8 0.32 21.0 58.1 1.85
(no ADT) (2.1, 3.5) (0.09, 0.46) (21.0, 27.3) (56.5, 60.0) (1.55, 2.14)

HR 2.1 0 - 58.5 0.95
(ADT) (1.5, 3.5) (0, 0.31) (54.3, 61.5) (0.75, 1.25)

IR 0.1 0 - 8.1 0.20
(ADT) (0, ∞) (0, ∞) (0.4, 40.5) (0.11, 0.80)

HR 100.0 3.31 39.9 54.6 6.68
(no ADT) (7.1, ∞) (1.09, ∞) (21.0, 40.8) (49.8, 60.5) (2.70, 10.67)

When including schedules from different studies, they will most likely use different
definitions of the PTV (different margins), different cost functions (resulting in different
dose homogeneity in the PTV), and different treatment modalities (CRT, IMRT), which can
increase the uncertainties of the analysis.
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4. Discussion

In this study, we investigated the dose–response of prostate cancer from a dataset contain-
ing 87 entries/16,536 patients (35/5181 low risk, 32/8146 intermediate risk, 20/3209 high risk),
with doses per fraction ranging from 1.8 to 10 Gy. Rather than analysing independently
trials reporting control for different fractionations (the approach followed in [10,11]), we
analysed a dataset containing studies from different trials, like in [4,26,57]. Our approach
increased the heterogeneity of the dataset and, therefore, may increase the uncertainties
of the analysis (different studies may use different margins, different dose homogeneity
constraints on the PTV, different dose calculation algorithms, etc.), which constitutes a limi-
tation of the present study. On the other hand, this allowed us to investigate the dose–time
response (obtaining proliferation parameters) and to evaluate models with more degrees
of freedom, which may not be possible with the former approach. The large dataset also
allowed analysing separately different risk levels and the use of ADT.

It has been suggested that the LQ model may fail to describe the dose–response at
large doses per fraction due to the contribution of effects such as damage repair, vascular
damage, or radiation-induced immune effects [16,18]. Therefore, we investigated not only
the LQ model, but also other models that include departures from the LQ behaviour at large
doses per fraction (the LQL model, with decreasing radiosensitivity with increasing dose,
and a phenomenological modification of the LQ model, with increasing radiosensitivity
with increasing dose). Fits with the LQmod model showed a very modest improvement
over the LQ model for LR and HR (∆AICc∼0.1). Analyses based on the AIC typically set
stronger thresholds, demanding ∆AICc > 6 to state the superiority of a given model over
another [58]. On the other hand, fits with the LQL model showed a clear improvement
over the LQ model for IR patients (∆AICc > 30).

The superiority of the LQL model over the LQ model for IR merits further discussion.
Interestingly, the study of Vogelius and Bentzen [11] found a similar pattern with increasing
dose per fraction when analysing a dataset of studies not separated by risk. An analysis
of the schedules included in the dataset showed that the superiority of the LQL model
in our analysis was strongly conditioned by a schedule reported in a recent study by
Levin-Epstein et al. [44]. In that work, they reported control for 1904 patients treated with
SBRT, including 157 intermediate-risk patients (93 favourable, 64 unfavourable) treated
with 38 Gy in four fractions (9.5 Gy per fraction). Control at 5 years for those patients was
83.6% (86.7% for favourable and 79.2% for unfavourable), well below the control obtained
in the same risk group for 35 Gy/5f (89.0%), 36.25 Gy/5f (95.2%), and 40 Gy/5f (92.0%).
If we exclude the 38 Gy/4f results from the analysis, the ∆AICc for the LQL decreased
from 36 to 6. In our dataset, there were schedules delivering similar doses per fraction that
reported higher control, but they included a much lower number of patients (e.g., 38 Gy/4f,
control = 92%, 39 patients). The relatively low control rates obtained for a dose per fraction
of 9.5 Gy may be a hint of the LQL behaviour at large doses, but should be confirmed by
more experimental studies.

In addition, the fact that the superiority of the LQL model was observed only for IR
may be related to the poor goodness-of-fit obtained for IR (− log L > 200 vs.
− log L ∼ 100 for LR/HR). The worse fits obtained for IR could be caused by a more-
heterogeneous dataset (caused by different ratios of favourable/unfavourable IR patients
or more heterogeneity in the administration of ADT).

Another limitation of the present study was that we only analysed a limited number
of dose–response models. We cannot discard that other models may provide a better fit to
the experimental data. For example, models accounting for hypoxia and reoxygenation,
which have been suggested to play a role in the response of prostate cancer [8,59], have not
been investigated. In this regard, the large dataset that we assembled (Table S1) may prove
useful for other researchers to investigate different models.

The analysis based on the LQ model supports a low α/β value for all risk groups of
prostate cancer, with 95% CI of [1.7–2.3] Gy for LR, [3.0–4.0] Gy for IR, and [1.4–4.2] Gy for
HR. Nonetheless, our analysis showed that the α/β of IR was larger than that of LR, which
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may be taken into account when designing optimal fractionations. The low α/β values
were in general agreement with several radiobiological analyses of the dose–response in
prostate cancer [1–7,9–11]. However, most of these studies did not include hypofractionated
treatments (only [10,11,28]) and/or analysed a lower number of schedules.

High-risk, and to a lesser extent intermediate-risk, prostate cancer is usually treated
with a combination of radiotherapy and ADT. When analysing separately HR cohorts
including ADT or not, it seemed that the addition of ADT eliminated tumour proliferation
(λ′ = 0 Gy/day for HR cohorts including ADT versus λ′ = 0.35 Gy for all HR cohorts). It
would be of interest to know whether the addition of ADT affects the α/β of the tumour.
However, due to the low number of HR schedules that did not include ADT (and IR
schedules that included ADT), the confidence intervals were very wide, and no conclusive
evidence can be reported on the differences between adding ADT or not.

Control rates for LR and IR prostate cancer are typically above 90%. However, control
rates for HR prostate cancer are lower. We investigated the dose per fraction that was
necessary to obtain 90% for HR patients treated with radiotherapy and ADT according
to the best-fitting parameters obtained with the LQ model. The experimental schedules
included in the dataset were below the TCP = 0.9 boundary (see Figure 3). According to
the model, doses per fraction of 10.9 Gy, 8.2 Gy, and 5.6 Gy are needed to reach 90% control
with 3, 5, and 10 fractions. Whether the toxicity associated with such a dose escalation
is tolerable was not studied in this work. It may be worth exploring hypofractionated
dose escalation schedules aiming at increasing the control rate of HR cancer for subsets of
patients who are genetically less-predisposed to suffer toxicity [60].

5. Conclusions

In conclusion, the analysis of the dose–response of prostate cancer did not show evi-
dence of effects beyond the LQ model contributing at large doses per fraction, except for
IR schedules where the LQL is superior to the LQ, pointing out a possible moderation of
radiosensitivity with increasing dose. This behaviour has been observed in a previous
study [11] and merits further investigation because it might affect the dose prescription
in prostate SBRT. Our analysis showed a low α/β for all risks of prostate cancer. How-
ever, the α/β for IR (95% CI [3.0–4.0] Gy) was significantly larger than for LR (95% CI
[1.7–2.3] Gy). In addition, the best fits did not show proliferation for LR and moderate pro-
liferation for IR/HR, and proliferation was suppressed when adding ADT to the treatment.
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//www.mdpi.com/article/10.3390/cancers15143659/s1, Figure S1: Illustration of the calculation of
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quadratic–linear (LQL) models; Table S1: Detailed information of the analysed schedules for low-
(LR), intermediate- (IR), and high-risk (HR) prostate cancer, including: number of patients (N), dose
per fraction (d), number of fractions (n), total dose (D), overall treatment time (OTT), percentage of
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