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Simple Summary: Pancreatic cancer ranks as the fourth leading cause of cancer-related death in the
United States. In fact, it is estimated that there will be 64,050 new cases and 50,550 deaths in 2023 in
the US alone. Pancreatic ductal adenocarcinoma accounts for the vast majority of pancreatic cancer
cases, and it has been widely recognized as one of the most devastating malignancies. The majority
of patients are diagnosed at late stages when metastasis has occurred, leading to the 5-year survival
rate being below 10%, which is the lowest among all cancer types. The causes of death are largely
attributed to scanty screening diagnostic tools, abrupt metastasis, and prevalent chemoresistance.
Molecular studies have elucidated that the stiff fibroblastic stroma shields from the penetration of
therapeutic agents and establishes a hypoxic niche. A growing body of evidence identifies that
tumor-associated macrophages play pivotal roles contributing to mortality by strengthening the
fibroblastic stroma, promoting malignant cell proliferation, augmenting angiogenesis, metastasis,
acquiring pleiotropic pancreatic cancer stem-like cells, supporting chemoresistance, and harnessing an
immune-suppressive microenvironment that subsequently dampens chemo- and immunotherapies.
This review will summarize research findings revealing various mechanisms employed to polarize
macrophages to tumor-supporting subtypes which subsequently unleash the plethora of neoplastic
characteristics. In addition, it will ignite potential targets aiming to correct the aberrant carcinogenic
regulators through therapeutic approaches.

Abstract: Mounting evidence links the phenomenon of enhanced recruitment of tumor-associated
macrophages towards cancer bulks to neoplastic growth, invasion, metastasis, immune escape, matrix
remodeling, and therapeutic resistance. In the context of cancer progression, naïve macrophages
are polarized into M1 or M2 subtypes according to their differentiation status, gene signatures,
and functional roles. While the former render proinflammatory and anticancer effects, the latter
subpopulation elicits an opposite impact on pancreatic ductal adenocarcinoma. M2 macrophages
have gained increasing attention as they are largely responsible for molding an immune-suppressive
landscape. Through positive feedback circuits involving a paracrine manner, M2 macrophages can
be amplified by and synergized with neighboring neoplastic cells, fibroblasts, endothelial cells, and
non-cell autonomous constituents in the microenvironmental niche to promote an advanced disease
state. This review delineates the molecular cues expanding M2 populations that subsequently convey
notorious clinical outcomes. Future therapeutic regimens shall comprise protocols attempting to
abolish environmental niches favoring M2 polarization; weaken cancer growth typically assisted
by M2; promote the recruitment of tumoricidal CD8+ T lymphocytes and dendritic cells; and boost
susceptibility towards gemcitabine as well as other chemotherapeutic agents.

Keywords: angiogenesis; chemoresistance; epithelial–mesenchymal transition; extracellular
matrix; gemcitabine; hypoxia; immune checkpoint blockades; immune suppression; Kras; metastasis;

Cancers 2023, 15, 3507. https://doi.org/10.3390/cancers15133507 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15133507
https://doi.org/10.3390/cancers15133507
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-1726-6385
https://orcid.org/0000-0002-2114-3997
https://orcid.org/0009-0003-8195-8615
https://doi.org/10.3390/cancers15133507
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15133507?type=check_update&version=1


Cancers 2023, 15, 3507 2 of 28

pancreatic ductal adenocarcinoma; tumor-associated macrophages; tumor-infiltrating lymphocytes;
tumor microenvironment

1. Introduction
1.1. Introduction of Pancreatic Cancer

Pancreatic carcinoma is the deadliest malignancy afflicting the exocrine digestive organ.
This cancer is well known for lacking screening tools and having early metastatic spread,
followed by chemoresistance, leading to limited treatment strategies and poor prognostic
outcomes [1,2]. As such, it took 466,003 lives across 185 countries in 2020 and is presently
the seventh leading cause of deaths from cancers in both genders [3]. Trends forecasted
through 2040 predict that pancreatic cancer will become the second-most-leading cause
of cancer-related death in the United States [4], and approximately 355,317 new cases will
occur globally [5]. Among them, nearly 95% of pancreatic cancer incidences are pancreatic
ductal adenocarcinoma (PDAC) [6]. Approximately 80% of pancreatic cancer patients
present with advanced-to-late stages of nonresectable and disseminated disease [7]. The
two most common first-line chemotherapeutic regimens include blends of 5-fluorouracil,
leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX) and gemcitabine (GEM) plus Nab-
Paclitaxel [8]. However, therapeutic intervention scarcely improves overall prognosis, and
the 5-year survival rate remains disappointing [9,10].

PDAC develops sporadically but is largely due to the acquisition of constitutively
active mutant Kirsten rat sarcoma (KRAS) derived from the most frequent driver mutations:
G12R, G12V, and G12D, which comprise approximately 90% of occurrence [11]. Among
them, G12D accounts for about 40% of incidents [11,12]. Initial progression to pancre-
atic cancer embarks from the cells harboring KRAS mutations engaging in networking
with proinflammatory cytokines [13–15]. For instance, in response to oncogenic mutant
KRAS, interleukin (IL)-6 induces the expression and activation of signal transducer and
activator of transcription 3 (STAT3) [15–18]. Accordingly, persistent STAT3 signaling was
demonstrated to play a pivotal role in mutant KRAS-induced pancreatic tumorigenesis [19],
and demonstrated that Janus kinase (JAK)–STAT3 axis activation correlates with a poor
outcome in PDAC patients following surgical resections [20]. Moreover, oncogenic mutant
KRAS unleashes a plethora of signaling cascades, including rapidly accelerated fibrosar-
coma (RAF)/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase
(ERK), and phosphoinositol 3-kinase (PI3K)/protein kinase B (AKT) pathways in various
malignant entities including pancreatic cancer [11,21–23]. RAF/MEK/ERK is the first well-
known Ras effector in cancers. GTP-bound KRAS interacts with and triggers RAF, which
further induces the phosphorylation and activation of MEK1 and MEK2. This scenario
subsequently enhances ERK1 and ERK2 serine/threonine kinases activities. Activated
ERK1/2 then phosphorylates over 200 targets, many of which are transcription factors
controlling cell proliferation [24,25]. Mounting evidence demonstrates the critical role of
PI3K being a regulator for embarking oncogenic KRAS-driven carcinogenesis, largely by
governing cell survival and proliferation [26,27]. Another independent study utilizing a
genetically engineered mouse model containing mutant Kras elucidates a similar finding
that the PI3K pathway can augment PDAC through the activation of STAT3 and nuclear
factor kappa B (NF-κB) signaling [28].

The first histological alteration occurring in PDAC pathogenesis is the transdifferentia-
tion of acinar cells into duct-like cells, named acinar-to-ductal metaplasia (ADM) [29,30].
The molecular causes underlying dysregulated ADM were recently elucidated to be as-
sociated with a loss of AT-rich interactive domain containing protein 1A (ARID1A) [31],
followed by interaction between PAF1 (RNA polymerase II-associated factor 1) and YAP1
(yes activated protein-1) [32]. For ADM, infiltrating macrophages secrete inflamma-
tory cytokines including regulated on activation normal T cell expressed and secreted
(RANTES) [33] and tumor necrosis factor-alpha (TNF-α). Together, they lead to the acti-
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vation of NF-κB signaling and expression of matrix metalloproteinases (MMPs) [33,34].
In response to chronic inflammation, acinar pancreatic cells adopt ADM [29] and then
develop precancerous lesions, which are not only frequently observed in pancreatitis [35],
but also develop into pancreatic intraepithelial neoplasia (PanIN) following the acquisition
of oncogenic mutations such as KRAS [29]. Both ADM and PanIN constitute crucial aberra-
tions in PDAC and persist throughout tumor development [34,36]. During this neoplastic
progression, macrophage depletion not only blocks the progression of ADM to PanIN, but
also lightens PDAC burden in mice [34,37], underscoring the imperative role played by
these immune cells.

Although oncogenic Kras mutation in mouse PDAC is critical for cancer initiation, con-
stitutively activated mutant KRAS alone is insufficient for tumor onset; rather, it requires
partner mutations such as the P53 tumor suppressor gene, as well as cytokines produced by
different cell types within the tumor mass [38]. A genetically engineered mouse model com-
bining both mutations, LSL-KrasG12D; Trp53flox/flox; Pdx-1-Cre (KPC), has been established
as a clinically relevant PDAC model that recapitulates many key features of human PDAC
with a robust inflammatory response [39] and elevated immunosuppressive features [40].

1.2. Introduction of Tumor Microenvironment and Immune Evasion

Marked by extensive fibrosis and inflammation, PDAC’s tumor microenvironment
(TME) consists of fibroblasts, immune cells, endothelial cells, and an acellular extracellu-
lar matrix (ECM) that contains various growth factors, chemokines, and cytokines [41].
Within the TME, cancer cells interplay with nearby stroma and acellular constituents that
synergistically controls malignant traits and therapeutic outcomes [42,43]. Fibroblastic
stroma can hinder drug entry by safeguarding tumor cells from therapeutic insults [44],
and then advancing tumor progression characterized by invasion, angiogenesis, metastasis,
and chemoresistance [45]. PDAC is initially featured with chronic inflammation triggered
by immune aberrations [46]. Then, oncogenic mutant KRAS augments inflammation and
launches an immunosuppressive TME that subsequently plays a pivotal role in cancer
progression [47–50].

In general, immune responses are modulated by a plethora of checkpoint regulators
that act as “security brakes” and establish a “do not eat me” cue when inflammation re-
actions shall be ended from prior infections, or autoimmunity shall be circumvented by
enhancing self-tolerance. Cancers exploit various immune checkpoint modulators, attempt-
ing to evade tumoricidal responses, favor immune tolerance, and escape recognition and
clearance by immune surveillance cells [51]. Therapeutic agents abolishing such functions
are recognized as immune checkpoint blockades (ICBs) that have been proven to improve
clinical outcomes [52]. Yet, PDAC remains largely embraced by an immunosuppressive
TME with limited infiltration of tumoricidal immune cells, thereby resulting in a poor
response to ICBs [53,54]. The TME attracts several immunosuppressive cell types that cir-
cumvent the surveillance normally conducted by cytotoxic cluster of differentiated (CD)8+

T lymphocytes and by dendritic cells (DC) [53].
Within the TME of PDAC, infiltration of tumoricidal CD8+ T lymphocytes is rare.

Accordingly, a few well-known ICBs attempting to revive T lymphocytes to date have
manifested disappointing efficacy [55]. Instead, the tumor bed is infiltrated with largely
protumorigenic immune-suppressive cells including myeloid-derived suppressor cells
(MDSC), regulatory T cells (Treg), and tumor-associated macrophages (TAM) [47,53]. TAMs
are the earliest infiltrating cells in PanIN lesions and continue to rise throughout cancer
progression [56]. Macrophages in PDAC are derived from blends of circulating monocytes
and phagocytes that reside in the pancreas. Moreover, TAMs are the most abundant
immune cells in the stroma and are the key drivers shaping the immunosuppressive
landscape [57]. TAMs enhance tumor immune evasion, mainly by enhancing tumor fibrosis
and excluding tumoricidal T lymphocytes [58]. TAM infiltration not only correlates with
lymph node metastasis and poor prognosis [59], but also plays multifaceted roles in the
carcinogenesis of PDAC [60].
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As a vital innate immune population for maintaining body homeostasis and warding
off foreign particles or pathogens, macrophages can regularly sense their microenvironment,
display high plasticity, and execute diverse functions adapted to different environmental
contexts. Depending on the inflammatory cues, macrophages can develop two distinct
subtypes, these being either classically activated M1 or alternatively activated M2 sub-
populations [61]. M1 macrophages are proinflammatory and tumoricidal, whereas M2
macrophages are anti-inflammatory, protumorigenic, and immunosuppressive [61,62].
Furthermore, fully polarized macrophages can depolarize and transform reciprocally in
response to environmental triggers [63]. The M1 subtype commonly produces higher
levels of IL-1, IL-6, IL-12, IL-23, TNFα, chemokine C-X-C motif ligand (CXCL)9, CXCL10,
and inducible nitric oxide synthase (iNOS) [64]. Conversely, the M2-type commonly ex-
presses higher levels of IL-10, transforming growth factor-β1 (TGF-β1), and arginase 1
(ARG1) [65–70]. M2 is the most abundant immunosuppressive subpopulation representing
approximately 85% of TAMs [53,57,71,72]. Infiltration and the abundance of M2 is not only
a malignant hallmark but also correlates with poor prognosis [73,74]. Yang et al. demon-
strated that targeting proliferating F4/80+ macrophages by the pharmacological inhibitor,
clodronate liposomes, fostered CD8+ T cell infiltration and promoted their spatial redis-
tribution, thereby enhancing antitumor immunity [75]. Furthermore, closer proximity of
M2 macrophages to the tumor core strongly correlates with poor disease-free survival [69],
highlighting the clinical impact of M2 macrophages on molding a cancer-promoting land-
scape [61,71,76].

Macrophages exist on a spectrum of polarization states between the M1 and M2
phenotypic extremes and exhibit functional plasticity within the TME [77]. The early
stages of tumor lesions initially have a high abundance of M1 macrophages that are
later polarized to the M2 population as PDAC progresses [78]. Preclinical and clinical
trials have been completed, or are still ongoing, attempting to target TAMs and treat
various cancer types including pancreatic cancer (e.g., NCT03662412, NCT03184870, and
NCT01921699) [79]. Although M2 macrophages are still under substantive studies, this
report aims to extrapolate PDAC-fostered M2 macrophages, delineate TME-orchestrated
mechanisms responsible for M2 polarization, and then discern how the M2 population
synergizes cancer cells and TME factors to convey multifaceted impacts on PDAC. Due to
space limitations, the authors regret that some outstanding findings cannot be discussed in
this article.

2. Factors Modulate Polarization of TAM
2.1. Factors Released from Malignant Cells or Cancer-Associated Fibroblasts (CAFs)

Crosstalk between neoplastic cells and infiltrating macrophages in the tumor milieu
governs PDAC carcinogenesis. TAMs are in close contact with cancer-secreted factors and
thereby are polarized towards the M2 phenotype [37,80,81]. Intriguingly, oncogenic mutant
KRAS can recruit TAMs and then promote carcinogenesis [80]. Mutant KRAS not only
releases growth factors but also regulates glucose metabolism in PDAC [82]. Accordingly,
lactate and granulocyte-macrophage colony-stimulating factor (GM-CSF) are known to be
profoundly released from cancer cells expressing oncogenic mutant KRAS [82,83] (Figure 1).
This aberration is mediated through the PI3K/AKT signaling cascade that partly enhances
macrophage polarization [84]. Moreover, regenerating gene family member 4 (REG4)
released from PDAC cancer cells [85,86] can promote macrophage polarization to M2,
as well as orchestrate the TME to favor cancer growth and metastasis [87] (Figure 1).
Consequently, high numbers of M2-polarized TAMs correlate with an increased incidence
of lymph node metastasis [87]. The underlying molecular mechanism accounting for
this scenario was deemed to be mediated through the epidermal growth factor receptor
(EGFR)/AKT/cAMP-response element binding protein (CREB) signaling pathway [87].
A further study elucidated that the overexpression of recombinant REG4 enhanced the
expression of IL-10, CD163, and many other M2 signature genes in TAMs [87]. Additionally,
the secretion of IL-10 can be upregulated by insulin-like growth factor binding protein 2
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(IGFBP2) released from cancer cells following STAT3 activation [88] (Figure 1). IGFBP2
favors M2 macrophages and exacerbates an immunosuppressive TME by increasing Treg
infiltration and inhibiting antitumor T cell immunity in a mouse model [88]. Hence,
blocking the IGFBP2 axis constitutes a promising treatment protocol through which TAM
polarization can be attenuated and a tumoricidal state of the TME can be revived [88].
Together, multiple networks maneuver TAM polarization toward an M2 state.
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Figure 1. Pancreatic ductal adenocarcinoma cells synergize with the tumor microenvironment to pro-
voke polarization of M2 macrophages. Arrows with pointed or with blocked ends indicate activation
or inhibition between regulators, respectively, while a fading effect at the start of arrows represents
secretion of modulators. Plain straight lines depict interaction between ligands and receptors. Cell
surface proteins are noted in rectangular boxes on cell membranes. The circular lipid bilayer depicts
an extracellular vesicle. Abbreviations used include aryl hydrocarbon receptor (AhR), protein kinases
B (AKT), Bcl-2-associated athanogene 3 (BAG3), cancer-associated fibroblast (CAF), CC-chemokine
ligand (CCL), cluster of differentiated (CD), CXC chemokine ligand (CXCL), colony-stimulating
factor (CSF) and receptor (CSF1R), dendritic cell (DC), double cortin-like kinase 1 (Dclk1), endothelial
cell (Endo), epidermal growth factor receptor (EGFR), epithelial cell (Epi), ezrin (EZR), galectin (gal),
granulocyte-macrophage colony-stimulating factor (GM-CSF), hypoxia-inducible factor (HIF), inter-
leukin (IL), insulin-like growth factor binding protein 2 (IGFBP2), interferon-induced transmembrane
protein 2 (IFITM-2), interferon regulatory factor 4 (Irf4), Kirsten rat sarcoma (KRAS), mammalian
target of rapamycin (mTOR), microRNA (miR), monocyte (M), nucleotide-binding and leucine-rich
repeat receptor containing pyrin domain 3 (NLRP3), pancreatic ductal adenocarcinoma (PDAC),
phosphatidylinositol 3-kinase (PI3K), reactive oxygen species (ROS), regenerating gene family mem-
ber 4 (REG4), sialic-acid-binding immunoglobulin-like lectin 15 (SIGLEC15), signal transducer and
activator of transcription (STAT), spleen tyrosine kinase (SYK), suppression of tumorigenicity 2 (ST2),
tumor-associated macrophage (TAM), transforming growth factor β (TGF-β), and T helper-2 (TH2).
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Double cortin-like kinase 1 (Dclk1) is overexpressed in the cancer cores and PanIN
lesions, based off various pancreatic cancer models [89] (Figure 1). By releasing various
chemokines and cytokines, the elevated Dclk1-isoform 2 resulted in the polarization to-
wards the M2 phenotype (Figure 1). This aberration is demarcated by a high abundance of
M2 macrophages and low occupancy of CD8+ T cell infiltration with weakened tumoricidal
activities [90]. These M2 macrophages enhance cell migration, invasion, and self-renewal,
along with increased expression of Snail and Slug, both of which are indicatives of cancer
stem-like cells [90,91]. Moreover, galectin-9 (gal-9), a member of the P-galactoside-binding
family of lectins, was found to be highly expressed in both mouse and human PDAC. The
binding of gal-9 to its receptor, Dectin-1, a crucial innate immune regulator expressed on
the surface of macrophages, polarizes macrophages to the M2 phenotype (Figure 1). Dis-
ruption of the gal-9/dectin-1 interaction reverts immunosuppression, enhances cytotoxic
T lymphocytes recruitment, downregulates Tregs, impedes tumor growth, and achieves
improved therapeutic efficacy [92–94]. Moreover, Ezrin (EZR) expression is upregulated
in PDAC and is associated with tumor progression [95]. Chang et al. demonstrated that
extracellular vesicles (EVs)-capsulated EZR is strikingly correlated with poor survival
in PDAC patients [96]. Molecular investigations further discerned that overex pressed
EZR regulates STAT3 activation [97] that further synergizes with STAT6 to augment the
polarization of TAMs towards the M2 phenotypes [98] (Figure 1). Consistently, Su et al.
reported miR-155 and miR-125b2 as being the key regulator encapsulated in the PDAC
cell-line-derived EV that exploits a dose-dependent effect on macrophage plasticity [99].

On the other hand, CAFs release colony-stimulating factor (CSF) and induce M2
polarization through binding to receptor CSF1R within the PDAC milieu, and then enhance
reactive oxygen species (ROS) production in monocytes [100] (Figure 1). The importance
of ROS activation on M2 polarization was illustrated by the evidence that ROS ablation
abrogates this effect [101]. Anti-CSF1R therapy favors the M1-like subpopulation in vivo,
thereby exerting a powerful antitumor effect on glioma neoplasm [102]. Furthermore,
stromal fibroblasts are the predominant cell types for producing IL-33 that mainly targets
its receptor, known as suppression of tumorigenicity 2 (ST2), on TAMs and induces the
polarization of M2 [103,104]. Upon activation, IL-33-polarized TAMs subsequently release
CXCL3 to further amplify CAFs. Together, this interactive axis constitutes a paracrine and
positive feedback loop amplifying both CAF and TAM cell types [105] (Figure 1).

2.2. Factors Produced from Stromal Immune Cells

Abundantly in PDAC, oncogenic mutant Kras can activate the downstream
PI3K/AKT/mammalian target of the rapamycin (mTOR) signaling pathway [106]. Conse-
quently, the aberrant activation of this cascade conveys tumor initiation, cancer progression,
and metastatic spread, followed by emerging chemoresistance [107]. This signaling axis
can be effectively abrogated by urolithin A (Uro A) [108]. The treatment of PDAC cells with
Uro A not only inhibited the growth of tumor xenografts and improved the overall survival
(OS) of Ptf1aCre/+;LSL-KrasG12D/+;Tgfbr2flox/flox (PKT) mice, but also reprogrammed the
tumor microenvironment by attenuating infiltrated immunosuppressive cells such as TAMs,
MDSCs, and Tregs [108].

Oncogenic mutant KrasG12D elevates IL-33 expression in PDAC cells, which recruits
and activates TH2 cells. Then, TH2 cells stimulate tumor growth by secreting protumori-
genic cytokines such as IL-4 that exerts major impacts on neighboring innate immune cells
(Figure 1). Studies on animal models unveiled that IL-4-initiated signaling in macrophages
can be further orchestrated by Stat6, which in turn regulates interferon regulatory factor
4 (Irf4) that acts as an important transcription factor and harnesses M2 polarization [109]
(Figure 1). Conversely, Irf4 deficiency impeded the expression of M2-associated signature
genes [110]. In a syngeneic model of PDAC, the inhibition of Irf4 using the immunomodula-
tory agent pomalidomide resulted in a shift of macrophages towards the M1 population and
fosters an immune surveillance antitumor environment along with an improved infiltration
of cytotoxic T lymphocytes and enhanced immune responses [111].
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Proinflammatory cytokine IL-20 is a member of the IL-10 family and is expressed
predominantly by epithelial cells, monocytes, dendritic cells, and endothelial cells in the
TME (Figure 1). IL-20 was demonstrated to promote M2 polarization, and elevated IL-20
levels in PDAC tumor tissue correlate with poor overall survival [112]. Inhibiting IL-20
using an antagonistic antibody, 7E, reshapes the TME toward scenarios unfavorable for
malignancies in multiple aspects including diminished M2 macrophage infiltration, light-
ened fibrosis, inhibited tumor growth, and reduced expression of the immunosuppressive
regulator PD-L1 on tumor cells [112].

TAMs remain the primary cell type molding the immune landscape [75,113], partly
fortified by a self-amplifying mechanism. Sialic-acid-binding immunoglobulin-like lectin
15 (SIGLEC15) is upregulated in M2 macrophages and could directly enact immunosup-
pressive function via binding α-2,3 sialic acid [114]. Stimulation of the extracellular domain
of SIGLEC15 promotes the tyrosine phosphorylation of DNAX-activating protein of 12 kDa
(DAP12) and leads to the activation and recruitment of spleen tyrosine kinase (SYK) [115]
(Figure 1). Joshi et al. further revealed an autocrine-positive feedback loop phenomenon
by demonstrating that SYK, in conjunction with the PI3K axis, synergizes M2 polarization,
which can be abolished by a dual SYK/PI3K inhibitor, SRX3207 [116]. α-2,3 sialic-acid-
bound SIGLEC15 enhances the production of C-C motif chemokine ligand (CCL)2, C-X-C
motif chemokine (CXCL)2, and CXCL8 in TAMs, which not only exacerbates immune
suppression but also accelerates tumor progression in gastric [117], esophageal [118], and
bladder carcinomas [119]. Among them, CCL2 facilitates the mobilization of receptor
CCR2+ inflammatory monocytes from bone marrow to the tumor bed, where they become
immunosuppressive TAMs [120]. Together, SIGLEC15 expression, monocyte mobilization,
and M2 polarization form a positive feedback circuit, enabling the recruitment and am-
plification of TAMs [114]. In this regard, a clinical trial in patients with nonmetastatic
PDAC using the orally dosed small-molecule CCR2 inhibitor (CCR2i) PF-04136309, in
combination with FOLFIRINOX, demonstrated improved antitumor efficacy (trial number
NCT01413022). However, a compensatory influx of CXCR2+ neutrophils resulted in a
relapse. Yet, this therapeutic resistance can be circumvented by combinatorial blockades
targeting both types of infiltrating myeloid cells. Dual treatments not only promote a robust
antitumor effect compared to either inhibitor alone, but also improve the overall response
to FOLFIRINOX [121].

On the other hand, CD40, a cell surface receptor belonging to the TNF superfamily,
can regulate myeloid cell function and adaptive immunity. Similar to Toll-like receptors
(TLRs), the CD40 pathway acts as a linkage between DCs and adaptive immunity in cancer.
Ligands of CD40 (CD40L) connect DCs and other immune cells in response to malignan-
cies or pathogenic insults with memory. Yet, agonistic anti-CD40 (αCD40) monoclonal
antibodies mimic CD40L in vivo and have been shown to enhance the immunogenicity
of cancer vaccines and trigger cancer regressions [122–124], including in pancreatic can-
cer [125]. Interestingly, one of the well-studied αCD40 antibodies, selicrelumab, was taken
into clinical evaluation as a novel agent for immune activation and cancer immunotherapy,
independent from ICB [126]. CD40 activation by selicrelumab enhanced the polarization of
TAMs towards the M1 phenotype, as well as activated the proliferation and infiltration of
CD8+ T lymphocytes and DCs [126,127]. Together, this treatment transforms the TME from
“cold” to “hot” immunity [126,127]. Surgical samples from patients receiving selicrelumab
preoperatively exhibited decreased tumor fibrosis, fewer M2 macrophages, and a greater
maturation of intratumoral DCs [127]. It is noteworthy to mention that, clinically, combi-
natorial treatments using αCD40 antibodies and ICB ameliorate efficacy in patients who
are initially refractory to immunotherapies. Accordingly, Winograd et al. developed an
effective treatment regimen with αCD40 antibodies and ICB (αPD-1/αCTLA-4) using a
genetically engineered KPC mouse model [128]. Such success exemplified that the combi-
nation of αCD40/ICB, but not either of αCD40 or ICB alone, results in a prominent decline
in tumor burden and gain of immunological memory [128].
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2.3. Aberrant Metabolism, Hypoxic TME, and Dysregulated Epigenetics

Indole compounds are evolved from dietary tryptophane upon metabolizations by
gut microbials such as lactobacilli. Indoles are the key activators for aryl hydrocarbon
receptor (AhR), although tryptophane metabolism by human cells rendered negligible
effects. By promoting the polarization of TAMs to M2, elevated AhR expression has been
recognized as a central driver of TAM function in responding to multiple cues to promote
an immune-suppressive state of the TME [129] (Figure 1). Molecular studies delineate that
high expression of AhR inhibits IFNγ expression in CD8+ T cells [129], while it enhances
the expression of immunosuppressive IL-10 [130], TGF-β, and Arg1 [131,132] (Figure 1).
The aforementioned data on animal models coincide with clinical facts in which patients
with high AhR expression are strongly correlated with rapid disease progression and
increased mortality, along with the immune-suppressive properties associated with TAMs,
underscoring the conservation of this regulatory axis in PDAC [129].

PDAC ubiquitously fosters a hypoxic TME. Hypoxia is a condition where the oxy-
gen pressure is below 5–10 mm of mercury, and this phenomenon can empower cancer
metastasis [133]. The major mechanism executing cellular responses toward hypoxia is the
activation and sustainment of hypoxia-inducible factors (HIFs), mainly HIF1 and HIF2, that
activate a set of genes facilitating tumor growth, angiogenesis, and metastasis [134,135].
On the other hand, the endocytosis of cancer, or immune or endothelial cells, can form
and release extracellular exosomes [136]. The tumor-derived exosomal miR-301a-3p, for
example, not only is released from hypoxic PDAC, but also promotes M2 polarization
and ameliorates the PTEN/PI3Kγ pathway, thereby enhancing metastasis in vitro and
in vivo [137]. Stimulated by a hypoxic TME, HIF-1α further augments the expression of
glycolytic enzymes contributing to maintaining bioenergetic homeostasis during hypoxic
stress [138]. In support of this notion, inflammatory cells such as TAMs tend to maneuver
metabolism toward glycolysis to meet high energetic demand [139]. Recent studies have
unveiled that hypoxia and glycolysis-related gene signatures are concurrently associated
with an unfavorable TME and are used to predict a poor prognosis of PDAC patients [140].
Hypoxia and glycolysis pathways are upregulated in the prognostically high-risk cohorts
compared to the low-risk counterparts [141,142]. Apart from glucose metabolism, the abla-
tion of HIF2 in CAFs modestly reduces fibrosis and significantly decreases the intratumoral
recruitment of M2 macrophages and Treg cells. Similarly, treatment with the clinical HIF2
inhibitor PT2399 abolishes paracrine signaling driven by HIF2, and significantly reduces
M2 polarization as well as improves tumor responses to immunotherapy using ICB in
PDAC mouse models [143].

GEM treatment favors TAM infiltration into the tumor mass and shifts the stroma to a
predominantly M2 phenotype that conveys notorious survival [79], owing to the destruction
of gemcitabine by M2-released pyrimidines [144]. Furthermore, paracrine signals from the
removal of chemotherapy-generated apoptotic cells can stimulate immune-suppressive
controllers in the TME. The phagocytosis of apoptotic cells increases the production of
TGF-β1, prostaglandin E2 (PGE2), and platelet-activating factor (PAF), all of which are
known to act as anti-inflammatory and immune-suppressive modulators [145].

Dysregulated epigenetic modulators can influence TAM polarization. An epigenomic
analysis of TAMs isolated from PDAC tissues revealed the overexpression of CCCTC
binding factor (CTCF), an important epigenetic regulator in TAMs. CTCF can enhance M2
polarization and favor the tumor-promoting properties of the TAMs. CTCF-transcribed long
noncoding RNA (LncRNA) of prostaglandin-endoperoxide synthase 2 (PTGS2) antisense
NF-κB1 complex-mediated expression regulator RNA (PACERR) can orchestrate PTGS2
expression. A novel investigation demarcated that transcribed LncRNA PACERR binds
CTCF, forming the CTCF/PACERR complex to recruit the E1A binding protein p300
(EP300), which is one of the histone acetyltransferases. Being an epigenetic regulator, this
complex not only enhances chromatin accessibility, but also elevates PTGS2 transcription.
Excessively expressed PTGS2 is one of the key activators for polarizing M2 [146].
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Moreover, cancer progression and the chemoresistance of PDACs have been associated
with elevated histone deacetylases (HDACs) and glycogen synthase kinase 3 beta (GSK3B)
activity. Accordingly, treatment by the dual inhibitor, metavert, lowers the abundance
of M2 macrophages by more than 50%, although the total number of macrophages are
unaffected significantly [147]. These data implicate the molecular cue leading to cancer
inhibition by metavert is partially due to the reversion of M2 to the M1 phenotype [147].
Metavert treatment further downregulates procancer cytokines like IL-6 and IL-4, induces
cancer cell apoptosis, and attenuates the expression of cancer stem cell markers, as well as
impedes cancer growth and metastases [147].

3. Impact of M2 on Neoplastic Features of PDAC

TAM density is an independent prognostic determinant correlated with a higher
risk of disease progression, recurrence, and metastasis, and shorter OS in human PDAC
patients [148]. Such unequivocal evidence is recapitulated in preclinical mouse mod-
els [121,149,150]. M2 macrophages regulate a plethora of critical carcinogenic traits, in-
cluding enhanced chemoresistance, cancer growth, angiogenesis, metastasis, and immune
suppression [151,152].

3.1. TAMs Enhance Chemoresistance

Desmoplastic stroma in PDAC impedes the penetration of therapeutic agents. Macrophages
are well known for their ability to promote fibrosis under various physiological and pathologi-
cal conditions [153]. A recent study revealed that subsets of TAMs augment fibrosis through
directly depositing or remodeling the ECM [154] (Figure 2). Hence, following coculture with M2,
PDAC cells demonstrate elevated fibroblastic characteristics [155]. Furthermore, TAMs promote
chemoresistance against GEM therapy [156]. GEM is a synthetic cytidine analog that inhibits
cell proliferation by pausing DNA replication and arresting RNA transcription. Resistance to
GEM arises in weeks following treatments, owed to a combination of intrinsic resistance and
adapted modulators residing in the TME [157]. GEM is typically metabolized intracellularly
by deoxycytidine kinase (DCK) to an active form of phosphonucleosides. The incorporation of
these nucleosides into DNA or RNA results in proliferative arrest. A growing body of evidence
elucidates that GEM resistance can be attributed from a wide variety of mechanisms, including
drug transporter loss, DCK deficiency, competition between endogenous cytidine triphosphate
and phospho-GEM, and elevated cytidine deaminase (CDA) expression that abolishes GEM’s
action mode by converting it to the inactive compound 2′,2′-difluoro-2′-deoxyuridine [158].
Treatment with nab-paclitaxel partly hinders chemoresistance by lowering CDA expression;
underscoring treatments with dual agents can circumvent treatment resistance [159]. Intrigu-
ingly, TAMs can modulate therapy resistance by upregulating CDA in cancer cells [160] and by
releasing pyrimidine nucleoside deoxycytidine that competes with GEM and lowers its active
dose [144] (Figure 2). Hence, the depletion of proliferating TAMs using clodronate liposomes
improves the therapeutic response towards GEM in a tumor-bearing mouse model [161].

Apart from lightening the GEM burden, TAMs convey drug resistance by muting
signals from apoptotic cells through secreting various factors and attenuating apopto-
sis, thereby favoring chemoresistance [60]. Briefly, following the phagocytosis of apop-
totic PDAC cells, TAMs secrete an antiapoptotic factor known as YWHAZ/14-3-3 protein
zeta/delta (14-3-3ζ). Through binding to its interacting partner, the Axl receptor tyrosine
kinase, this complex stimulates the phosphorylation of Akt in PDAC, activates cellular
prosurvival mechanisms, and enacts a crucial regulator of antiapoptotic pathways that ren-
ders a compelling chemoresistance (Figure 2). During chemotherapy, extracellular 14-3-3ζ
released from macrophages is imperative for enabling PDAC cells to combat prolonged
and continuing chemotherapeutic pressure [60]. These data highlight a distinct regulatory
mechanism by which chemotherapy-induced apoptosis ignites an antiapoptotic/protumor
mechanism elicited by TAMs and presents a therapeutic challenge pertaining to how
apoptotic death provokes paradoxical chemoresistance in PDAC.
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Figure 2. M2 macrophage promotes a plethora of neoplastic features of pancreatic ductal adenocarci-
noma and suppresses tumoricidal effects exerted from cytotoxic T lymphocyte. Arrows and straight
plain lines, as well as overlapping abbreviations used in both figures, are described in the legend of
Figure 1. Additional abbreviations that are used in Figure 2 include apolipoprotein E (ApoE), arginine
(Arg), adenylyl cyclase-associated protein 1 (CAP-1), CC-chemokine ligand (CCL), CC-chemokine re-
ceptor (CCR), cytidine deaminase (CDA), chitinase 3-like-1 (CHI3L1), CXC chemokine ligand (CXCL),
endothelial cell (EC), epithelial–mesenchymal transition (EMT), extracellular signal-regulated kinase
(ERK), fibronectin-1 (FN1), gemcitabine (GEM), hypoxia-inducible factor 1α (HIF-1α), interferon
(IFN), insulin-like growth factor (IGF) and receptor (IGFR), IFN-stimulated gene 15 (ISG15), im-
munomodulatory cationic antimicrobial peptide 18/LL-37 (hCAP-18/LL-37), low-density-lipoprotein
receptor (LDLR), lysyl oxidase-like protein 2 (LOXL2), macrophage inflammatory protein-3α(MIP3α),
microRNA (miR), matrix metalloproteinase 9 (MMP-9), nuclear factor κ-light-chain-enhancer of acti-
vated B cells (NF-κB), oncostatin M (OSM), pancreatic cancer stem-like cells (PCSCs), programmed
death receptor-1 (PD-1) and ligand (PD-L1), pyruvate kinase isoform M2 (PKM2), Toll-like receptor
4 (TLR4), tryptophan (Trp), tumor necrosis factor α (TNF-α), vascular cell adhesion molecule 1
(VCAM-1), vascular endothelial growth factor (VEGF) and receptor (VEGFR), and YWHAZ/14-3-3
protein zeta/delta (14-3-3ζ).

It is worth mentioning that TAMs can promote chemoresistance by producing insulin-
like growth factors (IGF)-1 and -2, which bind and activate IGF receptors on pancreatic
cancer cells [162], as well as by releasing resistin, which binds to adenylyl cyclase-associated
protein 1 (CAP-1) and Toll-like receptor 4 (TLR-4) on cancer cells, leading to refractory
responses towards GEM treatments [163] (Figure 2). Hence, GEM is more effective in
macrophage-depleted mice than in their untreated counterparts [149]. On the other hand,
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simvastatin mitigates TAM-mediated GEM resistance by attenuating the TGF-β1/growth
factor independence-1 (Gfi-1) signaling axis. Molecular studies elucidated that simvastatin
reverted the TAM-mediated and TGF-β1-dependent downregulation of Gfi-1 and upreg-
ulation of connective tissue growth factor (CTGF), as well as high mobility group box 1
(HMGB1) that typically drives resistance to GEM [164]. CTGF was similarly identified as
an important factor contributing to GEM resistance in animal models [165]. Simvastatin
not only upregulates Gfi-1 expression, which increases the sensitivity towards GEM, but
also suppresses TGF-β1 production that is released from TAMs [164]. Contrarily, Gabitova-
Cornell et al. reported that statins can activate sterol regulatory element-binding protein
1 (SREBP1), which promotes TGF-β1 expression followed by epithelial–mesenchymal
transition (EMT), in genetically engineered mouse models directed by oncogenic mutant
KrasG12D and homozygous null P53 [166]. Their study suggests that statin treatment can
promote the mesenchymal type of PDAC, leading to a worsened prognosis [166]. The
discrepancies between the two studies may be partly attributed to mice xenograft models
using pancreatic cancer cell lines [164] versus conditionally genetic knockout mice [166].

Moreover, following treatment with chemo- or radiotherapy, cancer cells release in-
flammatory molecules, including the chemokine CCL2 that further recruits macrophages
and promotes tumor proliferation and vascularization [121,167]. Consequently, CCL2
attenuates the efficacy of FOLFIRINOX chemotherapy or radiotherapy in mice. Hence,
commencing the blockade of CCL2 using antagonistic antibodies can prevent macrophage
recruitment and restore the sensitivity of PDAC towards chemotherapeutic and radiother-
apy treatments [121,167].

3.2. Carcinogenic Impact of TAM-Secreted Extracellular Vesicles (EVs) or Exosomes on
PDAC Progression

Extracellular regulators governing cancer progression can be encapsulated in a cargo-
like structure collectively known as EV. They are released particles with variable sizes,
ranging from 30 to 120 nm (named as exosomes) or 100 to 1000 nm (classified as micropar-
ticles) and generated from cell-derived membrane vesicles, and are enclosed within a
phospholipid bilayer structure, although they are not proliferative [168,169]. They play
pivotal roles in mediating intercellular communication under both physiological and
pathological conditions [170,171] by disseminating genetic materials, proteins, metabolites,
cancer regulators, or chemoresistant traits to neighboring cells through cellular internal-
ization [172,173]. miRNAs contained in macrophage-derived exosomes (MDEs) can be
transferred from TAMs to PDAC cells, resulting in altered gene expression and behaviors.
For instance, the dislodging of miR-365 shed from MDEs abolished GEM efficacy through
the upregulation of the triphosphonucleotide pool and the induction of CDA in cancer
cells [174] (Figure 2).

Through EVs, TAMs communicate with malignant cells to orchestrate carcinogenic
progression as well as chemoresistance [175]. In this regard, Xavier et al. carried out
proteomic analysis and identified chitinase 3-like-1 (CHI3L1) and fibronectin 1 (FN1) as
being the two most abundant proteins in the cargo of TAM-released EVs that play impor-
tant roles in boosting GEM resistance in PDAC [176] (Figure 2). Further bioinformatics
predictions using the cancer genome analysis (TCGA) supported this notion and revealed
excessively expressed CHI3L1 and FN1 are associated with low OS in PDAC patients
and high abundance of TAMs [176]. CHI3L1 is a secreted glycoprotein and a binding
member of the mammalian chitinase-like proteins involved in various disorders, including
cancer [177]. Several studies have indicated high expression of CHI3L1 with tumor grade,
unfavorable prognosis, and metastasis in various human cancer types [178–180]. Through
activating ERK signaling, CHI3L1 is not only partially responsible for GEM resistance in
PDAC [176] (Figure 2), but is also similarly associated with chemoresistance towards other
agents like paclitaxel and bevacizumab in ovarian as well as gastric cancers [178,181,182].
In light of FN1, recent studies demonstrated that increased FN1 secretion by PDAC stel-
late cells is correlated with aggressive tumor characteristics [183,184] and promotes GEM
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resistance through the same ERK pathway [185] (Figure 2). Together, a corroborative
study carried out via the ectopic overexpression of CHI3L1 and FN1 using recombinant
human proteins led to ameliorated GEM resistance [176]. Using a reciprocal approach by
implementing CHI3L1 and FN1 inhibitors resulted in partial sensitivity restoration and
improved treatment outcomes [176].

3.3. TAMs Promote Cancer Growth

TAMs are known to promote cancer growth and metastasis by secreting various
factors [186,187]. IL-1β, a potent and versatile cytokine released from TAMs, plays a pivotal
role in cancer cell proliferation, neoplastic progression, and metastasis. The activation of
IL-1β requires an inflammasome, a multimeric cytosolic protein complex that assembles in
response to cellular perturbations [188] (Figure 2). Nucleotide-binding and leucine-rich
repeat receptor containing pyrin domain 3 (NLRP3)-induced inflammasomes in TAMs can
activate IL-1β and macrophage polarization [189]. Through Gene Expression Omnibus
public database analysis and implementing a set of in vitro and in vivo experiments, Gu
et al. elucidated the effects of NLRP3 activation on TAM polarization and the subsequent
lung metastasis in a mouse model of PDAC [189]. Conversely, NLRP3 depletion resulted in
the opposite effects in colorectal carcinoma [190], gastric [191], prostate [192], and breast
cancer [193]. Reciprocally, PDAC-derived cell debris can augment IL-1β production from
M2 macrophages via crosstalk between the Toll-like receptor 4 (TLR4)/TRIF/NF-κB and
FcγRI/III-SYK signaling pathways, and this effect can be boosted by IgG in PDAC cells.
Not only enhancing cancer cell proliferation, upregulated IL-1β expression results in
an immunosuppressive TME, promotes the EMT of malignant cells, invasion, and the
subsequent metastasis [194].

By signaling through oncogenic mutant KRAS, PI3K, and p38 MAPK pathways, Bcl-
2-associated athanogene 3 (BAG3) can be released from PDAC cells and then activate
macrophages through its binding to a specific receptor named Interferon-Induced Trans-
membrane Protein 2 (IFITM-2) [195] (Figure 1). In this paracrine manner, BAG3-activated
TAMs produce factors that conversely stimulate and amplify PDAC proliferation [152].
Treatment with inhibitory BAG3 antibody resulted in tumor regression and metastatic
inhibition in three independent mouse models [195]. Consistently, delivering the human-
ized anti-BAG3 antibody BAG3-H2L4 abrogates this binding and leads to a prominent
growth reduction in the Mia PaCa-2 pancreatic cancer cell xenograft model [196]. BAG3 is
constitutively expressed in several primary tumors and tumor cell lines, including PDAC,
where it plays a prosurvival role through various mechanisms according to the cellular
context [197–199]. Studies on 346 PDAC biopsies demonstrated that all of them expressed
BAG3 intracellularly and survival was significantly shorter in patients with high BAG3
expression than in those with low BAG3 expression [200].

3.4. TAMs Exploit Immunosuppressive and Tumor-Supportive Milieu

Programmed death receptor-1 (PD-1), one of the well-characterized immune check-
point modulators and the major target of ICB, is mainly expressed by CD8+ cytotoxic T
lymphocytes, and its binding to ligands (PD-L1 or PD-L2 released from cancer cells, for
example), hinders T cell proliferation, impairs intrinsic tumoricidal functions, and pro-
motes T cell exhaustion [201,202]. Aberrant PD-L1 expression by malignant cells has been
identified in several solid cancer types and, therefore, comprises an important immune
evasion mechanism [203]. High levels of PD-L1 indicate poor OS [204], and elevated PD-L1
expression is involved in immune escape rendering poor prognosis in triple-negative breast
cancer [205]. Hence, by boosting the interactions among immune checkpoint modulators,
TAMs protect malignant cells from being destroyed by antitumor T cells [206,207]. TAMs
upregulate the expression of PD-L1 from cancer cells that consequently bind immune-
suppressive receptors on T cells, resulting in impaired tumoricidal ability, proliferation, and
effector functions [208]. For instance, tumor necrosis factor (TNF)-α can be released from
TAMs, thereby upregulating PD-L1 expression in PDAC cells through NF-κB signaling,
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and this effect can be attenuated by neutralizing anti-TNF-α antibodies [209] (Figure 2).
An in vitro study by cocultivating PDAC cells with TAMs recapitulated the same phe-
nomenon. Clinically, elevated PD-L1 expression was not only positively correlated with
macrophage infiltration, but also significantly associated with poor prognosis in 235 PDAC
patients [209].

TAM-derived TGF-β1 is a well-established modulator that hinders tumor response
towards PD-L1 blockade therapy [210] through the elevated expression of PD-L1 in PDAC
cells [211]. TGF-β1 not only induces the nuclear translocation of pyruvate kinase isoform
M2 (PKM2), but also promotes interaction between PKM2 and STAT1, leading to the tran-
scriptional activation of PD-L1, owing to the concomitant binding of PKM2 and STAT1 to
the PD-L1 promoter [211] (Figure 2). Hence, PKM2 knockdown decreases PD-L1 expression
in PDAC cells and suppresses tumor growth. Moreover, the combination of PD-1/PD-L1
blockade along with PKM2 knockdown synergizes tumor regression [211]. Another inde-
pendent study ratified the important role played by PKM2 in being a coactivator of HIF-1α,
highlighting the crucial roles played by PKM2 through augmenting the expression of PD-L1
and contributing to cancer growth under a hypoxic TME [212] (Figure 2). Moreover, the
immune checkpoint ligand Dectin-1 is highly released from TAMs in mouse and human
PDAC [92]. The binding of Dectin-1 to its receptor gal-9 expressed on infiltrating immune
cells results in tolerogenic programming and the masking of immune recognition, thereby
favoring malignant cell growth [92] (Figure 2). Thus, dual treatments encompassing the
depletion of TAMs and implementing ICB agents to abolish immune checkpoints can revive
tumoricidal effects [213,214]. Moreover, cytokines or chemokines, such as CCL22, CCL28,
CXCL12, CCL5, and CCL1, produced from TAMs can hamper the recruitment of CD8+ T
lymphocytes [215,216] (Figure 2). Conversely, eradicating proliferating TAMs can improve
T cell infiltration and promote their spatial redistribution proximally towards tumor cores,
thereby rendering favorable treatment outcomes [75].

TAMs from human and murine PDAC are known for their high expression of apolipopro-
tein E (ApoE) that further upregulates CXCL1 and CXCL5, the chemokines known to
impair tumoricidal T cell infiltration in PDAC and then launch an immunosuppressive
TME [57,59,217–219] (Figure 2). The stimulation of these chemokines is mediated through
low-density-lipoprotein receptors (LDLRs) and the NF-κB signaling axis [57] (Figure 2). Gene
set enrichment analysis (GSEA) elucidated that the treatment of tumor cells with recombi-
nant ApoE upregulates NF-κB signaling, which in turn augments the expression of CXCL1
and CXCL5 acting as chemoattractants for immune-repressive myeloid cells [57]. These
recruited immune cells cause a sluggish infiltration of tumoricidal CD8+ T lymphocytes
in PDAC [59,217,219]. Conversely, tumors evolved from ApoE knockout (ApoE−/−) mice
have reduced cancer growth, lowered tumor burden, lessened fibrosis, and fewer immune-
suppressive cells (Treg and MDSC), while also having increased cytotoxic CD8+ T lymphocyte
infiltration. Apart from releasing chemokines, TAMs can dampen T lymphocytes’ anticancer
actions by generating metabolic mediators. The metabolism and consumption of L-arginine
or L-tryptophan by TAMs decrease the expression of the CD3ζ chain on T cells, resulting
in T cell anergy and proliferation arrest [220–222] (Figure 2). Similarly, increased arginase I
production by TAMs disrupts T cells’ metabolism and disables their cytotoxic effects against
cancer cells [223].

3.5. TAMs Augment EMT, Invasion, Migration, Angiogenesis, Metastasis,
and Lymphangiogenesis

TAMs are the major type of immune cells that participate in various aspects of carcino-
genesis, including paving the path to invasion, metastasis, angiogenesis, and treatment
resistance. Among them, the EMT transforms epithelial cells into a spindle-like mesenchy-
mal population, resulting in increased motility, invasiveness, metastasis, and acquisition
of cancer stem-like cells. The EMT has drawn ample research attention due to its roles
of enhancing metastasis and chemoresistance, the two leading causes of mortality for
PDAC [224]. Upon coculturing with M2 macrophages, PDAC gains the abilities of cell
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proliferation and migration, as well as the upregulation of mesenchymal markers and
concomitant downregulation of epithelial hallmarks [155]. TAM-secreted cytokines and
chemokines, including IL-1β [194], CCL18 [225], and IL8 [226], are known to foster the
EMT in PDAC through the TLR4/IL10 axis or protease-activated receptor (PAR)1 signaling
pathways [155,227]. Likewise, TGF-β released from M2-macrophages can bind its receptors
on the PDAC cell surface and trigger the phosphorylation of Smad2/3 that subsequently ac-
tives the phospho-Smad2/3/4 complex, leading to enhanced Snail transcription (Figure 2).
Afterwards, Snail hinders E-cadherin expression, promotes the EMT shift, and potentiates
PDAC metastasis [228]. Such effects can be abolished by blocking the TGF-β pathway or
by introducing antagonistic TGF-β antibodies [228].

MMP-mediated ECM degradation plays an important role in cancer invasion [229].
By secreting MMP-9 and by promoting EMT, TAMs have unveiled versatile effects on
exacerbating PDAC migration and invasion [155,227]. Moreover, the macrophage-derived
proinflammatory chemokines, namely CC-chemokine ligand 20 (CCL20) and macrophage
inflammatory protein-3α (MIP3α), all bind CC-chemokine receptor 6 (CCR6) on PDAC
cells, leading to upregulated MMP-9 expression and tumor invasion [230–233] (Figure 2).
Additionally, macrophage-derived CCL18 empowers the invasive property by enhancing
VCAM-1 expression (Figure 2). In a paracrine manner, VCAM-1 promotes lactate produc-
tion by pancreatic neoplastic cells and further augments the polarization of macrophages
towards the M2 phenotype, thereby establishing a positive feedback circuit [234]. Consis-
tent with the role of macrophages in supporting metastasis, the pharmacological depletion
of TAMs in mice prohibits the spread of PDAC cells to the liver, lung, and spleen [149,235].

Complicated metastatic spreads can be fostered by communication and networking
between the local TME, malignant cells, and the nearby organs. Initially, malignant cells
gain the ability to pass through the basement membrane into the surrounding stroma,
where they can then enter adjoining organs such as the liver, lung, and peritoneum [236].
Intravasation is the foremost step for dissemination, and cancer cells often accomplish
this process with the assistance of other cell types. For example, proteinases released
from TAMs destroy the basement membrane prior to cancer cell dissemination [104].
M2 macrophages can harness tumor cells to intravasate through the vessel wall. After
intravasation, circulating neoplastic cells ought to extravasate through the vessel wall
in an adjacent organ prior to paving a metastatic niche [237,238]. It is noteworthy to
mention that when influenced by the conditioned media generated from PDAC cancer cells
in vitro, TAMs gained prominent glycolytic activities responsible for the acquisition of the
prometastatic phenotype. Hence, the inhibition of glycolysis in TAMs impedes their ability
to promote tumor cell extravasation, EMT, and angiogenesis [239].

Macrophages prime the premetastatic niches by serving as a “landing blueprint” for
the homing of circulating cancer cells [235,240]. In this regard, the uptake of PDAC-derived
exosomes by the resident liver macrophages, for example, results in the activation of fibrotic
pathways and the establishment of a proinflammatory milieu that fosters metastasis [241].
Exosomal constituents from PDAC promote the secretion of TGF-β by liver macrophages,
which in turn ameliorates the deposition of fibronectin by hepatic stellate cells [241],
followed by the recruitment of bone-marrow derived monocytes to the liver, leading to
the formation of a premetastatic niche [241]. Furthermore, tumors require angiogenesis
to supply nutritional and oxygen demands. TAMs augment angiogenesis through the
secretion of vascular endothelial growth factor (VEGF) that further crosstalks with the
oncogenic transcription factors HIF1α, NFκB, and STAT3. Collectively, they promote an
angiogenic switch and enhance blood vessel formation for tumor expansion [235]. Clinical
evidence ratifies this notion, as TAMs are highly abundant in hypoxic areas and their
presence correlates with increased blood capillary density in not only PDAC [242–244] but
also in breast carcinoma [245]. A subset of monocytes that express the receptor tyrosine
kinase with immunoglobulin and epidermal growth factor homology domain-2 (TIE2)
also exploit enhanced proangiogenic activity in PDAC via the binding to angiopoietins for
promoting blood vessel formation [246–248]. Indeed, the positivity of TIE2+ monocytes and
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TAMs correlates with increased microvessel density and the vulnerability of developing
metastatic dissemination of PDAC [248]. Moreover, M2-macrophage-derived exosomes
(MDEs) increase vascular density and promote the growth of subcutaneous tumors in a
mouse model [244]. Intriguingly, miR-155-5p and miR-221-5p levels in the MDEs of M2 are
higher than those in their control counterparts [244].

Lysyl oxidase-like protein 2 (LOXL2) is known for its contribution towards cancer
advancement and metastasis in various cancer entities including PDAC [154]. Loxl2 loss
significantly decreases metastasis and improves OS. This effect is largely attributed to
non-cell autonomous constituents evolved from ECM remodeling. Reciprocally, Loxl2 over-
expression promotes cancer growth with lowered OS and poor prognostic outcomes, which
is ascribed from enhanced EMT and the increased acquisition of cancer stem cells [154].
Further studies identify TAM-secreted oncostatin M (OSM) as being the activator for
LOXL2 expression, and, therefore, abrogating macrophages can hinder Osm and Loxl2
functionalities and diminish metastasis in mouse models [154] (Figure 2). Moreover, during
PDAC progression, CCR2+ inflammatory monocytes are recruited to the liver through
peripheral blood circulation, where they establish a metastatic niche [120]. Once in the liver,
the effector macrophages secrete granulin that activates resident hepatic stellate cells to
myofibroblasts. Subsequently, myofibroblasts secrete periostin that fosters a fibrotic TME
and metastatic spread [249]. The disruption of CCR2 or the genetic ablation of granulin
inhibits macrophage recruitment and protects against liver metastasis [120,249].

By embarking on regional lymph nodes, TAMs aid lymphangiogenesis that formulates
a crucial route aggravating cancer cell dissemination. Clinical evidence reinforces the idea
that high lymphatic density corresponds to increased lymph node metastasis and lowered
OS in PDAC patients [250]. The molecular cue is exemplified in Figure 2 that lymphangio-
genesis is regulated by the binding of VEGF-C, a ligand overexpressed by cancer cells, to
its target receptor VEGFR-3 on TAMs. This complex then favors lymphangiogenesis via
activating lymphatic endothelial cells [251] or by secreting lymphangiogenesis-promoting
factors, including VEGF and MMP-9 [252].

3.6. Impact of TAMs on the Acquisition of Pancreatic Cancer Stem-like Cells (PCSCs)

PCSCs are the unique subfraction of pleiotropic cancer cells that can self-renew and
then differentiate to heterogeneous lineages [253]. Thus, they play versatile roles in tumor
progression, metastasis, and chemoresistance [254]. TAMs provide compelling signals to
acquire and sustain PCSCs. Clinical studies demonstrated that the abundance of TAMs
correlates with PCSC density in PDAC, and it is associated with a poor OS [65]. Although
PCSCs can mold their own niche and maintain their self-renewing and tumorigenic proper-
ties, the TME also provides cues to support PCSCs. In this regard, TAMs play the pivotal
roles of potentiating and empowering the acquisition of PCSCs. By expressing CD51,
that subsequently activates the paracrine TGF-β1/smad2/3 signaling pathway and en-
hances the expression of stemness-related transcription factors like Nanog, Sox2 and Oct4,
TAMs augment the formation of PCSCs [255,256] (Figure 2). Suppressing CD51 expression
in macrophages effectively diminishes PCSCs, suggesting that abrogating CD51 can be
developed into an innovative promising therapeutic modality [256].

The intricate crosstalk between PCSCs and TAMs renders an important driver for
tumor development in PDAC. In response to IFNγ released from PCSCs, TAMs secrete
IFN-stimulated gene 15 (ISG15), which subsequently enhances PCSC phenotypes in PDAC
in vitro and in vivo. This circuit thereby reinforces the positive feedback loop amplification
and self-renewal of PCSCs, invasive capacity, and tumorigenic potential [257]. Apart
from ISG15, TAMs also release immunomodulatory cationic antimicrobial peptide 18/LL-
37 (hCAP-18/LL-37) that consequently activates PCSCs, promotes cancer growth, EMT,
and metastasis [258] (Figure 2). As a return, PCSCs act as the major supplier of the
TGF superfamily members Nodal/Activin A and TGF-β1, which induce the additional
polarization of M2 [259].
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4. Conclusions

It has been widely acknowledged that the sophisticated interplay between cancer and
immune surveillance determines whether neoplastic cells will survive or be eradicated. The
battle between tumoricidal and tumor-promoting activities relies on the tumor microen-
vironment niche. PDAC has been recognized as a “cold” malignancy due to the scanty
infiltration of cytotoxic CD8+ T lymphocytes or dendritic cells that ought to penetrate
through the stiff desmoplastic stroma shielding the cancer cores. Yet, poor clinical out-
comes presented by the failures of ICB, and other immunotherapeutic treatments, elucidate
that the PDAC microenvironmental niche has been hijacked and the evolved immune-
suppressive TME is largely orchestrated by M2 macrophages, exacerbating neoplastic
progression. This report attempts to shed a light on developing future promising regiments
to eradicate this deadly cancer, partly by attenuating M2 macrophage polarization, hin-
dering neoplastic growth and metastasis, deteriorating desmoplastic stroma, reverting the
immune-suppressive tumor microenvironment, diminishing pancreatic cancer stem-like
cells, and enhancing susceptibility to GEM and immune checkpoint blockade therapies.
Combinatorial treatment protocols may also include blocking oncogenic signaling from
mutant KRAS and from other stromal constituents, correcting aberrant epigenomes, elimi-
nating extracellular vesicles that typically promote carcinogenesis, diminishing the EMT
to hinder the metastasis and acquisition of cancer stem-like cells, as well as boosting the
infiltration of antitumor immune cells [260] (partly exemplified in Table 1).

Table 1. Exemplified therapeutic targets for treating PDAC by maneuvering M2, PDAC, and the TME.

Agent Target Rationale Reference(s)

Inhibitor clodronate liposomes Proliferating TAMs TAMs suppress CD8+ T lymphocytes and
provoke chemoresistance [75,149,161]

Exosomes containing siRNA that
abrogates gal-9 PDAC expressing gal-9 The binding of gal-9 to dectin-1 on

macrophages promotes M2 polarization [92–94]

Antagonist miR-155 and
miR-125b2 Macrophage polarization These miRs favor macrophage polarization

toward M1 [99]

Inhibitor BLZ945 Block CSF1R on macrophages The binding of CSF to CSF1R ameliorates
M2 polarization [102]

Inhibitor pomalidomide Irf4 Irf4 supports M2 polarization [111]

Antagonistic αIL-20 Ab IL-20 IL-20 promotes M2 polarization [112]

Inhibitor SRX3207 SYK and PI3K Both signal transducers enhance
M2 polarization [116]

Inhibitor PF-04136309 CCR2
CCL2-CCR2 axis supports the recruitment of

monocytes from bone marrow to the
tumor bed

[121]

Agonistic αCD40 Ab selicrelumab CD40 Activated CD40 favors M1 polarization and
restores immune surveillance [126,127]

Inhibitor PT2399 HIF-2 HIF-2 improves the recruitment of
M2 macrophages [143]

Inhibitor metavert HDACs and GSK3 These regulators enhance M2 polarization
and chemoresistance [147]

Inhibitor simvastatin Suppress TGF-β1/Gfi-1 signaling This signaling pathway fortifies
chemoresistance [164]

Antagonistic αCCL2 Ab CCL2 CCL2-CCR2 axis strengthens the
recruitment of monocytes to the tumor bed [167]

Inhibitor pentoxifylline CHI3L1 CHI3L1 in MDEs enhances GEM resistance [176]

Inhibitor pirfenidone FN-1 FN1 in MDEs augments GEM resistance [176]

Antagonistic BAG3-H2L4 Ab BAG3 BAG3 released from PDAC activates TAMs [196]

Antagonistic αTNF-α Ab TNF-α TNF-α from TAMs upregulates PD-L1
in PDAC [209]

Antagonistic αTGF-β Ab TGF-β TGF-β released from M2 promotes EMT [228]
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