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Simple Summary: This study explains how the application of single-cell transcriptomics can enhance
personalized cancer immunotherapy. Tumors exhibit complex and heterogeneous characteristics
that can impede the effectiveness of immunotherapy. We specifically present the “Origin of Tumor
Development” (OTD), consisting of undifferentiated tumor cells, which contribute to tumor diversity
and heterogeneity. Using single-cell transcriptomics, scientists can analyze the gene expression
profiles of individual tumor cells to gain insight into tumorigenesis, progression, and immune
evasion. This approach enables the identification of personalized biomarkers and targets, including
immune checkpoints and tumor-infiltrating lymphocytes, tailored to each patient. We also discuss
future directions, such as the development of analytical tools and databases, to maximize the potential
for targeting the patient’s OTD cells and advance personalized cancer immunotherapy.

Abstract: Cancer immunotherapy is a promising approach for treating malignancies through the
activation of anti-tumor immunity. However, the effectiveness and safety of immunotherapy can be
limited by tumor complexity and heterogeneity, caused by the diverse molecular and cellular features
of tumors and their microenvironments. Undifferentiated tumor cell niches, which we refer to as the
“Origin of Tumor Development” (OTD) cellular population, are believed to be the source of these
variations and cellular heterogeneity. From our perspective, the existence of distinct features within
the OTD is expected to play a significant role in shaping the unique tumor characteristics observed
in each patient. Single-cell transcriptomics is a high-resolution and high-throughput technique that
provides insights into the genetic signatures of individual tumor cells, revealing mechanisms of
tumor development, progression, and immune evasion. In this review, we explain how single-cell
transcriptomics can be used to develop personalized cancer immunotherapy by identifying potential
biomarkers and targets specific to each patient, such as immune checkpoint and tumor-infiltrating
lymphocyte function, for targeting the OTD. Furthermore, in addition to offering a possible workflow,
we discuss the future directions of, and perspectives on, single-cell transcriptomics, such as the
development of powerful analytical tools and databases, that will aid in unlocking personalized
cancer immunotherapy through the targeting of the patient’s cellular OTD.

Keywords: cancer immunotherapy; personalized medicine; tumor development; cancer progression;
single-cell transcriptomics; origin of tumor development
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1. Introduction

Based on the latest data released by GLOBOCAN 2020, the worldwide incidence of
cancer has surged to 19.3 million cases, with a recorded 10 million deaths attributed to
the disease in the year 2020 alone. This significant increase highlights the urgent require-
ment for the implementation of innovative and efficacious cancer therapies [1]. Cancer
immunotherapy, as a potent treatment, is based on the leveraging of the immune system
to kill the malignant cells. At present, several types of cancer immunotherapies are under
development, with the most notable being checkpoint inhibitor therapy, cancer vaccination,
and immune cell therapy [2,3]. However, the absence of target markers for the presentation
of malignant cells to the immune system represents a substantial barrier to the advancement
of effective cancer immunotherapy. Therefore, the identification of targeted markers is an
indispensable requirement for a practical immunotherapeutic intervention [4].

Tumor heterogeneity encompasses the variability of cancer cells, spanning from their
morphologies and genotypes to their functions [5,6]. This feature arises from various
sources, such as genomic instability, epigenetic changes, microenvironmental factors, and
selective pressures [7]. Tumor heterogeneity presents a significant challenge for a “one-size-
fits-all” treatment approach, since the distinct diversity and biology exhibited by each tumor
can significantly impact the effectiveness of the intervention. Accordingly, personalized
medicine approaches that account for the heterogeneity of individual patients’ tumors have
now emerged as a practical option in cancer treatment [8]. Advanced technologies like high-
throughput transcriptomics facilitate personalized medicine in determining the optimal
therapeutic strategy based on the unique characteristics of each tumor. Single-cell RNA
sequencing (scRNA-seq), as a highly accurate transcriptomics method, offers the potential
to profile the gene expression of individual cells within a tumor and uncover their cellular
heterogeneity [9]. This powerful method greatly facilitates the identification of prospective
biomarkers specific to each tumor’s cellular population and potential therapeutic targets
for personalized cancer treatment [9,10].

Observations have shown the existence of populations with stem phenotypes within
tumors [11–13], which may be the source of tumor heterogeneity and progression. As a
dynamic developmental process, these carcinogenic stem populations, in response to the
tumor microenvironment, may serve as the source of other tumor-malignant cells. We
named this population the “Origin of Tumor Development” (OTD) and inferred that the
targeted repression of this carcinogenic niche of the tumor can impede disease progression.
Therefore, scRNA-seq represents an effective tool for detecting the OTD of a patient’s tumor,
uncovering the specific immunogenic markers associated with their OTD, and assessing
the function of the patient’s immune system against the OTD. Accordingly, in this review,
we discuss the OTD as the basis of tumor heterogeneity and progression, the potential
of scRNA-seq for efficient precision cancer immunotherapy targeting the OTD, and the
prospects of this approach.

2. Current Status of Cancer Immunotherapy and Cancer Personalized Immunotherapy

The field of cancer immunotherapy has witnessed great advancements in recent
years, and checkpoint inhibitor therapy, cancer vaccination, and immune cell therapy
have emerged as promising strategies for personalized cancer treatment [2]. Studies have
shown that the level of tumor mutational burden (TMB) status, programmed death-ligand
1 (PD-L1) expression, and tumor-infiltrating lymphocytes (TILs) are strongly correlated
with the effectiveness of checkpoint inhibitors in certain types of cancer. Now, we clearly
understand that cancer cells can suppress the immune system’s ability to produce an
effective anti-tumor response. The primary suppressors of the tumor immune system,
such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and PD-L1 immune checkpoints, can
suppress T-cell cytokine production and proliferation [2]. High-TMB tumors tend to re-
spond better to immunotherapy due to the creation of more neoantigens. Examples include
melanoma, lung, bladder, and head and neck cancers, which also benefit from PD-1 or
PD-L1 immune checkpoint inhibitors [14]. However, prostate, pancreatic, and glioblas-
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toma tumors have a low TMB and tend to be resistant to immunotherapy, suppressing
the immune system through various mechanisms such as reduced immune checkpoint
expression or immunosuppressive molecule expression [15,16]. Therefore, the detection of
tumor-specific immunogenicity through personalized medicine technologies is necessary
to achieve efficient immunotherapy.

Moreover, the molecular and transcriptomic profiling of tumors and immune cells can
help to identify appropriate targets for combination therapies or novel checkpoint inhibitors.
Cancer vaccination aims to present specific antigens or neoantigens from malignant tissues
to immune system effector cells [2]. These vaccines can be generated from patient tumor
cells, circulating tumor cells (CTCs), or synthetic antigens [17]. Non-cancer vaccines
with immunogenic potential have also shown favorable antitumor responses in some
cancers. For example, a meta-analysis of the Bacillus Calmette–Guérin (BCG) vaccine on
patients with bladder cancer found that it “significantly reduces the risk of progression to
muscle-invasive disease after transurethral resection” [18]. However, not all patients derive
benefits from cancer vaccines; thus, identifying biomarkers to select optimal antigens and
delivery methods for each patient is crucial. Detecting the tumor’s neoantigens, which have
suitable targeted immunogenicity, is a practical option. Next-generation sequencing (NGS)
technology for the profiling of tumor cells or CTC genome sequencing provides a powerful
tool with which to obtain these neoantigens for personalized cancer vaccination [19].
Transcriptomic and proteomic analyses of tumors and immune cells can also support the
discovery of antigens or immune modulators for personalized cancer vaccines.

Personalized medicine can boost the effectiveness of cancer immune cell therapy
by targeting the patient’s specific tumor immunogenic markers. This involves infusing
autologous or allogeneic immune cells, such as TILs, T-cells, NK cells, dendritic cells, and
macrophages, to boost their anti-cancer activity. NK cell and T-cell transfer therapies are
commonly used for cellular-based cancer immunotherapy (CCIT) [2]. The tailoring of the
treatment based on the patient’s immune system and targeting of specific tumor markers
can increase the effectiveness of NK cell and T-cell therapy [2]. However, genetically
engineered immune cells can further enhance CCIT by overcoming the limitations of classic
CCIT, such as MHC restriction and tumor evasion. Chimeric antigen receptor (CAR-T) cell
therapy is a cutting-edge approach in oncology that can recognize and selectively target
specific antigens expressed in tumor cells [20]. However, it can cause substantial toxicities,
including cytokine release syndrome, neurotoxicity, and B cell aplasia. Therefore, according
to the ASCO guideline for the “management of immune-related adverse events in patients
treated with CAR-T cell therapy”, the careful monitoring and management of potential
toxicities are essential to ensure the safety and effectiveness of this intervention [21,22].
Tumor heterogeneity [6], immunosuppressive microenvironments, and off-target toxicity
are some of the obstacles that remain. Scientists suggest that targeted and genetically
engineered immune cells can increase the performance of CCIT [21].

The 2021 article authored by our group presented the current protocols, feasibility, and
benefits of using stem-cell-derived NK cells for cancer immunotherapy as a potential CCIT
strategy [2]. Our concept suggests that although peripheral-blood- or umbilical-cord-blood-
derived NK cells can recognize and eliminate tumor cells without prior sensitization, their
clinical application is limited due to issues with availability, functionality, and persistence.
Therefore, we propose that patent-derived stem cells, including induced pluripotent stem
cells (iPSCs) and mesenchymal stem cells (MSCs), could serve as alternative sources for
generating effective, personalized NK cells. This idea is supported by several preclinical
and clinical studies that evaluated stem-cell-derived NK cells for various types of solid
tumors, including melanoma, glioblastoma, ovarian cancer, and hepatocellular carcinoma.
Hence, it can be concluded that stem-cell-derived immune cells have tremendous potential
for personalized cancer immunotherapy [2].
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3. Individual Origin of Tumor Development: Concepts and Facts

The concept of OTD, or the tumor carcinogenic niche, revolves around the idea that
two dynamic components, including undifferentiated stem tumor cells (USTCs) and the
tumor microenvironment (TEM), contribute to the development of malignant tumors. The
USTCs generate other tumor-associated cells that exhibit a malignant phenotype, while the
TEM provides conditions conducive to tumor growth, development, and progression. The
interaction between USTCs and the tumor microenvironment is critical in inducing USTC
genesis, symmetrical proliferation, and eventual tumor progression (Figure 1).
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Figure 1. Description of the origin of tumor development as the basis of cancer heterogeneity. (I) Non-
malignant tumor cells secrete factors into the tumor microenvironment that promote UTSC division.
(II) The TMB rate increases due to the rapid division of tumor cells. This process generates different
cell phenotypes and induces heterogeneity. (III) Table showing the main types of non-malignant
tumor cells and their specific paracrine factors that can act as mitogens on USTCs. (IV) Sankey
diagram showing the relationships between specific paracrine mitogens from non-malignant tumor
cells and the main cascades regulating USTC biological processes.

USTCs are a population of undifferentiated malignant cells with stem-like phenotypes,
capable of self-renewal and differentiation into various types of tumor cells. These pheno-
types play a critical role in high-grade stem tumors, which are typically more aggressive
and resistant to conventional therapies. The creation of USTCs is maintained through
various mechanisms, including epithelial–mesenchymal transition (EMT), hypoxia, and
dedifferentiation [23–25]. EMT is induced via multiple cascades, such as transforming
growth factor Beta (TGF-β), wingless/integrated (Wnt), neurogenic locus notch homolog
protein (Notch), nuclear factor kappa B (NF-κB), and hypoxia [26]. Moreover, hypoxia
arises as a consequence of low oxygen levels in the tumor microenvironment, leading to
the activation of hypoxia-inducible factor-1α (HIF-1α), which activates genes to promote
CSC survival, proliferation, angiogenesis, and drug resistance, including octamer-binding



Cancers 2023, 15, 3615 5 of 16

transcription factor 4 (OCT4), nanog homeobox (NANOG), SRY-box transcription factor
2 (SOX2), vascular endothelial growth factor A (VEGFA), and ATP-binding cassette sub-
family G member 2 (ABCG2) [27,28]. Dedifferentiation is also a process that can induce
mature cells to revert to a stem-like state, which is mediated by various factors, including
epidermal growth factor (EGF), sonic hedgehog (SHH), and DNA damage [25,29].

The TME is considered as an inseparable component of the tumor’s carcinogenic
niche. The regulation of UTSCs is highly complex and involves several signaling pathways,
such as Wnt, Notch, hedgehog, NF-κB, the Janus kinase–signal transducer and activator of
transcription (JAK-STAT), the phosphatidylinositol-3 kinase/protein kinase B/mammalian
target of rapamycin (PI3K/AKT/mTOR), and TGF-β (Figure 1). These pathways control
the biological processes of various cell types, such as CSCs, including survival, proliferation,
differentiation, plasticity, invasiveness, and drug resistance [30]. These facts indicate that
the population of CSCs, as USTCs, are significantly influenced by the components of the
TME, such as cytokines, growth factors, the extracellular matrix, hypoxia, and immune
cells [31,32]. It has been demonstrated that stemness status can alter both the variation and
expression levels of TME components [33]. These dynamic conditions, which are a key part
of the OTD, play a critical role in maintaining stemness in high-grade tumors (Figure 1).

Certain paracrine factors within the TME play a pivotal role in promoting the sym-
metric proliferation of USTCs, resulting in the parallel expansion of the OTD cellular
population. Of particular interest are the paracrine factors with mitogenic functions, as
they have the ability to stimulate the symmetric proliferation of USTCs, thereby promoting
tumor expansion and growth. Notably, certain factors such as interleukin-6 (IL-6) and
interleukin-8 (IL-8) are pro-inflammatory cytokines capable of activating the JAK-STAT
and NF-κB pathways in USTCs, thereby enhancing their self-renewal and survival [34–36].
Similarly, growth factors like EGF and fibroblast growth factor (FGF) can bind to their
respective receptors on USTCs, initiating the activation of the PI3K/AKT/mTOR and
RAS/RAF/MEK/ERK pathways, which, in turn, promote USTC proliferation and dif-
ferentiation [37]. Moreover, extracellular vesicles, including exosomes and microvesicles,
contribute to USTCs’ behavior and fate by facilitating the transfer of proteins, lipids, and
nucleic acids from donor cells to the USTCs, thereby influencing their stemness and plastic-
ity [38]. Consequently, it becomes evident that the secretome and paracrine factors within
the TME serve as critical regulators of USTCs’ behavior and fate. Furthermore, Figure 1(III)
reveals the identification of additional paracrine factors with mitogenic functions in USTCs.

As previously mentioned, the microenvironment appears to play a crucial role in
regulating the biological process of the OTD. Studies have shown that the implantation of
malignant cells into the microenvironments of blastocysts or embryos can reprogram them
into normal somatic cells or benign phenotypes, leading to the suppression of oncogene
expression and activation of pluripotency transcription factors [39,40]. It has been observed
that the direct implantation of melanoma cells into the cavity of mouse blastocysts led to
the reprogramming of tumor cells, resulting in the development of chimeric species that
showed no signs of tumor formation. This reprogramming was facilitated by the inhibition
of the PI3K/AKT pathway and the up-regulation of the p53 pathway in melanoma cells [41].
The findings from these observations explain the pivotal significance of the microenvi-
ronment and its components in regulating the behavior, differentiation, and division of
cancer cells.

Based on all the evidence explained, we believe that in the process from malignant cell
creation to tumor formation and progression, we face a dynamic developmental process
that forms the basis of the OTD. We propose that the OTD can be utilized to infer the
best explanation of tumor heterogeneity. High-grade stem tumors are characterized by an
elevated mutation rate, which is a significant contributor to the complexity and heterogene-
ity of malignant cells. The diverse genetic alterations found in USTCs, coupled with the
influence of the TME, collectively contribute to this heterogeneity, ultimately influencing
the phenotypes and behavior of tumor cells (Figure 1).
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4. Single-Cell Transcriptomics for Detecting and Targeting the Immunogenicity
of OTD

scRNA-seq is an advanced method that examines gene expression in individual cells,
providing insights into cellular diversity and RNA patterns. It involves four main steps:
isolating single cells, creating cDNA libraries, sequencing the libraries, and computationally
analyzing the data [9,42]. Different methods exist for each step, with varying pros and
cons (Table 1). The scRNA-seq offers a deeper understanding of cellular processes through,
for example, identifying cell types, gene expression patterns, regulatory networks, and
biological functions. The technique’s potential lies in its ability to uncover the complexity
and dynamics of cellular systems in diverse biological contexts [10]. Table 1 summarizes
various common types of scRNA-seq technologies, highlighting their capabilities, costs,
and analytical methods.

As mentioned previously, the analysis of molecular diversity within heterogeneous tis-
sues has been revolutionized using a powerful scRNA-seq method. This approach involves
quantifying the expression level of the transcriptome at a single-cell resolution, providing
researchers with the ability to distinguish between different cell types, phenotypes, states,
and lineages, as well as their development and dynamics [43]. The scRNA-seq algorithm
also allows for the identification of tissue lineages’ specific functions and behaviors through
differential gene expression (DEGs) [43]. To improve the analysis of scRNA-seq data, nu-
merous computational methods have been developed using mathematical and machine
learning algorithms. These techniques aim to optimize scRNA-seq processing by address-
ing challenges related to high dimensionality, sparsity, noise, and batch effects [43,44].

Tumor heterogeneity and immune evasion pose significant challenges to the effective-
ness of cancer immunotherapy. The population that complicates this issue significantly
is the USTCs, which possess self-renewal and differentiation potential and constitute the
primary component of the tumor’s overall tumor bulk. Identifying USTCs’ specific markers
and their immunogenicity is critical for understanding tumor heterogeneity and developing
predictive immunotherapy. However, detecting these markers is challenging due to the
dynamic interconversion that occurs between the USTC phenotype and non-USTCs [45,46].
Conventional methods such as histological staining, microarray, and pooled-genome RNA-
seq have limited resolution, as well as high noise, and cannot capture the diversity and
dynamics of CSCs [47]. scRNA-seq can provide a comprehensive understanding of the
molecular and functional characteristics of patent tumor undifferentiated stem phenotypes
and their interactions with tumor immune cells [48]. It offers a unique tool for personalized
immunotherapy targeting USTCs and overall tumor heterogeneity. Recent observations
have shown that scRNA-seq can identify CSC-specific immunogenicity, including neoanti-
gens and immune checkpoints, in various types of cancer [49]. Researchers have identified
surface markers indicating the stem phenotypes within tumors. Nowadays, several global
markers, such as CD44, CD24, CD90, CD133, and EPCAM, are used for detecting and isolat-
ing stem phenotypes in various cancers [50]. However, obtaining reliable and trustworthy
levels of USTC markers from tumor-derived cells can be challenging due to several factors
that may arise during library preparation. These factors include a low malignant cell yield
when taking a tumor tissue biopsy from a margin, the loss of the cell population due to cell
death during library preparation, the alteration of the cells’ transcriptional pattern during
isolation, and even the destruction of isolated cell surface markers by protease enzymes
during enzymatic cell isolation and culture. These confounding factors can affect the relia-
bility and accuracy of the library preparation of tumor-derived cells and also reduce the
scRNA-seq outcome in detecting an efferent marker for personalized immunotherapy [51].
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Table 1. A description of the key parameters and applications of various scRNA-seq methods.

Method Technology
Name Minimum Cells Developer

Company Advantages Disadvantages Cost Library
Preparation Time

Sequencing
Depth Applications Platforms for

Analysis

Droplet-
based

Drop-seq 1000 Macosko Lab
High throughput, low

cost per cell, UMI-based
quantification

Low coverage, limited
information on

isoforms, SNPs and
VDJ rearrangements,

cell doublets
may occur

USD 0.06–0.2
per cell 1–2 days 0.1–0.5 million

reads per cell

Cell type
identification, gene
expression profiling,
trajectory inference

Seurat, Monocle,
Scanpy

inDrop 1000 Klein Lab and
Shalek Lab

High throughput, low
cost per cell, UMI-based
quantification, flexible

barcode design

Low coverage, limited
information on

isoforms, SNPs and
VDJ rearrangements,

cell doublets
may occur

USD 0.06–0.2
per cell 1–2 days 0.1–0.5 million

reads per cell

Cell type
identification, gene
expression profiling,
trajectory inference

Seurat, Monocle,
Scanpy

Chromium 10× 500–10,000 10× Genomics

High throughput, low
cost per cell, UMI-based
quantification, multiple

applications (e.g.,
immune profiling, spatial

transcriptomics)

Low coverage, limited
information on

isoforms, SNPs and
VDJ rearrangements,

cell doublets
may occur

USD 0.55–1.1
per cell 1–2 days 0.5–2 million reads

per cell

Cell type
identification, gene
expression profiling,
trajectory inference,
immune repertoire

analysis, spatial
transcriptomics

Cell Ranger,
Seurat, Monocle,

Scanpy

Full-length

Smart-seq2
(SS2) 1–96 Picelli Lab and

Sandberg Lab

High coverage, detection
of isoforms, SNPs and

VDJ rearrangements, low
technical noise

Low throughput, high
cost per cell, no

UMI-based
quantification

USD 35–70 per
cell 2–3 days 5–20 million reads

per cell

Isoform detection
and quantification,

SNP calling and
phasing, VDJ

rearrangement
analysis

Cufflinks,
DESeq2, edgeR

Smart-seq3
(SS3) 1–96 Sandberg Lab and

Linnarsson Lab

High coverage, detection
of isoforms, SNPs and

VDJ rearrangements, low
technical noise,

UMI-based quantification

Low throughput, high
cost per cell, requires
fine-tuning to balance

internal and
UMI-containing reads

USD 35–70 per
cell (estimated) 2–3 days 5–20 million reads

per cell

Isoform detection
and quantification,

SNP calling and
phasing, VDJ

rearrangement
analysis

Cufflinks,
DESeq2, edgeR

FLASH-seq (FS) 1–96 Picelli Lab

High coverage, detection
of isoforms, SNPs and

VDJ rearrangements, low
technical noise,

UMI-based quantification
with reduced

strand-invasion artifacts,
fast and simple protocol

Low throughput, high
cost per cell

USD 35–70 per
cell (estimated) <4.5 h 5–20 million reads

per cell

Isoform detection
and quantification,

SNP calling and
phasing, VDJ

rearrangement
analysis

Cufflinks,
DESeq2, edgeR

Terms: SNPs: Single-Nucleotide Polymorphisms; UMI: Unique Molecular Identifier; VDJ: rearrangement analysis, analyzing gene rearrangements in immune cells.



Cancers 2023, 15, 3615 8 of 16

Zhang et al. (2022) used a machine learning method to investigate the relationship
between cancer stemness and immunotherapy response using scRNA-seq [52]. They pro-
posed a novel stemness signature, called Stem.Sig, which was derived from scRNA-seq
data obtained from patients undergoing treatment with immune checkpoint inhibitors (ICI).
The study revealed a significant correlation between cancer stemness, as measured via
CytoTRACE (https://cytotrace.stanford.edu, accessed on 5 June 2023), and ICI resistance
in melanoma and basal cell carcinoma based on pan-cancer data. Stem.Sig demonstrated
negative associations with anti-tumor immunity while showing positive associations with
intra-tumoral heterogeneity and mutational burden. Remarkably, the machine learning
model utilizing Stem.Sig outperformed other existing signatures in predicting ICI response
across various cancer types. Furthermore, this research identified several potential ther-
apeutic targets, including EMC3, BECN1, VPS35, PCBP2, VPS29, PSMF1, GCLC, KXD1,
SPRR1B, PTMA, YBX1, CYP27B1, NACA, PPP1CA, TCEB2, PIGC, NR0B2, PEX13, SERF2,
and ZBTB43, for stem tumors. These findings present promising avenues for effective
immunotherapy for stem tumors [52]. These observations offer valuable insights into
immune resistance mechanisms and have implications for the development of improved
cancer treatment strategies.

The utilization of the liquid biopsy approach represents the optimal solution for
addressing this challenge. Liquid biopsy is a practical method used to detect and isolate
CTCs from a patient’s whole blood, which can provide critical information regarding tumor
personalized features, development, and progression [53,54]. It has been reported that CTC
populations in patients demonstrate the same heterogeneity as the tumors from which they
originate [55]. Furthermore, since the emergence of the EMT theory, it has become evident
that most CTCs exhibit a stem phenotype as they transition from an epithelial to a stem
cell phenotype. The majority of the approved CTC isolation protocols utilize a gradient
centrifugation method to purify CTCs from peripheral-blood-derived mononuclear cells
(PBMCs). This approach does not induce substantial stress, thereby allowing the cells to
retain their true immunogenic features following scRNA-seq [56].

To perform personalized immunotherapy for UTSCs in the OTD, various mechanisms
and markers can be targeted through scRNA-seq analysis. For instance, cancer/testis
antigens (CTAs) like MAGE-A and NY-ESO-1 are expressed in many tumors and have
decreased expression in normal tissues [57]. The MAGE-A genes are a group of CTAs
encoded by the MAGEA gene family, consisting of 12 genes (MAGEA1–6, 8–12) located
on the X chromosome, and expressed in various cancers [58]. NY-ESO-1 is another CTA
encoded by the CTAG1B gene located on chromosome Xq28 and is widely detected in
melanoma, lung, ovarian, breast, and prostate cancer, as well as in normal testis tissue [59].
A study conducted by Gordeeva et al. (2018) analyzed the co-expression landscape of
17 CTAs in 5450 tumors from 39 histologic types [60]. They observed that CTAs have a
tendency to co-express in clusters, forming expression patterns characteristic of tumor sub-
groups. They also identified XAGE1B and GAGE10 as potential biomarkers for lung cancer
and neuroendocrine tumors, respectively [60]. According to this information, detecting
specific CTA expression in UTSCs through scRNA-seq could be an effective and practical
method for personalized immunotherapy for the OTD, particularly in females. As part of
our collective efforts, we are trying to identify potential CTA markers of breast cancer to
facilitate personalized tumor immunotherapy. In 2012, we investigated the expression of
CTGs Tsga10, TEX101, and ODF3 in patients with breast cancer [46]. Our study found that
Tsga10 was expressed in 70% of the patients, while TEX101 and ODF3 were not expressed
in any of the patients. Moreover, we observed that 14% of the patients had autoantibod-
ies against Tsga10. Therefore, these findings suggest that Tsga10 may contribute to the
proliferation and survival of breast cancer cells, and it could be a promising target for
personalized breast cancer immunotherapy [61]. Additionally, a study that we published in
Cancer Research in 2010 investigated the expression of CTG Piwil2 in breast CSCs. The study
found that Piwil2 was highly expressed in breast CSCs, and its silencing suppressed the
expression of the signal transducer and activator of transcription 3, a regulator of Bcl-XL

https://cytotrace.stanford.edu
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and cyclin D1, leading to reduced cell proliferation and survival. These findings indicate
that Piwil2 and its signaling pathways could be critical factors in the proliferation and
survival of breast CSCs and used for the targeted therapy of breast UTSCs [62]. Overall,
the scRNA-seq can aid in the identification and characterization of immunogenic markers
on UTSCs and facilitate the development of personalized cancer immunotherapies that
target these markers. Figure 2 summarizes the potential markers of USTCs for ten common
cancer types.
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5. Future Steps

In the previous chapter, we discussed some technical factors that can influence the
quality of scRNA-seq outcomes in the detection of USTCs. In this chapter, we aim to
provide a wide overview of the challenges associated with utilizing scRNA-seq technology
for the personalized immunotherapy of the OTD. We present effective solutions to address
these challenges and provide a practical workflow based on our experiences (Figure 3).
Moreover, in Figure 4, the challenges and approaches in applying scRNA-seq technology
to find potent immunogenic markers of USTCs for targeting the OTD are presented.
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Figure 3. A potential workflow for detecting patients’ USTC immunogenic markers using scRNA-
seq technology. This workflow consists of four main steps: Step 1: scRNA-seq pipeline for library
preparation, data processing, and cluster detection of patients’ tumor-derived cells and/or PBMC.
Step 2: detection of the USTCs using the markers. Step 3: discovery and validation of the detected
USTC immunogenic markers in the tumor samples using different methods, such as immunohisto-
chemistry (IHC) or Western blot. Step 4: selection of the most suitable and effective approaches for
the personalized immunotherapy intervention of the patients.

scRNA-seq technology, similar to other technologies, offers numerous benefits, but it
is crucial to consider its limitations when interpreting results. Technical challenges related
to library preparation, target cell isolation, and the reliability of UTSC-specific markers,
along with the high cost of the technology, technical errors, and the fact that scRNA-seq is
only applicable to living cells, pose significant barriers. To date, several scRNA-seq tech-
nologies have been presented, with varying abilities and improvements [63]. For instance,
droplet-based scRNA-seq techniques such as 10× Genomics and Drop-seq have improved
throughput and reduced the cost per cell [64]. Meanwhile, full-length transcript sequencing
technologies such as Smart-seq2 and Smart-seq3 have enabled the sequencing of full-length
transcripts, enhancing gene expression quantification and isoform identification [65]. Addi-
tionally, technologies such as 10× Genomics Visium and Spatial Transcriptomics have been
developed for the analysis of transcriptome expression in its spatial context. The cost of op-
erating scRNA-seq varies depending on the setup, with droplet-based scRNA-seq typically
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being less expensive per cell than full-length transcript sequencing technologies. As we de-
termined, a combined run of four samples using 10× Genomics costs USD 6600, according
to the pricing mentioned on the website (https://www.bumc.bu.edu/singlecell/pricing,
accessed on 7 June 2023). This indicates that it is crucial to carefully select a suitable single-
cell transcriptomics technology in personalized medicine that is cost-effective, accurate,
and powerful.
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scRNA-seq data commonly display higher noise levels and dropout rates compared
to bulk RNA-seq [66,67]. In bulk RNA-seq, the data only capture a small fraction of the
cell’s mRNA expression. To address these limitations, novel library preparation techniques
have been developed to reduce bias and improve the sensitivity of scRNA-seq analysis.
For instance, batch effects are systematic differences in scRNA-seq data that arise from
variations in experimental conditions, such as cell isolation methods, library preparation
kits, sequencing platforms, and data analysis pipelines [68]. Noise is random variation
in scRNA-seq data that results from biological factors, such as the cell cycle stage, cell
size, and cell viability, or technical factors, such as amplification bias, dropout events,
and sequencing errors [69]. Moreover, scRNA-seq still encounters several limitations that
should be taken into account when interpreting results for personalized immunotherapy of
cancer. One of the main technical challenges of scRNA-seq is cell library preparation, which
can result in a biased representation of the transcriptome [68,69]. Moreover, scRNA-seq
is only practical for living cells, which limits the analysis of cells that have been fixed or
preserved. This also restricts the accessibility of the technology for almost all subjects.

https://www.bumc.bu.edu/singlecell/pricing
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Additionally, the lack of reliable and stable UTSC markers can lead to the incomplete or
inaccurate identification of cell types [70,71].

To overcome the challenges associated with scRNA-seq technology in the management
of personalized immunotherapy for USTCs, several solutions can be considered. Using
liquid biopsy or mechanical methods for tissue dissociation enables the isolation of viable
cells for scRNA-seq analysis while maintaining their natural biological features. Tissue
dissociation techniques employing mechanical methods involve the application of physical
forces to disintegrate tissues into individual cells. Noteworthy mechanical approaches
include manual mincing, homogenization, and the employment of microfluidic devices [72].
Manual mincing, characterized by the employment of scalpel or scissors, stands as a sim-
plistic and cost-effective technique; however, it possesses limitations in terms of consistency
and potential cell damage [72]. Homogenization, on the other hand, utilizes rotating blades
or pistons to shear tissues but may generate heat and foam, thereby influencing cell viability.
Microfluidic devices, comprising microchannels and hydrodynamic forces, serve to dis-
rupt tissues, albeit at a relatively higher cost and necessitating specialized equipment [73].
Mechanical methods offer distinct advantages in facilitating prompt and efficient tissue
dissociation for scRNA-seq analysis [73]. Moreover, this can overcome the limitations of
using fixed or preserved cells, which do not qualify for scRNA-seq analysis due to RNA
degradation [74]. On the other hand, the optimization of scRNA-seq protocols can signifi-
cantly enhance the efficiency and cost-effectiveness of this technology, making it a more
reliable and trustworthy single-cell transcriptomics method. This can be performed by
selecting an appropriate single-cell transcriptomics platform that is cost-effective, accurate,
and powerful, such as droplet-based scRNA-seq technologies like 10× Genomics, which
has a high throughput and low cost per cell [75].

Batch effects and noise can affect the accuracy and reproducibility of scRNA-seq data.
As previously explained, batch effects and noise are two sources of variation commonly
observed in scRNA-seq data, arising from systematic differences in experimental conditions
and random biological or technical factors, respectively [66–70]. Several methods and
algorithms have been developed to mitigate the impact of batch effects and noise in scRNA-
seq data. These methods aim to enhance the comparability and quality of scRNA-seq data
across various samples [75,76]. For example, matching mutual nearest neighbors (MNNs)
in the high-dimensional expression space is an effective and useful approach to correcting
batch effects in scRNA-seq data. the MNNs are pairs of cells from different batches that
exhibit similar gene expression profiles. By identifying and aligning MNNs across different
batches, the MNN method can correct batch effects while preserving the biological format
of the data. The MNN method is a highly accurate, scalable, and robust integration method
that can be effectively utilized in personalized medicine approaches for cancer [77].

Furthermore, the development of experimental-based marker databases and atlases is
essential for accurately identifying and characterizing UTSCs. These markers are genes
specifically expressed or regulated in UTSCs, enabling differentiation from other cellu-
lar populations during scRNA-seq analysis (Figures 2 and 3). Tumor stem cell marker
databases and atlases provide a comprehensive collection of UTSC-specific markers to
minimize incomplete or inaccurate identification. The Human Cell Atlas (HCA) is a global
initiative that aims to map all human cells based on their molecular signatures, origins, and
spatial locations. The development of UTSC marker databases utilizing the HCA algorithm
can offer valuable insights into the distribution and diversity of these cells in different
tissues and organs [68,78,79]. Although single-cell transcriptomics technology is primarily
used for live cells, the development of methods for using fixed cells can help to extend
scRNA-seq analysis to fixed cells in cancer personalized medicine applications. Fixed cells
are cells that have been treated with chemical agents or physical methods to preserve their
structure and transcriptome [80,81]. The fixed cells can be obtained from various sources
and reserved for long periods without compromising their RNA quality. The development
of new protocols for the isolation and preparation of fixed cells can expand the utilization of
scRNA-seq analysis for personalized immunotherapy targeting patients’ OTD. For instance,
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some investigations have reported on the successful scRNA-seq analysis of fixed cells using
methods such as fixed single-cell RNA sequencing [80] and single-cell combinatorial fluidic
indexing RNA sequencing (scifi-RNA-seq) [81]. We believe that by implementing these
solutions, scRNA-seq can become a powerful tool in the management of personalized
immunotherapy for USTCs.

6. Conclusions

In this review, we aim to provide a brief explanation of the OTD concept as the main
origin of tumor progression and heterogeneity using our observations and expe-rience
in the field of cancer biology and personalized medicine. Additionally, we high-light
the powerful application of scRNA-seq, which allows for the detection and dis-tinction
of malignant undifferentiated stem phenotypes from other cell populations, providing
insights into the cells’ specific immunobiology. While this approach has the potential to
improve cancer immunotherapy performance, there are still challenges that need to be
addressed, such as optimizing the process of cell isolation and prepara-tion protocols,
expanding the availability of scRNA-seq facilities, reducing costs, and creating specific
databases and atlases for USTCs’ markers to enable the globalization of this approach.
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