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Simple Summary: In this review, we aim to clarify the prognostic significance of the KRAS p.G12C
mutation in metastatic colorectal cancer, emphasizing its potential as a promising therapeutic target.
Moreover, our objective is to increase readers’ awareness of the factors that can influence diverse
clinical, prognostic and therapeutic implications associated with distinct mutations within the same
protein.

Abstract: KRAS is frequently mutated in tumors. It is mutated in approximately 30% of all cancer
cases and in nearly 50% of cases of metastatic colorectal cancer (CRC), which is the third leading
cause of cancer-related deaths worldwide. Recent advancements in understanding CRC biology
and genetics have highlighted the significance of KRAS mutations in the progression of CRC. The
KRAS gene encodes a small GTPase (Guanosine TriPhosphatases) that plays a key role in signaling
pathways associated with important proteins involved in amplifying growth factor and receptor
signals. Mutations in KRAS are frequently observed in codons 12 and 13, and these mutations
have oncogenic properties. Abnormal activation of KRAS proteins strongly stimulates signals
associated with various cancer-related processes in CRC, including cell proliferation, migration and
neoangiogenesis. In this review, we explore the distinct prognostic implications of KRAS mutations.
Specifically, the KRAS p.G12C mutation is associated with a worse prognosis in metastatic CRC. The
correlation between structure, conformation and mutations is visually presented to emphasize how
alterations in individual amino acids at the same position in a single protein can unexpectedly exhibit
complex involvement in cancer. Last, KRAS p.G12C is discussed as an emerging and promising
therapeutic target in metastatic CRC, providing a concise overview of available clinical data regarding
the use of new inhibitors.
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1. Introduction

KRAS is a frequently mutated gene in tumors [1]. It is mutated in around 30% of all
cancer cases and in nearly 50% of metastatic colorectal cancer (mCRC) cases. Colorectal
cancer (CRC) is the third leading cause of cancer-related death worldwide [2]. Approxi-
mately half of patients present with or develop metastatic disease, primarily affecting the
liver, lungs, lymph nodes and peritoneum. Unfortunately, despite recent advancements in
mCRC treatment, patient survival rarely exceeds 30 months [3,4]. The increasing under-
standing of CRC biology and genetics has emphasized the significance of KRAS. The KRAS
gene and its counterparts, K-RAS (Kirsten RAt Sarcoma viral oncogene homolog) and
N-RAS (Neuroblastoma RAS viral oncogene homolog), encode small GTPases (Guanosine
TriPhosphatases) that drive the signaling of EGFR (Epidermal Growth Factor Receptor) [5].
The KRAS gene encodes for a protein comprising 188 amino acid residues and has a mass of
21.6 kD. Figure 1 depicts a schematic representation of the KRAS protein and its functional
components. It is beyond the scope of this review to provide an exhaustive account of the
biochemistry of KRAS (metabolism, synthesis regulation, post-translational modifications,
cellular localization, etc.). However, KRAS serves as a critical molecular switch, responsible
for recruiting and activating essential proteins involved in mediating the signal transduc-
tion of growth factors and receptors, such as c-Raf, MAPK and PI 3-kinase. Upon activation,
KRAS facilitates the hydrolysis of GTP to GDP, leading to the subsequent inactivation of
KRAS [6]. The abnormal activation of RAS proteins strongly stimulates the signals associ-
ated with various cancer-related processes in CRC, including proliferation, migration and
neoangiogenesis [7]. Furthermore, CRC tumors with KRAS mutations exhibit resistance
to anti-EGFR therapies (cetuximab or panitumumab) because the EGFR pathway remains
constitutively activated and independent of ligands in these cases [5–7].
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Figure 1. Schematic representation of amino acid positions, secondary structural elements, and
functional elements of KRAS protein. The P-loop region (9–16), specifically positions 12 and 13, is the
most common hotspot for mutations in KRAS gene, and it is essential for binding and hydrolyzing
GTP. Switch 1 controls the conformational changes required for KRAS interaction with downstream
effectors. Switch 2 plays a role in regulators and effectors binding. The hypervariable region is
involved in membrane anchoring and localization of KRAS to specific cellular compartments. The
GTP binding pocket is a complex structure formed through the interaction of amino acids from
different regions (10–18, 57–63, 116–119, 143–146).

2. KRAS Mutations: Prognostic Divergences

From a prognostic standpoint, our previous report highlights the significant negative
prognostic impact of pooled mutations involving KRAS p.G12C and p.G12S in patients with
mCRC (STORIA study: Study of Ras mutations prognostic value in metastatic colorectal
cancer) [8]. In an updated cohort of 188 patients from the STORIA study, who received
homogeneous treatment at the SSD-Innovative Therapies for Abdominal Metastases, we
conducted a prognostic analysis on individual mutational types (KRAS p.G12D, p.G12V,
p.G13D, p.G12A, p.G12C, p.G12S). We chose to separate the KRAS variant categories to
enable a more specific and useful examination of their prognostic power. Fourteen patients
with rarer variants were excluded from the analysis to prevent potential prognostic inter-
ferences that could not be adequately explained due to limited and fragmented numbers (4
p.A146T, 2 p.A146V, 2 p.G13R, 2 p.K117N, 2 p.G13C, 1 p.G12_G13insG, 1 p.G12F). Table 1
presents the baseline clinicopathological characteristics of our case series. The overall
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survival for each mutation is illustrated in Figure 2 (panels A–F). Among these, panel E
demonstrates the most significant divergence in survival curves, indicating a negative
impact on prognosis for the KRAS p.G12C variant. The results of the univariate and
multivariate analyses are summarized in Table 2.

Table 1. Clinical and pathological characteristics of patients.

Characteristics WT Mutated p
Mutation

p
p.G12D p.G12V p.G13D p.G12A p.G12C p.G12S

Age
<65 y 50 40 9 9 11 3 5 3
≥65 y 46 38 0.91 15 5 5 4 5 4 0.40
Gender

M 49 35 10 8 5 5 4 3
F 47 43 0.65 14 6 11 2 6 4 0.51

Grading
G1/G2 20 17 4 3 5 2 1 2
G3 76 61 0.87 20 11 11 5 9 5 0.79

Side of primary tumor
Left 45 32 9 8 8 1 3 3
Right 51 46 0.44 15 6 8 6 7 4 0.44

pT
pT1/pT2 13 11 4 1 3 2 1 0
pT3 48 45 12 11 8 2 7 5
pT4 35 22 0.50 8 2 5 3 2 2 0.63

pN
Not Involved 21 23 8 4 6 3 0 2
Involved 75 55 0.25 16 10 10 4 10 5 0.36

Metastatic involvement
One site 23 25 9 6 4 3 1 2
More than one 73 53 0.23 15 8 12 4 9 5 0.53

No. of chemotherapy lines
Two 10 16 3 3 3 2 2 3
More than two 86 62 0.06 21 11 13 5 8 4 0.63
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Figure 2. Kaplan–Meier survival curves according to different KRAS mutations ((A): WT vs. KRAS
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vs. KRAS p.G12C; (F): WT vs. KRAS p.G13S). WT: wild-type KRAS patients.

Table 2. Uni- and multivariate analysis of KRAS mutations’ prognostic effect.

Characteristics Risk Factor (vs.
Comparator)

mOS
(Months)

No. of
Events/Patients p at Univariate HR 95% CI p at

Multivariate

Age <65 y (vs. ≥65 y) 15.5 (vs. 19.5) 87/90 (vs. 77/84) 0.1310 0.79 0.59–1.07 0.0965
Gender male (vs. female) 19.2 (vs. 15.4) 81/84 (vs. 83/90) 0.7870 1.04 0.77–1.39 0.1181
Metastatic
involvement >1 site (vs. 1 site) 13.2 (vs. 23.6) 132/138 (vs.

32/36) 0.0005 1.77 1.28–2.45 <0.0001

KRAS
mutations

p.G12D (vs. WT) 12.0 (vs. 23.3) 24/24 (vs. 89/96) <0.0001 4.88 2.52–9.46 <0.0001
p.G12V (vs. WT) 12.2 (vs. 23.3) 14/14 (vs. 89/96) 0.0508 2.01 0.99–4.08 0.0745
p.G13D (vs. WT) 10.5 (vs. 23.3) 16/16 (vs. 89/96) 0.0253 5.49 2.41–12.4 0.0927
p.G12A (vs. WT) 12.5 (vs. 23.3) 6/7 (vs. 89/96) 0.4127 1.50 0.56–4.00 0.2656
p.G12C (vs. WT) 4.3 (vs. 23.3) 10/10 vs. (89/96) <0.0001 13.6 3.9–17.16 <0.0001
p.G12S (vs. WT) 12.6 (vs. 23.3) 5/7 vs. (89/96) 0.3541 1.68 0.56–5.05 0.1748

CI: Confidence Interval; HR: Hazard Ratio; mOS: Median Overall Survival.

No significant associations were found between KRAS mutational status and clinico-
pathological variables, as indicated in Table 1. Interestingly, in the multivariate analysis,
adjusted for age, gender and metastatic involvement, p.G12V, p.G13D, p.G12A and p.G12S
lost prognostic effect, whereas it was maintained by the p.G12D and p.G12C variants. The
p.G12C variant had the worst prognostic profile with an impressive HR of 13.6 (95% CI:
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3.9–17.16) and a median overall survival of 4.3 months compared to 23.3 months for the wt
form (p < 0.0001). These findings provide compelling real-world evidence highlighting the
clinical significance of the KRAS p.G12C variant in mCRC. They contribute to increasing
awareness regarding how not all KRAS mutations have the same impact, highlighting the
complexity of mCRC biology.

In recent studies, the prognostic significance of the KRAS p.G12C mutation in patients
with mCRC has been investigated (Table 3). A search was performed in PubMed (last
accessed on 10 April 2023) using the following search strings: (colon [title] OR colorectal
[title]) AND (metasta*) AND (KRAS) AND (prognos*). The search was limited to the past
ten years, and reviews were excluded. Additionally, the reference sections of the selected
original papers were analyzed to ensure the inclusion of any additional relevant articles.
Furthermore, our focus was specifically on studies that investigated the prognostic role of
KRAS p.G12C and that reported the median survival of patients in months.

Table 3. Survey of studies reporting on the prognostic role of KRAS p.G12C variant in mCRC patients.

Author, Year Type of
Study Method No. of

Patients
% of p.G12C

Variant Comparison mOSs Co-Variates p *

Schirripa M.
et al., 2020

[9]
Retrospective Sanger

sequencing. 839 17.0
p.G12C

vs.
non-p.G12C

29.0
vs.

36.7

Gender, ECOG PS,
primary tumor

surgery, pT, pN, time
of first metastasis,

grading, number of
metastatic sites.

0.004

Chida K.
et al., 2021

[10]
Retrospective

Exon 2
through

PCR-based
kits.

1632 2.8
p.G12C

vs.
non-p.G12C

21.2
vs.

27.3

Age, gender, ECOG
PS, primary tumor
site, surgery on the

primary tumor, time
of first metastasis,
histology, white
blood cell count,

serum albumin level,
LDH level, serum
C-reactive protein
level, metastatic

tumor site, number
of metastatic sites.

0.030

Fakih M.
et al., 2022

[11]
Retrospective NGS. 6477 3.7

p.G12C
vs.

non-p.G12C
vs.
wt

16.1
vs.

18.3
vs.

23.4

None ** None **

Modest D.P.
et al., 2016

[12]
Retrospective

Exon 2-4
through

PCR-based
kits.

1239 2.2
p.G12C

vs.
wt

16.8
vs.

26.9

Treatment, ECOG PS,
gender, adjuvant

chemotherapy,
liver-limited disease

and number of
involved organs.

0.001

Jones R.P.
et al., 2017

[13]
Retrospective

Pyrosequencing-
based assay
of codons 12,

13 and 61.

392 3.8
p.G12C

vs.
wt

24.9
vs.

35.1
None ** None **

Wiesweg M.
et al., 2019

[14]
Retrospective

Exon 2, if
KRAS wt

proceeded to
exon 3

through
PCR-based

kits.

347 11.9

p.G12C
(included in

an
unfavorable

cohort)
vs.
wt

15.2
vs.

60.0

Age, gender, stage,
RAS prognostic

cluster or RAS wild
type, RAS DNA

substitution category,
grading, primary
tumor location.

0.087

* The reported p refers to multivariable analysis results. ** The studies are descriptive. Co-variates of multivariable
models are also reported. ECOG PS: Eastern Cooperative Oncology Group Performance Status; mOS: Median
Overall Survival; NGS: Next-Generation Sequencing; PCR: Polymerase Chain Reaction.

Various methodologies to assess KRAS mutations have been utilized, ranging from
single-codon real-time PCR-based assays to Next-Generation Sequencing (NGS) wide panel
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assays. PCR-based kits and pyrosequencing-based assays offer high sensitivity and speci-
ficity in identifying KRAS mutations. They are relatively cost-effective and straightforward
to perform. However, PCR-based kits can only detect pre-defined mutations and are unable
to identify novel or rare mutations outside the targeted regions. Sanger sequencing is a
well-established technique used for mutation detection, capable of identifying both single-
nucleotide variants and small insertions or deletions. Nevertheless, it is time-consuming,
expensive and, like the aforementioned techniques, not suitable for a high-throughput
analysis. Next-Generation Sequencing (NGS) technologies have revolutionized genetic
research, allowing for the simultaneous sequencing of numerous genes and enabling a
comprehensive assessment of KRAS mutations and other genomic alterations. NGS offers
high sensitivity, specificity and the ability to detect novel or rare mutations of the KRAS
gene. However, the challenges associated with NGS include the cost, the complexity of
the data analysis and the need for sophisticated bioinformatics tools. Interestingly, both
the selected techniques and the heterogeneity in clinical series can contribute to significant
variability in the frequency of KRAS p.G12C in the selected articles. These studies have
unveiled the distinct prognostic implications of different KRAS mutations, contributing
to the overall heterogeneity of tumors. Furthermore, to gain a better understanding of
these findings, we can classify the studies into two groups. The first group compares
prognostic outcomes among different mutations, and the second group compares mutated
forms, whether singular or combined, with the non-mutated form. Notably, in our updated
analysis of the STORIA study, we observed strong clinico-prognostic heterogeneity among
KRAS mutations. Consequently, we found it valuable to compare the prognosis associated
with each mutation to the non-mutated form, which we refer to as the “wt” (wild type).
This comparison serves as a reference point for normalization, allowing for a more robust
assessment of the prognostic significance of individual mutations.

Interestingly, in our study, we observed a median overall survival of 4.3 months for pa-
tients with KRAS p.G12C mutations. These findings are worse than those reported in a study
with the poorest survival outcome for KRAS p.G12C mutated patients (15.2 months) [14].
Clinical factors related to the inherent heterogeneity of patient populations may account for
this difference in prognoses. However, it is important to emphasize and discuss primarily
the exclusion, in our study (STORIA trial), of oligometastatic patients (defined as those
with 1–3 lesions per organ and the involvement of a maximum of two organs), which
consistently represent 10% of the metastatic colorectal cancer cases. Furthermore, if we
observe the median survival of KRAS wt patients in this study, it is evident that their
survival is significantly higher (60.0 months) than that of ours (23.3 months), suggesting
that this could be a contributing factor. Thus, in our study, the exclusion of oligometastatic
patients and the presence of a higher proportion of poly-metastatic high tumor burden
disease could have influenced the observed survival outcomes for KRAS p.G12C patients.
It is crucial to consider these factors when interpreting and comparing our findings with
previous studies.

However, studies examining the prognostic effect of KRAS p.G12C mutations, com-
pared to non-p.G12C mutations, have consistently reported a decrease in median sur-
vival of 2–7.7 months among patients with non-p.G12C mutations [9–11]. Furthermore,
when comparing the p.G12C mutation to the wt form of KRAS, studies have consistently
demonstrated a significant negative impact, with median survival differences of less than
10 months compared to KRAS wt [12–14]. Therefore, the negative prognostic role of KRAS
p.G12C in metastatic CRC is reasonably well-established.

It is important to acknowledge that our study has certain limitations. First, the sample
size was relatively small, especially for certain KRAS mutations that occurred in less than
10 patients. This limited sample size could have influenced the robustness of our findings.
Furthermore, due to the limited number of patients with rare KRAS variants, we were
unable to thoroughly investigate the role of these variants, which might have had an even
stronger prognostic impact. This is an important aspect that should be considered in future
studies aiming to explore the prognostic significance of less common KRAS mutations.
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Additionally, the search conducted for the narrative review was not comprehensive but
rather focused on providing a narrative overview of relevant studies. As a result, there is a
possibility that some studies related to the topic may have been missed.

Despite these limitations, our study contributes to the growing body of evidence indi-
cating that the KRAS p.G12C mutation is a strong negative prognostic factor in metastatic
colorectal cancer. The consistent decrease in median survival observed in studies compar-
ing p.G12C mutations to non-p.G12C mutations, as well as the significant negative impact
when compared to the KRAS wt, strongly supports the unfavorable prognostic role of KRAS
p.G12C in this patient population. These findings underscore the need for further insights
and targeted therapeutic approaches in this patient population.

3. KRAS Mutations: Linking Structure and Prognosis

The awareness of certain connections between structure and prognostic implications
is important. KRAS p.G12C is a paradigm of how a single protein can have unexpectedly
complex involvement with a final effect linked not only to its alteration but also to the
interplay with other molecular partners.

Notably, KRAS hot spot mutations predominantly occur in codons 12 and 13. Muta-
tions in codons 61 and 146, although oncogenic, account for less than 5% of total KRAS
mutations [5,6]. The most significant consequence of alterations in codons 12 and 13 is
the allosteric distortion of the GDP/GTP binding pocket, which leads to the abolition of
or reduction in GTPase activity in KRAS following guanine nucleotide activating protein
(GAP) binding. Additionally, this alteration causes the molecule to remain locked in an
active, GTP-bound state. It is important to note that codons 12 and 13 in the KRAS wild
type encode glycine residues. When other amino acids are substituted at these positions
(e.g., aspartate and valine at codon 12, and aspartate at codon 13), bulky amino acid side
chains protrude into the GDP/GTP binding pocket of KRAS, hindering the steric hindrance
in GTP hydrolysis [15]. Nonetheless, the functional implications diverge significantly,
particularly concerning the interaction interface with effector proteins. This disparity not
only exists between the wt and mutant variants but also among different mutant forms.
Intriguingly, among the various KRAS mutants, p.G12D, which is the most prevalent in
cancer, exhibits the closest resemblance to the wt in terms of its dynamics [16]. These
findings strongly suggest and validate that an alteration in KRAS dynamics follows an
allosteric mechanism, and a mutation can induce diverse modifications in the protein,
even in distal regions. Hence, structural variations in mutated forms of KRAS arise from
allosteric effects on the protein, resulting in spatial distortions within regions involved
in binding effectors and GAPs. These GAPs regulate GTP hydrolysis and facilitate the
transition of KRAS into its inactive GDP-bound state [17]. As a result, these modifications
in the three-dimensional structure of KRAS lead to differences in its ability to interact with
effector and regulatory molecules. Figure 3 provides a comparative representation of the
structures of the KRAS wt, KRAS p.G12D and p.G12C, demonstrating their distinct spatial
conformations in specific regions.

Depending on the nature of the distortion, this conformational change can interfere
variably with the binding of other molecular partners, especially those involved in KRAS
deactivation. These considerations are crucial in understanding the diverse clinical and
prognostic implications of KRAS mutations.

Studying KRAS mutations is further complicated by recent advancements in compre-
hending the molecular dynamics of individual mutations. Notably, KRAS p.G12C exhibits
constitutive activation by remaining bound to GTP, leading to impaired GTP hydrolysis and
insensitivity to p120RAS and neurofibromin (critical GAPs involved in GTPase activation).
However, contrary to the prevailing belief that mutant KRAS p.G12C proteins are insensi-
tive to GAPs, a paradox arises with the compound AMG510 (sotorasib), as it selectively
recognizes only the inactive GDP-bound form of KRAS p.G12C. Interestingly, this paradox
was resolved with the discovery of G protein signaling 3 (RGS3) as an unexpected GAP for
KRAS p.G12C [18].
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Figure 3. This figure illustrates three crystallographic structures of different KRAS variants: KRAS
wild type, KRAS p.G12D and KRAS p.G12C. These variants differ by a single amino acid at position
12 in the P-loop region. It is important to note that, although a crystal structure represents an average
of the protein structure over time, influenced by factors such as temperature, crystal-packing contacts
and artifacts, it still provides a reliable approximation of the overall conformation of the protein
regions. All three crystallographic structures were derived from the GDP-bound state of KRAS, and
the analysis of single amino acid sequences and structural interactions between different regions was
performed using the 3D navigation perspective on the online research tool of the NCBI (National
Center for Biotechnology Information, https://www.ncbi.nlm.nih.gov/structure, accessed on 12 May
2023). In the figure, specific regions of interest are indicated, and ions and chemicals (such as glycerol,
commonly used as a cryosolvent in cryocrystallography) are excluded to improve figure clarity. It
is crucial to highlight that KRAS predominantly engages with its effector and regulatory proteins
at the critical regions known as Switch I and Switch II. The GTP-binding site is located between the
Switch I and P-loop regions. Notably, the depicted variants in the figure exhibit distinct allosteric
conformations in the Switch II region (see Figures (A–C) below each representation of the respective
KRAS variant). These structural differences contribute to the observed variations in oncogenic
properties among the variants, implying distinct relationships with effectors and regulators, as well
as differential GTPase activity.

The activation of inactive KRAS-GDP is further complicated by the involvement of
guanosine exchange factors (GEFs). GEF proteins facilitate the displacement of GDP from
the nucleotide-binding site, ultimately resulting in the binding of GTP and the full activation
of KRAS, including the specific variant KRAS p.G12C. Studies have demonstrated that the
activation of KRAS p.G12C depends on receptor tyrosine kinase-mediated stimulation of
the RAS guanine nucleotide exchange factor (RASGEF), SOS1 (son of seven-less homolog
1), which promotes the exchange of GDP for GTP. Therefore, inhibitors targeting SOS1 may
hold therapeutic value against persistently activated KRAS p.G12C, in combination with
direct inhibitors [19].

The biologic role of the KRAS p.G12C mutation varies among different types of
cancers. This variability can be attributed to distinct tissue expression patterns and the
involvement of regulatory proteins, such as SOS1, which may contribute to the differential
response observed in KRAS p.G12C inhibition. An illustrative example of this variability
is the response to sotorasib in metastatic non-small cell lung cancer, where an objective
response is achieved in approximately 30% of cases, compared to approximately 7% of
cases in colorectal cancer [20,21]. Additionally, in lung cancer, the KRAS p.G12C mutation

https://www.ncbi.nlm.nih.gov/structure
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is associated with high Tumor Mutational Burden (TMB) and high PD-L1 expression,
suggesting potential increased sensitivity to immunotherapy [22].

Although the specific biological mechanisms underlying the differential effects of
KRAS mutations are not yet fully understood, it has been demonstrated that the germline
biallelic inactivation of the MUTYH (MutY Homolog) gene is associated with the occurrence
of colorectal cancer bearing KRAS p.G12C and PIK3CA p.Q546K mutations [23]. MUTYH is
an enzyme involved in the repair of DNA errors caused by guanine oxidation resulting from
cellular oxidative stress. It functions as an adenine DNA glycosylase, specifically targeting
and removing misincorporated adenine within 7,8-dihydro-8-oxoguanine (8-oxoG) pairs.
This enzymatic action leads to G:C to T:A transversions. MUTYH works in collaboration
with OGG1 (8-Oxoguanine DNA Glycosylase), which is responsible for eliminating 8-
oxodG. Mutations in the MUTYH gene are associated with “MUTYH-associated polyposis
syndrome” (MAP), an autosomal recessive disorder characterized by the development
of multiple colorectal adenomas or polyps. Individuals with MAP have a significantly
increased lifetime risk of developing colorectal cancer [24].

Understanding the mutational mechanisms of KRAS and delving into the role of
different KRAS mutations in various tumor types present an intriguing challenge that
can enhance our approach to agnostic therapies in oncology, with the inhibition of KRAS
p.G12C serving as an example.

4. Resurgence in KRAS Targeting: Overcoming Challenges

Although KRAS has been identified as an excellent drug target for many cancers, the
direct inhibition of oncogenic KRAS has proven to be challenging due to the absence of
druggable pockets on its surface. Additionally, the development of direct KRAS inhibitors
has faced difficulties due to the exceptionally high affinity of GTP and GDP to KRAS (with
intracellular concentrations of these metabolites being much higher). However, in recent
years, research on KRAS has experienced a resurgence, driven by the growing belief that
KRAS could be targeted using low-molecular-weight organic molecules with a very high
affinity for the protein. This belief was ignited by the discovery of two pockets on the
surface of KRAS, particularly the Switch II pocket (SII-pocket) located above the Switch II
loop in GDP-KRAS p.G12C, positioned between the α3-helix and Switch II loop [25–27].
These findings have revolutionized the pharmacological approach to targeting KRAS.
Subsequently, a major breakthrough in KRAS inhibition for mCRC was achieved with the
identification of covalent inhibitors specifically designed to target the p.G12C mutation in
KRAS, namely sotorasib and adagrasib (Figure 4).
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These compounds facilitate a covalent interaction between their electrophilic acryloyl
components and the nucleophilic thiol group of the cysteine (Cys) residue at position 12.
The KRAS p.G12C inhibitors have demonstrated encouraging outcomes in recent clinical
trials; however, it is important to note, as previously discussed, that they specifically target
the inactive form of KRAS.

5. Sotorasib and Adagrasib: An Overview of Clinical Data

The two drugs underwent clinical trials with promising results. In a phase I study,
sotorasib was administered to 42 heavily pretreated and refractory patients with mCRC.
The planned dose levels for the escalation cohorts were 180, 360, 720 and 960 mg once
daily. The study achieved a response rate of 7.1% and a disease control rate of 73.8%. No
dose-limiting toxic effects were observed, and no treatment-related adverse events resulted
in death. The most common events were diarrhea (in 38 patients [29.5%]), fatigue (in
30 [23.3%]) and nausea (in 27 [20.9%]). The recommended dose for phase II studies was
determined to be 960 mg per day [21]. In a phase II study involving 62 heavily pretreated
and chemorefractory patients with the same disease, a response rate of 9.7% and a disease
control rate of 82.3% were observed. The medication was given orally, with a daily dose
of 960 mg, until there was evidence of disease progression, the occurrence of intolerable
side effects, withdrawal of consent or mortality. Treatment-associated adverse events of
grade 3 were observed in six patients (10%), predominantly presenting as diarrhea. There
were no reported incidents of fatal outcomes [28]. In an interesting first-in-human phase I
study of adagrasib, one of two heavily pretreated patients with KRAS p.G12C-mutant CRC
achieved a partial response. The most common treatment-related adverse events of any
grade were nausea (80.0%), diarrhea (70.0%), vomiting (50.0%) and fatigue (45.0%). Fatigue
was the most common grade 3–4 treatment-related adverse event, occurring in 15.0%
of patients. The recommended phase II dose based on safety, tolerability and observed
pharmacokinetics properties was determined to be 600 mg twice a day [29]. In a non-
randomized phase II clinical trial, heavily pretreated individuals diagnosed with mCRC
harboring the KRAS p.G12C mutation were enrolled. The patients received either adagrasib
monotherapy (600 mg orally twice daily) or a combination treatment comprising adagrasib
(at the same dosage) and intravenous cetuximab once a week (at standard doses). Among
the 44 patients who received adagrasib monotherapy, a response rate of 19% was observed.
In the group receiving combination therapy (consisting of 32 patients), the response rate
increased to 46%. Notably, treatment-related adverse events of grade 3 or 4 occurred in 34%
of the monotherapy group and 16% of the combination therapy group. No grade 5 adverse
events were reported.

Therefore, adagrasib and sotorasib exhibited comparable safety profiles and encourag-
ing efficacy in extensively treated individuals diagnosed with mCRC carrying the G12C
mutation in the KRAS gene. Combination with anti-EGFR therapy appears to improve
clinical outcomes [30].

Sotorasib received orphan drug designation from the US FDA in June 2019 for KRAS
p.G12C-positive non-small cell lung cancer (NSCLC) and colorectal cancer. However, as
of the time of writing this manuscript, both sotorasib and adagrasib have only received
FDA approval for NSCLC. Currently, phase I/II clinical trials are underway in multiple
countries to evaluate the efficacy of sotorasib and adagrasib in KRAS p.G12C-mutated
mCRC. These trials involve combinations with various treatment modalities, such as im-
munotherapy (NCT03785249), SHP-2 inhibitors (NCT04330664), ULK 1/2 kinases inhibitors
(NCT04892017), anti-EGFR therapies (NCT05722327, NCT04793958, NCT05198934) and
SOS-2 inhibitors (NCT05578092).

6. Pragmatic Considerations on the Clinical Use of KRAS Mutations

In clinical practice, oncologists receive a molecular report indicating a specific KRAS
mutation. The primary consequence is the exclusion of anti-EGFR-based treatments, as
widely recommended by guidelines [31]. Nevertheless, it is crucial to acknowledge and
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remain aware that not all KRAS mutations carry the same prognostic implications. For
example, the presence of the p.G12C mutation may indicate a poorer prognosis, whereas
the p.G12D mutation may suggest an intermediate outcome between the wt form and
the p.G12C mutation. On the other hand, the p.G12V variant might exhibit a prognostic
behavior that is not significantly different from that in patients with wt KRAS. More-
over, for several other mutations (p.A146T, 2 p.A146V, 2 p.G13R, 2 p.K117N, 2 p.G13C,
1 p.G12_G13insG, 1 p.G12F), due to their rarity, we have limited knowledge regarding
their predictive and prognostic consequences. In such cases, we can only reasonably
adopt a cautious approach and encourage enrollment in clinical studies or stimulate multi-
institutional research to gather an adequate amount of data. This highlights the complexity
of prognostic evaluations in mCRC, which already involve various clinical factors such as
age, tumor burden, response to first-line chemotherapy, CEA levels, the site of the tumor,
lymph node involvement, grading, histology and others. In the future, clinical oncologists
will increasingly utilize advanced tools, such as artificial-intelligence-based systems, to
enhance prognostic and therapeutic assessments. These tools will include the integration of
molecular signatures into comprehensive and final prognostic evaluations. AI can provide
enhanced decision support, leveraging the growing availability of data and technological
advancements.

Further studies are necessary to deepen our understanding of the prognostic and
therapeutic implications associated with different KRAS mutations in mCRC patients.
These investigations will contribute to refining our knowledge and optimizing treatment
strategies for this complex disease.

7. Conclusions

The KRAS p.G12C mutation holds significant clinical importance in patients with
metastatic colorectal cancer. Investigating and extensively exploiting it as a therapeutic
target is one of the priorities in oncology for the near future.
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