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Simple Summary: Altered metabolism is one of the main driving forces of pancreatic cancer devel-
opment, progression, and response to treatment. Long non-coding RNAs, which regulate multiple
cellular functions, are frequently aberrantly expressed in pancreatic cancer. As lncRNAs can be mea-
sured in tissue and plasma, and can be silenced by different mechanisms, there is growing interest
in their potential as biomarkers and/or therapeutic targets. Considering that several lncRNAs are
implicated in metabolic homeostasis, this review focuses on the impact of lncRNA disruption in
pancreatic cancer metabolic rewiring.

Abstract: Pancreatic adenocarcinoma is a highly aggressive disease with a poor prognosis. The re-
programming of energetic metabolism has long been implicated in pancreatic tumorigenesis and/or
resistance to treatment. Considering that long non-coding RNA dysregulation has been described
both in cancerogenesis and in the altered homeostasis of several metabolic pathways, metabolism-
associated lncRNAs can contribute to pancreatic cancer evolution. The objective of this review
is to assess the burden of lncRNA dysregulation in pancreatic cancer metabolic reprogramming,
and its effect on this tumor’s natural course and response to treatment. Therefore, we reviewed
the available literature to assess whether metabolism-associated lncRNAs have been found to be
differentially expressed in pancreatic cancer, as well as whether experimental evidence of their role in
such pathways can be demonstrated. Specifically, we provide a comprehensive overview of lncRNAs
that are implicated in hypoxia-related pathways, as well as in the reprogramming of autophagy,
lipid metabolism, and amino acid metabolism. Our review gathers background material for fur-
ther research on possible applications of metabolism-associated lncRNAs as diagnostic/prognostic
biomarkers and/or as potential therapeutic targets in pancreatic adenocarcinoma.

Keywords: long non-coding RNA; pancreatic cancer; PDAC; hypoxia; autophagy; metabolic rewiring;
chemoresistance; therapeutic targets

1. Introduction
1.1. Epidemiology and Treatment

Pancreatic cancer is the seventh leading cause of death by cancer worldwide, with a
dismal prognosis, as the number of deaths registered are almost as many as the number
of diagnoses. Its incidence is higher in countries with an elevated Human Development
Index (HDI) and in the next few years it is projected to become the third and the second
leading cause of cancer death in Europe in the United States, respectively [1,2].

Pancreatic adenocarcinoma (PDAC), which comprises the majority of newly diagnosed
pancreatic cancers, is usually unresectable at diagnosis. However, the prognosis is also
dismal for patients diagnosed at an early stage, as the five-year survival rate in this small
subset does not exceed 20% [3].

Therapeutic options for locally advanced and metastatic disease include platinum-
based chemotherapy regimens, as well as gemcitabine and nab-paclitaxel. Considering that,
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however, chemoresistance develops eventually, novel agents targeted to cancer cell-specific
vulnerabilities are being studied, such as the introduction of PARP-inhibitors for tumors
harboring BRCA1/2 pathogenic variants [4,5]. Several mechanisms of cancer development
and progression are being studied for their actionability. Among them, there is a growing
body of literature exploring the metabolic pathways involved in cancer cell survival, since
reprogrammed cell metabolism is one of the hallmarks of cancer [6].

1.2. Metabolic Rewiring in Pancreatic Cancer

PDAC is a heavily metabolic rewired tumor, and multiple metabolic pathways have
long been implicated in PDAC development and progression [7–9].

Moreover, mutations in pancreatic cancer driver genes and pathways are closely
intertwined with metabolic alterations. For instance, KRAS, a key PDAC driver gene, is
involved in mediating glucose metabolism, autophagy, the reprogramming of de novo
lipogenesis, and amino acid metabolism in PDAC cells [10].

Recently, the differential expression of genes associated with glycolysis and cholesterol
synthesis has been found to predict survival in pancreatic cancer. In addition, heme
metabolism and autophagy have emerged as key dependencies in this tumor [11,12].

Altered metabolism can modulate chemoresistance in several cancers, including
PDAC [13–15].

For instance, a metabolic profiling study found that markers of amino acid metabolism
could distinguish between gemcitabine-resistant and gemcitabine-sensitive PDAC cells [16].
Therefore, preclinical studies and clinical trials are investigating mechanisms to target
metabolic dependencies for therapeutic purposes in PDAC [7,17,18].

1.3. Long Non-Coding RNA Functions and Their Dysregulation in Cancer

Long non-coding RNA LncRNAs are a group of transcripts of 200 nucleotides or
longer, which have no or minimal protein-coding potential. Initially considered “junk”
RNA, lncRNAs are now known to play a crucial role in regulating the human genome at
several levels. Similar to protein-coding genes, lncRNA-expressing loci include a promoter,
as well as multiple exons, and can be alternatively spliced. This class of molecules com-
prises RNAs transcribed either by polymerase I, polymerase II, or polymerase III. Some
lncRNA loci are located in intergenic regions, whereas other lncRNAs are transcribed
antisense to coding genes or by the alternative splicing of existing genes. Indeed, in around
17% of coding genes, the longest transcript is non-coding [19]. A subset of lncRNAs, called
long interspersed RNA (LincRNA), derive from intronic regions. As opposed to coding
genes, whose number does not significantly differ across species, the number of lncRNA is
positively associated with organism complexity. More than 100,000 lncRNA loci have been
identified to date; most of them express several isoforms, as the majority of non-coding ex-
ons undergo alternative splicing. Despite having a less conserved DNA sequence compared
to protein-coding genes, lncRNA loci tend to have a conserved promoter exon structure
and splice junctions. As opposed to most protein-coding genes, lncRNA transcription
tend to be less ubiquitous; in fact, the expression of the majority of the known lncRNAs
is tissue-specific [20–22].

Since their discovery, lncRNAs have emerged as master regulators of gene expression,
with multiple functions and mechanisms of action. One of these is the interference with
miRNA-mediated post-transcriptional regulation. Specifically, lncRNAs can act as “miRNA
sponges”, as they can bind multiple miRNAs, thereby hampering their function. This is
one of the mechanisms underpinning the interplay of large networks of different ncRNA
classes with competing activities, known as competing endogenous RNAs (ceRNA) [23].

Specific lncRNAs can bind DNA, forming RNA–DNA hybrids such as R loops, or
can directly interact with proteins through specific protein binding loops. For instance,
the lncRNA telomeric repeat-containing RNA (TERRA), transcribed from telomeric DNA,
contributes to telomere maintenance and telomere elongation by forming R-loops at telom-
eric ends and by directly binding shelterin complex proteins, such as TRF2 [24,25]. Some
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LncRNAs are involved in transcriptional regulation, mainly via gene silencing multiple
neighboring genes (such as XIST) and the regulation of alternative splicing. Direct interac-
tion with DNA is one of the mechanisms by which lncRNAs control chromatin remodeling.
However, several lncRNAs can also participate in the regulation of the chromatin structure
through an interaction with epigenetic modulators, such as Polycomb repressive complex
1 and 2 and HOX proteins, among others. Similar to miRNA sponging, some LncRNAs
act as decoys for proteins by directly binding them and reducing their intracellular levels.
LncRNAs can also act as scaffolds, and are emerging as a necessary component for the
creation of nuclear condensates such as speckles and paraspeckles [26–28].

Moreover, it has been proposed that lncRNAs may also can act as enhancers, bringing
transcription factors next to target gene promoters [22].

LncRNA’s subcellular localization is consistent with their function. For instance, chro-
matin remodeling is mediated by lncRNAs located in the nucleus, whereas cytoplasmic
lncRNAs are involved in transcriptional and post-transcriptional regulation, as well as
in multiple signaling pathways. Moreover, specific lncRNAs that are located in the mi-
tochondria (transcribed either from nuclear DNA or mitochondrial DNA) contribute to
mitochondrial homeostasis [29]. An overview of the main lncRNA regulatory functions is
reported in Figure 1.
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Figure 1. Examples of mechanisms by which lncRNAs exert their regulatory functions. (A) lncRNAs
can act as miRNA sponges, sequestering them and impeding their regulatory functions on mRNAs;
(B) chromatin remodeling and transcriptional regulation. LncRNAs can regulate chromatin architec-
ture by interacting with epigenetic effectors, such as histone modificators (left). LncRNA:DNA bind-
ing is a mechanism of gene silencing (right); (C) protein sequestration by lncRNA; (D) lncRNAs may
act as enhancers, bringing transcription factors close to transcription initiation site. (E) lncRNA scaf-
folding properties contribute to the formation of nuclear condensates. Created with BioRender.com
(accessed on 5 June 2023).

Given the widespread and multifaceted role of lncRNAs in the regulation of biological
functions, it comes as no surprise that lncRNA dysregulation is implicated in cancer [30–32].

BioRender.com
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Moreover, several lncRNAs contribute to metabolic reprogramming in cancer cells,
mainly due to post-translational modifications of key metabolic players, such as HIF-1α
and the c-Myc oncogene, as well as other cancer-associated proteins and pathways [33].

The role of lncRNAs in PDAC development and progression has been largely ex-
plored. Several LncRNAs are differentially expressed in PDAC, with different roles in
tumorigenesis and progression depending on their downstream targets. The loss of the im-
printing of H19, a paternally imprinted lncRNA, was suggested to play a role in pancreatic
carcinogenesis more than two decades ago [34].

Additional studies confirmed that the upregulating H19 in human pancreatic cancer
cells promotes tumor progression and EMT [35–37].

Among the lncRNAs that are overexpressed in PDAC is LINC01133, which is ex-
creted in PDAC-derived exosomes, and contributes to PDAC progression through the
upregulation of the Wnt/β-catenin pathway [38].

In addition to the overexpression of cancer-promoting lncRNAs, the downregulation
of lncRNAs with tumor suppressive functions, such as FLVCR1-AS1, MIR600HG, and
GAS8-AS1, can contribute to PDAC progression [39–41].

1.4. Diagnostic, Prognostic and Therapeutic Potential of LncRNAs—State of the Art, Advances
and Caveats

The possibility of detecting cancer-associated lncRNAs in the serum of affected patients
makes them potentially easily measurable cancer biomarkers. Multiple PDAC-associated
lncRNAs have already been proposed as diagnostic and/or prognostic biomarkers, as well
as predictors of response to treatment [42].

Recent studies, for instance, suggested that the expression of LINC00162 and ABHD11-
AS1 could be used to detect early pancreatic cancer [43,44].

Moreover, multiple lncRNAs, including the extensively studied HOTTIP, HOTAIR,
and PVT1, have been implicated in gemcitabine resistance, whereas others, like CASC2,
AB209630, and GAS5, seem to improve responses to gemcitabine [45].

LncRNAs’ potential astherapeutic targets are currently being studied in multiple fields,
and several mechanisms are used to inhibit lncRNA activity. Among these, RNA interfer-
ence with small interfering RNA (siRNA) can silence and induce the post-transcriptional
degradation of target lncRNAs. Antisense onligonucloeotides have been successfully used
to exert a post-transcriptional silencing on lncRNAs derived from antisense genes, pre-
venting them from cis-regulating neighboring genes. Moreover, aptamers are promising
tools that could interfere with lncRNA–protein interaction. However, the current data
are preliminary and derive from preclinical models, and the level of success of lncRNA
targeting in-vitro has not yet been met during in-vivo studies. Research on lncRNA tar-
geting is hampered by the poor conservation of this class of RNA, and, thus, the choice
of models is limited and should be carefully chosen (human cell-lines, patient-derived
xenografts, patient-derived tumor organoids). Moreover, there are potential issues con-
cerning the optimal delivery method, and the bioavailability of these molecules and their
target specificity, which should be addressed before deciding to proceed to clinical re-
search [45–48]. However, the cell-lineage specificity of lncRNAs makes them potentially
excellent candidates for targeted therapy, and, thus, efforts are still ongoing to overcome
the above-mentioned limitations.

1.5. Search Strategy and Selection Criteria

For this review, we focused on original articles that demonstrated the role of single
lncRNAs or lncRNA signatures in pancreatic cancer through the modulation of metabolic
pathways that are known to be dysregulated in this type of cancer. Given the tissue
specificity (and possibly isoform specificity) of lncRNAs, we only considered lncRNAs
whose effect on specific metabolic pathways was demonstrated in PDAC, and did not
include those described altered in PDAC, but for which experimental evidence of metabolic
functions was observed in other tumors. No filter was applied concerning publication date.
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2. Hypoxia-Responsive lncRNA

PDAC is characterized by an extensive desmoplastic stroma which, together with
rapid cellular proliferation and insufficient vascularization, results in a highly hypoxic en-
vironment. This, in turn, contributes to the formation of a low-immune microenvironment.
It has been demonstrated that, under inadequate oxygen supply conditions, cancer cells
produce specific hypoxia-induced molecules. This metabolic reprogramming heavily relies
on the activation of HIF-1, a major regulator of cellular adaptation to hypoxia [49].

Considering the role of hypoxia in PDAC, antagonization of the hypoxic microenvi-
ronment is being studied for PDAC treatment [14]. For instance, a phase 2 clinical study
(NCT04141995) is studying the use of digoxin (a known cardiac glycoside used to treat
heart arrythmias) as a modulator of the hypoxic microenvironment in combination with
adjuvant chemotherapy in patients with resectable PDAC [50].

There is a growing body of literature on hypoxia-induced lncRNA, as well as lncRNAs
that promote the expression of HIF-1. Indeed, exosomes secreted by hypoxic tumors,
including pancreatic cancer cells, contain a cargo of differentially expressed ncRNAs
compared to normal tissue, including several lncRNAs [51]. Hypoxia-induced lncRNAs
promote glycolysis, tumor progression, and resistance to gemcitabine, as described below.

2.1. MTA2TR

The MTA2 transcriptional regulator lncRNA (MTA2TR) is enriched in PDAC samples
compared to normal tissue, and has been inversely associated with poor overall survival
in PDAC patients. In PDAC cell cultures, this lncRNA promotes the transcription of
metastasis-associated protein 2 (MTA2), thereby promoting acetylation and, thus, the
stabilization of HIF-1α, which would otherwise be degraded under normoxic conditions.
This, in turn, results in an increase in HIF-1α transcriptional activity, and in a positive
feedback loop between the latter and MTA2, possibly contributing to PDAC tumorigenesis
and progression [52].

2.2. PVT1

Plasmacytoma Variant Translocation 1 (PVT1) has been positively associated with stage
and negatively associated with prognosis in pancreatic cancer [53]. Similar to MTA2TR,
PVT1 forms a positive feedback loop with HIF1-α, with both proteins stabilizing each other
and promoting cell proliferation and metastatic potential. This loop is apparently relevant
only in normoxic conditions as, during hypoxia, HIF1-α expression is not reduced following
PVT1 siRNA transfection in PDAC cells, as occurs when oxygen supplies are sufficient [54].

2.3. HIF1A-AS1

HIF1A Antisense RNA 1 (HIF1A-AS1) is a lncRNA with antiangiogenic properties lo-
cated on the long arm of chromosome 14, on the antisense strand of HIF-1. As demonstrated
in endothelial cells, HIF1A-AS1 can suppress the expression of its target genes, including
the pro-angiogenetic genes ADM and EPHA2, by directly binding double-strand DNA (ds-
DNA), thereby forming dsDNA/RNA triplexes [55]. HIF1-AS1, which is transcriptionally
regulated by HIF-1α, promotes HIF-1 α protein translation in a positive feedback loop that
has been implicated in the emergence of glycolysis-mediated gemcitabine resistance in
PDAC cells [56].

2.4. LncRNA-CF129145.1

Another lncRNA, lncRNA-CF129145.1, suppresses cell proliferation in pancreatic can-
cer cultures and animal models by indirectly inhibiting p53-mediated FOXC2 transcription
through p53 degradation. During hypoxia, lncRNA-CF129145.1 expression in PDAC cancer
cells is suppressed by the HIF-1α/HDAC complex [57].
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2.5. LncRNA-BX111887, ZEB-1AS1 and NR2F1-AS1

LncRNA-BX111887 (BX111), whose expression is induced by HIF-1α, promotes ep-
ithelial to mesenchymal transition through a positive cis-transcriptional regulation of the
adjacent gene ZEB1, through YB-1 recruitment to its transcription site [58]. Antisense
to ZEB1, ZEB-1AS1 is another lncRNA which is frequently overexpressed in PDAC cells.
ZEB-1AS1 promotes PDAC proliferation and invasion due to a positive activation loop with
HIF-1α. Indeed, ZEB-1AS1, whose expression is induced by HIF-1α during hypoxia, pro-
motes ZEB-1-mediated HIF-1α protein stabilization [59]. In the case of NR2F1-AS1, another
hypoxia-induced lncRNA, PDAC cell proliferation, invasion, and migration results from
the indirect activation of the AKT/mTOR pathway, mediated by a positive cis-regulation
of the NR2F1 transcription factor by NR2F1-AS1 [60].

2.6. RPL13AP23-201

The lncRNA previously described as ENST00000480739, now relabeled RPL13AP23-
201 [61], has been found to be under expressed in PDAC compared to adjacent normal
tissue, and its levels negatively correlate with nodal status and overall survival. In vitro
and in vivo assays have shown that this lncRNA inhibits the migration and invasion of
PDAC cells, whereas no effect on cell proliferation, death, or cell cycle regulation was
observed. These assays also suggest that RPL13AP23-201 acts as an oncosuppressor by
indirectly downregulating HIF-1α [62].

2.7. FEZF1-AS1

Another lncRNA, FEZF1-AS1, promotes cell proliferation and invasion by sponging
two miRNAs, miR-142 and miR-133a, thereby removing the block on HIF-1α and EGFR
expression. Similar to RPL13AP23-201, the effects of FEZF1-AS1 on PDAC cell proliferation
through the modulation of HIF-1α appear to occur only in hypoxic environments [63]. The
promotion of HIF-1α activity through miRNA sponging (miR-411-3p) is also a mechanism
which has been observed for PCED1B-AS1, a lncRNA implicated in cell proliferation and
epithelial-mesenchymal transition (EMT) in PDAC [64].

2.8. NORAD, LSAMP-AS1

NORAD, one of the lncRNAs whose expression is induced following hypoxic stimula-
tion, has been shown to promote EMT in PDAC cell lines, as well as in animal models [65].
Moreover, from the analysis of expression of 200 hypoxia-associated genes, another lncRNA,
LSAMP-AS1, emerged as one of the main players of a ceRNA network that regulated hy-
poxia, and its expression was found to be inversely associated with PDAC prognosis [66].

2.9. Linc-ROR

Specific PDAC-derived lncRNAs can also be excreted and modulate cancerogenesis
by inducing modifications in other cell types in the tumor microenvironment. Long
intergenic non-coding ROR (linc-ROR), for instance, is enriched within PDAC cell-derived
exosomes and promotes the dedifferentiation of adipocytes, with a subsequent increase in
PDAC cell proliferation and invasiveness through the upregulation of the HIF1α/ZEB1
signaling pathway [67].

2.10. UCA1

Another lncRNA found in PDAC exosomes released under hypoxia is UCA1, which
promotes angiogenesis by modulating the miR-96-5p/AMOTL2/ERK1/2 signaling path-
way [68]. Interestingly, UCA1 has also been found to be overexpressed in exosomes secreted
by hypoxia-activated pancreatic stellate cells, and has been found to confer metastatic po-
tential and gemcitabine resistance to neighboring PDAC cells [69].

ZNFTR hypoxia can also suppress the production of lncRNAs with tumor suppressive
functions. ZNF24 Transcription Regulator (ZNFTR, also known as ZNF24TR), for instance,
has the ability to impair cell proliferation and invasion by promoting the expression of
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ZNF24, a transcriptional repressor of VEGF. However, ZNFTR is downregulated in PDAC
cells, and an underlying mechanism appears to be the deacetylation of ZNFTR promoter
by the HIF1-α/HDAC1 complex [70].

3. Autophagy-Related LncRNA

The term autophagy (macroautophagy or macropinocytosis) describes the mechanisms
by which intracellular material such as proteins and organelles are scavenged and included
on intracellular vesicles, and degraded in the lysosomes in order to be recycled [71]. By
removing and recycling damaged intracellular molecules such as proteins, autophagy
prevents long term tissue degeneration, simultaneously providing nutrients independently
of external sources. Autophagy levels can increase following cell starvation, which can
occur, for instance, during hypoxic conditions. Moreover, the inhibition of mTOR signaling
promotes autophagy. The upregulation of autophagy is a common oncogenic mechanism.
However, the role of autophagy differs depending on the nature of the cells involved. In
fact, according to experimental reports, autophagy appears to be protective against the
neoplastic transformation of nonmalignant cells, but it boosts the progression of advanced
cancer. Moreover, whether autophagy exerts anti-oncogenic or pro-oncogenic functions
may be due to the type of stimulus that has induced autophagy and/or on the type of
substrates that are being preferentially degraded [72]. Dysregulated autophagy has also
been implicated in tumoral immune escape, although the underlying mechanisms are
not completely elucidated, and data on the role of autophagy in tumor immunogenicity
are conflicting [71].

Autophagy inhibitors are being studied for cancer treatment. However, research on
these agents is complicated by the need to find the balance between treatment efficacy
and the risk of toxicity, especially neurotoxicity, given the key role of autophagy in cell
homeostasis [73]. Clinical trials are nevertheless ongoing to assess the effectiveness of
autophagy-targeting agents on several types of malignancies [72,74]. In pancreatic cancer,
increased autophagy has emerged as one of the main metabolic dependencies. Clinical trials
investigating therapy with autophagy inhibiting agents rely mainly on hydroxychloroquine
(HCQ), whose tolerability profile is well known, as it is a repurposed drug that is already
used in the clinic. Phase 2 clinical trials have failed to demonstrate a benefit of (HCQ) in
combination with gemcitabine or gemcitabine/nab-paclitaxel on advanced PDAC patients.
However, a greater pathological response, as well as biochemical evidence of autophagy
reduction and increased tumor immune infiltrate, were observed when the combination
HCQ + gemcitabine/nab-paclitaxel was administered in the neoadjuvant setting [74,75].
Given the potential of autophagy targeting in PDAC, there is an urgent need for biomarkers
that could aid in the selection of patients who could most benefit from these treatments.
The identification of specific targetable molecules, such as lncRNA, expressed mainly in the
tumor, may help to develop therapies with a high target specificity, in order to maximize
the efficacy and minimize the systemic toxicity. Moreover, mounting evidence points to a
pivotal role of cancer stem cells (CSC) in pancreatic carcinogenesis, and to their contribution
to PDAC reprogramming [7]. Intriguingly, both enhanced autophagy and lncRNA altered
expression have been shown to promote stemness in PDAC cells [76].

3.1. MALAT1/NEAT2

A series of specific PDAC-associated lncRNAs have been implicated in autophagy
modulation. One of these is metastasis-associated lung adenocarcinoma transcript
1 (MALAT1)/noncoding nuclear-enriched abundant transcript 2 (NEAT2), a lncRNA that is
overexpressed in several malignancies. MALAT-1 levels are higher in PDAC cells compared
to normal pancreatic tissue, and its levels have been positively correlated with stage and
negatively associated with patients’ survival [77,78]. Considering that MALAT-1 has been
associated with an increased expression of autophagy-related proteins, and that MALAT-1
silencing results in a downregulation of these proteins both in vitro and in vivo, the role of
this lncRNA in PDAC is likely due, at least in part, to autophagy [79].
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3.2. PVT1

PDAC-associated lncRNAs can also play a role in chemotherapy resistance through
the upregulation of autophagy. PVT1, for instance, in addition to its links to hypoxia, has
also been implicated in gemcitabine resistance in PDAC through mechanisms involving
other pathways. Indeed, a recent study suggested that PVT1 suppresses gemcitabine
activity in PDAC cells by upregulating the Wnt-β-catenin signaling pathway, as well
as autophagy-related pathways. The underlying mechanism appears to be a negative
regulation of miR-619-5p by PVT1, which results in the increased expression of Pygo1
and ATG14, two proteins which are crucial for Wnt-β-catenin signaling and autophagy,
respectively [80]. Moreover, PVT’s role in PDAC underscores the interconnection that exists
between hypoxia mediators and autophagy pathways. Specifically, another mechanism by
which PVT1 promotes autophagy is through the sponging of mir-143, which facilitates the
HIF1-α-mediated upregulation of VMP1, a central player in the autophagy process [81].

3.3. SNHG14 and HCP5

Similar to PVT1, two other lncRNAs, SNHG14 and HCP5, can increase gemcitabine
resistance by the upregulation of autophagy via a miRNA sponging mechanism [82,83].

3.4. Lnc-FSD2-31:1

Lnc-FSD2-31:1 expression is increased in tumor samples from long survivors (>5 years)
compared to short survivor (<6 months) PDAC patients, and its role in prognosis may
be due to the modulation of the peritumoral stromal microenvironment. Specifically, this
lncRNA, excreted by PDAC cells via extracellular vesicles, increases autophagy in cancer-
associated fibroblasts (CAFs) by removing the miR-4736 block on ATG7 expression, thereby
hampering CAFs’ activation [84].

3.5. ANRIL/CDKN2B-AS1

ANRIL/CDKN2B-AS1, another cancer-associated lncRNA, appears to confer gem-
citabine resistance by inhibiting autophagy. ANRIL has been found highly expressed in
pancreatic cancer cells, together with HNGB1. Indeed, by a miRNA sponging mechanism,
ANRIL removes the HMGB1 blockade by miR-181a and, in turn, HMGB1 promotes au-
tophagy. In pancreatic cancer cell lines treated with gemcitabine, this results in increased cell
proliferation in and gemcitabine resistance, which can be reverted by ANRIL silencing [85].

3.6. LINC01207 and LINC01133

As opposed to the above-mentioned lncRNAs, it has been postulated that LINC01207
promotes pancreatic cancer progression through the inhibition of autophagy. Indeed,
LINC01207 is overexpressed in cancer cells. By negatively regulating miR-143-5 in human
pancreatic cancer cells, this lncRNA increases the expression of AGR2, an endoplasmic
reticulum protein implicated in multiple signaling pathways, which is overexpressed
in several cancers and has been implicated in PDAC dissemination [86]. LINC01207
silencing, with subsequent increased levels of miR-143-5 and the reduced expression of
AGR2, has been shown to inhibit cell growth and promote both apoptosis and autophagy
in PDAC cells [87].

The LINC01133 lncRNA is known to be involved in PDAC cells’ proliferation and
EMT. In addition to the above-mentioned oncogenic mechanisms (positive regulation of
the Wnt/β-catenin pathway), LINC01133 can promote sponge miR-216a-5p, removing its
inhibition on TPT1, a protein known to suppress autophagy by a positive regulation of
both BECN1 and mTORC-1 signaling networks. Therefore, LINC01133 appears to promote
cancerogenesis by suppressing autophagy, as demonstrated by increased levels of TPT1
levels and decreased levels of the autophagy markers LC3 in PDAC cells with LINC01133
overexpression, and by the drop of TPT1 levels following LINC01133 silencing [88,89].
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These findings, apparently in conflict with the above-mentioned effects of other lncR-
NAs on autophagy in PC, possibly reflect the complexity of the autophagy process, which
can act as a double-edged sword in cancer prevention and cancer promotion.

3.7. HOTAIR

Besides chemotherapy, autophagy-related lncRNAs may influence responses to other
types of treatment. HOTAIR promotes autophagy in PDAC cells, as its expression is
positively associated with that of ATG7, and could confer resistance to radiation ther-
apy. In a study conducted on multiple pancreatic cancer cell lines, HOTAIR expres-
sion increased after irradiation. Interestingly, HOTAIR knockdown conferred radiosen-
sitivity to these cells, which could be reverted by cell treatment with rapamycin, an
autophagy-promoting molecule [90].

3.8. LncRNA Signatures

In addition to studies focused of the functional characterization of the role of single
lncRNAs in PDAC, several gene expression studies have identified autophagy-associated
lncRNA signatures and/or classificators which were associated with PDAC development
and progression, as well as with prognosis and response to treatments. In some cases,
signatures associated with the same outcome differed among studies, due, at least in part,
to differences in the autophagy-associated gene sets selected for each study [91–94].

4. LncRNAs Implicated in Other Metabolic Pathways in PDAC

Although heme synthesis has emerged as a crucial metabolic dependency in PDAC, a
role of heme-modulating lncRNAs in PDAC has not been experimentally demonstrated, to
our knowledge. Conversely, a set of lncRNAs has been implicated in the dysregulation of
lipid metabolism and amino acid metabolism in this tumor.

As previously mentioned, a subset pf PDAC exhibits a cholesterogenic gene expression
signature [11]. Lipids are necessary for cell membrane stability, as well as for several
biological processes that regulate cell growth and cell differentiation [95]. Normal tissues
rely mainly on a dietary intake of lipids, whereas several types of cancer cells activate
de novo lipogenesis to be independent of external sources. In fact, the inhibition of fatty
acids and cholesterol synthesis results in impaired tumorigenesis, and is currently being
studied as a therapeutic strategy for cancer treatment [96,97]. A phase 1 clinical trial,
NCT04862260, is currently ongoing to assess the feasibility of cholesterol metabolism
disruption with a triplet of cholesterol lowering drugs (evolocumab, atorvastatin, and
ezetimibe) in combination with FOLFIRINOX in advanced PDAC [98].

In addition to lipid metabolism, amino acid metabolism is frequently altered in PDAC,
especially that of glutamine. In fact, although glutamine is a non-essential amino acid,
several tumors rely on glutamine metabolism for survival. In PDAC cells, glutamine
metabolism rewiring is driven by the upregulation of the KRAS pathway [99]. Similar to
lipid metabolism, glutamine dysregulation is a potential therapeutic target. Telaglenastat, a
glutaminase inhibitor, is being investigated in clinical trials, alone or in combination with
standard chemotherapy, for the treatment of several hematologic and solid malignancies.
In PDAC, Glutamic-Oxaloacetic Transaminase 1 (GOT1) inhibition has shown promising
results in preclinical studies, but further research is needed to assess the translatability of
these results clinical trials [100–103].

4.1. SNHG16

Among the lncRNAs that are overexpressed in PDAC, SNHG16, which has an oncogenic
activity in PDAC cells has been demonstrated to promote de novo lipogenesis by negatively
regulating miR-195, thereby increasing the expression of its target SREBP2, a transcription
factor involved in the activation genes which are involved in cholesterol synthesis [104,105].
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4.2. ZFAS1

ZFAS1 has been implicated in cancer promotion through the dysregulation of liposyn-
thesis in several malignancies. This lncRNA ZFAS1 is overexpressed in PDAC cells, where
it increases the expression of 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), a
rate-limiting enzyme in cholesterol synthesis, and of fatty acid synthase (FASN), which
catalyzes the de novo biosynthesis of long-chain saturated fatty acids from acetyl-CoA
and malonyl-CoA. ZFAS1 silencing in PDAC cells results in low levels of free fatty acids,
cholesterol, triglycerides, and phospholipids, and in reduced PDAC proliferation and
invasiveness [106].

4.3. XLOC_006390

The XLOC_006390 lncRNA is involved in PDAC progression through the upregulation
of glutamate metabolism. XLOC_006390 overexpression results in increased intracellu-
lar levels of α-ketoglutarate (αKG), and has been associated with higher PDAC stage
and shorter overall survival. By preventing c-Myc ubiquitination-mediated degradation,
XLOC_006390 promotes the transcription of glutamate dehydrogenase 1 (GDH1), a gene
that encodes a mitochondrial enzyme that converts glutamate into alpha-ketoglutarate and
ammonia by oxidative deamination, and whose germline pathogenic variants cause a form
of Familial Hyperinsulinism [107].

4.4. GSTM3TV2

In a study conducted on PDAC cell cultures, the GSTM3TV2 lncRNA was overex-
pressed in gemcitabine-resistant cells and was identified as a key player in a ceRNA
network that has been implicated in modulating the response to gemcitabine. Specifically,
by sponging the Let-7 miRNA, GSTM3TV2 promoted the expression of LAT2 and ORL1,
two proteins involved in the uptake of neutral amino acids (such as glutamine) and in the
reuptake of several molecules, including oxidized LDL [108–110].

An overview of lncRNAs involved in PDAC metabolic reprogramming is shown
in Figure 2.
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5. Conclusions and Future Directions

LncRNAs are an important component of the regulatory machinery, and contribute to
the homeostasis of multiple cellular mechanisms. Energetic reprogramming, which is one
of the main drivers of pancreatic cancer, is heavily influenced by lncRNA dysregulation,
and metabolism-associated lncRNAs are not only promising predictive and/or prognostic
biomarkers, but bear a therapeutic potential. In fact, metabolic dependencies are being
studied as potential targets for novel therapies. Moreover, there is a large body of literature
documenting the reversal of PDAC cell oncogenic potential by the direct modulation of
specific lncRNAs, which, therefore, could be candidate targets for cancer treatment. Un-
fortunately, the reports on several lncRNAs are based on a single study, and this evidence
needs additional confirmation to gain robustness. Therefore, considering that the therapeu-
tic options are currently insufficient in PDAC, further research aimed at elucidating the
role of metabolism-associated lncRNAs and at targeting them to address chemoresistance
could be particularly relevant in the effort to improve the prognosis of PDAC patients.
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