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Simple Summary: This narrative literature review delves into the role of EPH/ephrin signaling in
liver cancer and its implications for tumor progression and potential therapeutic strategies. This
review focuses on the relationship between hypoxia and HCC development, highlighting the up-
regulation of hypoxia-inducible factor 1-alpha (HIF-1α) in HCC cells under low oxygen conditions.
It explores the significance of the EPH/ephrin axis in regulating the hypoxic tumor microenvironment
(TME) of HCC. The review also highlights the new avenues for therapeutic interventions that open
the targeting of the EPH/ephrin signaling pathway in liver cancer treatment by unraveling the
significance of the EPH/ephrin signaling.

Abstract: Liver cancer is a complex and challenging disease with limited treatment options and dismal
prognosis. Understanding the underlying molecular mechanisms driving liver cancer progression and
metastasis is crucial for developing effective therapeutic strategies. The EPH/ephrin system, which
comprises a family of cell surface receptors and their corresponding ligands, has been implicated in the
pathogenesis of HCC. This review paper aims to provide an overview of the current understanding of
the role of the EPH/ephrin system in HCC. Specifically, we discuss the dysregulation of EPH/ephrin
signaling in HCC and its impact on various cellular processes, including cell proliferation, migration,
and invasion. Overall, the EPH/ephrin signaling system emerges as a compelling and multifaceted
player in liver cancer biology. Elucidating its precise mechanisms and understanding its implications
in disease progression and therapeutic responses may pave the way for novel targeted therapies and
personalized treatment approaches for liver cancer patients. Further research is warranted to unravel
the full potential of the EPH/ephrin system in liver cancer and its clinical translation.

Keywords: EPH/ephrin; immunotherapy; hepatocellular carcinoma; cholangiocarcinoma; targeted
therapies

1. Introduction
1.1. Epidemiology of Liver Cancer

Hepatocellular carcinoma (HCC) is the most common histologic type of liver cancer
arising from the hepatocytes [1], with almost 906,000 cases diagnosed globally in 2020.
It is also the third-leading cause of cancer deaths worldwide, with a low relative 5-year
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survival rate of approximately 18% [2]. HCC predominantly affects men and is most
commonly diagnosed in people aged between 60 and 70 years [3]. The incidence of HCC
varies by geographical region and ethnicity, which is largely attributed to major risk factors.
Chronic liver disease resulting from chronic infections with hepatitis B virus (HBV) or
hepatitis C virus (HCV), alcohol abuse, and non-alcoholic fatty liver disease (NAFLD)
or non-alcoholic steatohepatitis (NASH) are the main risk factors for HCC [3,4]. Obesity,
diabetes, nicotine use, hemochromatosis, and hereditary tyrosinaemia type 1 are also
associated with an increased incidence of HCC [4]. The distribution of risk factors for HCC
shows regional variations worldwide, with HBV being predominant in Asia, HCV in Japan,
and NAFLD, NASH, and alcohol-related factors more prevalent in Europe and North
America [3]. Aflatoxin B1 exposure is especially relevant in Asia, where it overlaps with
HBV infection. Several scores have been established and validated to predict the remaining
risk of HCC in patients with cirrhosis [5]. Antiviral treatment improves survival in patients
with HBV- and HCV-related HCC [6]. Recent evidence also suggests that direct-acting
antiviral agent (DAA) therapy does not increase the risk of HCC recurrence in patients
with HCV-related HCC [6]. The incidence of NAFLD- and NASH-related liver cancer has
increased and optimization of glycemic control and body weight are desirable as they
appear to be independently associated with an increased risk of HCC [3,4,7].

Cholangiocarcinoma (CCA) is the predominant malignant tumor affecting the bile
ducts and represents the second most frequent form of liver cancer, following HCC [8].
CCAs are classified as epithelial tumors that display characteristic traits associated with the
differentiation of cholangiocytes [8]. CCA is accompanied by diverse molecular features
that make it a promising candidate for targeted therapy [9]. In the Western world, the occur-
rence of CCA is quite infrequent, with a range of 0.35 to 2 instances per 100,000 individuals
annually [10]. However, the global incidence of CCA has been steadily increasing over the
last 30 years, from 0.1 to 0.6 cases per 100,000 people [3]. CCA is a highly aggressive cancer,
with a 5-year survival rate of less than 10% for those with locally advanced or metastatic
disease. CCA develops from the biliary epithelium, either intrahepatic or extrahepatic.
Perihilar CCA (pCCA) accounts for 60–70% of cases, while distal CCA (dCCA) and intra-
hepatic CCA (iCCA) account for 20–30% and 5–10% of cases, respectively [11]. There has
been an increased prevalence of CCA in recent years. The primary treatment for early-stage
CCA is surgical resection with adjuvant chemotherapy, while systemic chemotherapy is
the standard treatment for advanced-stage CCA. Unfortunately, patients with CCA often
present with late-stage disease, which makes the prognosis poor [12].

The EPH/ephrin system plays a significant role in cancer and its dysregulation has
been implicated in the development and progression of several types of cancer [13–22].
The EPH/ephrin signaling system has been identified as a potential therapeutic target in
liver cancer due to its involvement in tumor growth, invasion, and metastasis. Inhibiting
this system could provide a promising approach for treating liver cancer, including HCC
and CCA.

1.2. The EPH/Ephrin Signaling System

The Erythropoietin Producing Hepatocellular (EPH) carcinoma receptor system was
first described in 1987 by Hirai and colleagues [23]. This system constitutes the largest
family of receptors with tyrosine kinase activity, as it consists of 16 receptors, which are
divided into 2 subclasses, the type A (EPHA) and type B (EPHB) effector receptors. In total,
there are 10 EPHA receptors (EPHA1 to EPHA10) and 6 EPHB receptors (EPHB1 to EPHB6).
These receptors bind to their binding sites, the ephrins. By analogy with EPHs, ephrins are
divided into two subgroups, the five type A ephrins (ephrinA1 to ephrinA5) and the three
type B ephrins (ephrinB1 to ephrinB3) [24]. EPH tyrosine kinases and ephrins are capable of
functioning as both receptors and ligands, which enables them to engage in unidirectional
or bidirectional signaling. This can result in parallel or antiparallel signaling between
two adjacent cells in trans configuration. Additionally, these molecules can interact with
each other on the surface of the same cell in cis configuration which appears to dampen
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EPH/ephrin signaling, potentially by disrupting the formation of EPH clusters [25]. The
activation of EPHs results in various cellular responses, including the rearrangement of the
cytoskeleton, which can involve the collapse of this structure [26]. This is accomplished
by modulating the activity of small GTPases, which are critical regulators of cytoskeletal
dynamics. EPH forward signaling frequently leads to cell repulsion, while ephrin reverse
signaling can result in either cell repulsion or adhesion [27]. The EPH/ephrin system
regulates a wide range of biological processes, including cell migration and differentia-
tion [28], angiogenesis [29], bone and placenta formation [30,31], and synaptic plasticity
in the nervous system [26]. Dysregulation of the EPH/ephrin system has been implicated
in a range of diseases, including cancer [13,16,18–20,32], cardiovascular disease [33] and
neurodegenerative disorders [34].

1.3. The EPH/Ephrin Molecular Structure

EPHs are transmembrane type-1 proteins with a biologically conserved structure
between species. The extracellular side consists of the ligand-binding domain, the cysteine-
rich region (Sushi and Epidermal Growth Factor-like domains are included here), and
two fibronectin domains. The intracellular part consists of the transmembrane domain,
the tyrosine kinase domain, and the SAM and PDZ sequences. This structure is common
between EPHA and EPHB; however, notable exceptions are EPHA10 and EPHB6, which—
due to loss of relevant amino acids—lack phosphorylation capacity [35]. In contrast, type
A ephrins differ from type B ephrins. Although both are localized to the cell membrane,
type A are composed of the extracellular binding domain, which is in contact with the
membrane via glycosylphosphatidylinositol (GPI), whereas type B are transmembrane
proteins with an extracellular binding domain and an intracellular PDZ sequence [36].
This distinction of EPHs and ephrins into types A and B was made both on the basis of
commonalities in terms of structure and preference in terms of acceptor, as an EPHA tends
to bind to an ephrinA and vice versa, but not excluding interaction between ligand and
receptor of different types [37] (Figure 1).
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domain (composed of the tyrosine kinase domain and the SAM and PDZ sequences). EPHA and EPHB
have a common structure. In contrast, ephrinBs differ from ephrinAs. The former are transmembrane
proteins with an extracellular binding domain, a transmembrane domain, and an intracellular
domain with a tyrosine kinase domain and a PDZ sequence, whereas ephrinAs are synthesized from
a glycosylphosphatidylinositol chain, which links the cell membrane to the binding site.

2. The EPH/Ephrin Signaling in HCC—Preclinical Data

The EPH/ephrin signaling pathway plays a crucial role in the development and
progression of HCC. Mounting evidence suggest that the aberrant activation of this pathway
contributes to tumor cell proliferation, invasion, angiogenesis, and metastasis. Targeting
EPH/ephrin signaling may be a promising therapeutic strategy for the treatment of HCC.
Created with Biorender.com.

2.1. The Role of EPH/Ephrin Signaling in HCC Proliferation and Metastasis

One of the most extensively studied molecules in HCC is EPHA2. Its role is complex
and context-dependent regulating HCC cell proliferation, migration, and invasion.

EPHA2: Wang et al. found that EPHA2 is crucial for tumor growth in HCC and target-
ing EPHA2 suppresses tumor initiation and progression, enhancing overall survival (OS)
in a mouse model of HCC [38,39]. The study used CRISPR-Cas9-mediated inhibition of
EPHA2 expression in the mouse liver and showed a significant reduction in tumor burden
compared to the control, indicating that EPHA2 may be a potential therapeutic target for
HCC. They demonstrated that EPHA2 promoted HCC development partially through
activation of the AKT and STAT3 signaling pathways. The AKT signaling pathway played
a critical role in promoting HCC development while STAT3 promoted stem-cell-like proper-
ties leading to tumor initiation, relapse, and drug resistance. JAKs, which are non-receptor
tyrosine kinases, can directly activate STAT3 in many malignancies, including HCC [40].
JAK1 was found to have substantial expression in Huh7 and Hep3B while the expression
of JAK2 was modest and JAK3 expression was very low. The study found that EPHA2
promoted STAT3 signaling through the activation of JAK1. Collectively, the application
of the small molecule inhibitor ALW-II-41-27 (ALW) demonstrated significant reduction
in the phosphorylation of EPHA2 and its downstream effectors in HCC cells, impairing
their growth in vitro. In vivo experiments on mice with HCC xenografts showed that ALW
treatment inhibited tumor growth and even caused regression [38,39]. These results suggest
that targeting EPHA2 with ALW has the potential to be a therapeutic strategy for HCC.
Taking this a step further, Jin et al. investigated the role of testicular nuclear receptor 4
(TR4) in HCC progression by manipulating TR4 expression in LM3 and Huh7 cells and
in vivo [41]. The 3–4,5-dimethylthiazol-2-yl-5-3–carboxymethoxyphenyl-2-4-sulfophenyl-
2H-tetrazolium (MTS) proliferation assay revealed little change in cell growth after altering
TR4 expression, but migration and invasion abilities were significantly enhanced after
knocking down TR4 and suppressed after adding TR4-cDNA. They also found that TR4
suppressed HCC cell migration and invasion via suppressing the EPHA2 expression. They
showed that TR4 suppressed the expression of EPHA2 at the transcriptional level by bind-
ing to TR4-response elements (TR4REs) located on the promoter of EPHA2 [41]. It is
suggested that targeting the TR4-EPHA2 signaling pathway that has been newly identi-
fied may enhance our capability to inhibit HCC metastasis. Besides the above, EPHA2 is
target of epigenetic modifications [42,43]. Xiang et al. [43] aimed to investigate the role
of miR-520d-3p, a tumor suppressor, and long non-coding RNA (lncRNA) myocardial
infarction-associated transcript (MIAT) in HCC cells. They performed gain-of-function
studies in HCC cells by transfecting miR-520d-3p mimics to overexpress miR-520d-3p. The
results showed that miR-520d-3p inhibited HCC cell proliferation, promoted apoptosis, and
suppressed cell migration and invasion. Moreover, miR-520d-3p inhibited the expression
of VEGF and matrix metallopeptidase 9 (MMP-9), which play an important role in cell
migration. They also found that the expression of MIAT was significantly elevated in both
HCC tissues and cell lines. In addition, they observed an inverse relationship between the
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expression levels of MIAT and miR-520d-3p in HCC tissues. MIAT was found to target
miR-520d-3p by bonding with its putative site in the 3′ untranslated region (3′UTR) and
downregulated its expression. MIAT promoted HCC cell growth by downregulating miR-
520d-3p. Finally, EPHA2 was verified as a functional target of miR-520d-3p, indicating that
miR-520d-3p inhibited HCC cell proliferation by targeting EPHA2. The study suggested
that miR-520d-3p and MIAT may serve as potential therapeutic targets for the treatment of
HCC [43]. Finally, Niu et al. investigated the role of miR-10b-5p in suppressing the invasion
and proliferation of primary hepatic carcinoma cells by downregulating EPHA2 [42]. The
study demonstrated that increasing the expression of miR-10b-5p or reducing EPHA2 led to
decreased cell proliferation, increased apoptosis, elevated levels of Bax and Caspase-3, and
decreased levels of Bcl-2. The dual luciferase reporter assay confirmed that EPHA2 was a
target of miR-10b-5p and the rescue experiment showed that transfection of pCMV-EphA2
rescued miR-10b-5p overexpression and siEphA2 rescued miR-10b-5p knockdown. The
study suggests that miR-10b-5p has the potential to be a clinical target for HCC regulating
the expression of EPHA2 [42].

In conclusion, EPHA2 plays a crucial role in HCC tumor growth. Inhibition of EPHA2
suppresses tumor initiation and progression, enhancing OS [40]. EPHA2 promotes HCC
development through AKT and STAT3 signaling pathways. Targeting EPHA2 with ALW-
II-41-27 (ALW) inhibits HCC cell growth [38,39]. TR4 suppresses HCC cell migration and
invasion by suppressing EPHA2 expression [41]. miR-520d-3p and miR-10b-5p inhibit
HCC cell proliferation by targeting EPHA2 [42,43]. Targeting EPHA2 and its regulatory
molecules hold promise as therapeutic strategies for HCC.

EPHA1: Chen et al. [44] aimed to investigate the role of EPHA1 in angiogenesis and
progression of HCC by downregulating EPHA1 using RNA interference technology. The
results showed that the knockdown of EPHA1 resulted in decreased proliferation, motility,
and invasion capability of HCC-derived cells in vitro. Additionally, it downregulated the
expression of VEGF and MMP-2 and -9. They suggested that EPHA1 overexpression in
HCC promoted cell proliferation and angiogenesis and thus EPHA1 has the potential to be
a therapeutic target for HCC [44].

EPHA5: Yuan et al. [45] investigated the inhibitory effects of human umbilical cord-
derived mesenchymal stem cells (hUCMSCs) on the proliferation and migration of HCC
cells. Experimental evidence suggested that the interaction between hUCMSCs and tu-
mor cells resulted in cell cycle arrest at specific phases and triggered apoptosis. The
hUCMSC-conditioned medium attenuated the migratory abilities of the tumor cell types
and downregulated the expression of Bcl-2, pro-caspase-7, β-catenin, and c-Myc, while
slightly increasing the expression of EPHA5. This suggests that EPHA5 could be further in-
vestigated as biological therapy for HCC [45]. Towards the same direction, Wang et al. [46]
discussed the challenges of using kinase inhibitors to target mutated driving kinases in
HCC and provided evidence to demonstrate that co-activation of ALK, FGFR2, and EPHA5
serves as core kinases in HCC cells and their co-activation is required for cell growth. That
is highly correlated with poor prognosis for OS. Hsp90 plays a crucial role in HCC cells
by interacting with ALK, FGFR2, and EPHA5 proteins. Inhibition of Hsp90 effectively
modulated the activity of these client proteins, leading to significant growth arrest. Thus,
the presence of triple-positive status characterized by p-ALK, p-FGFR2, and p-EPHA5
can be viewed as a potential “combined therapeutic target” with clinical significance for
treatment purposes. They suggested that Hsp90 inhibition could be an alternative method
to abrogate these kinases for treatment of HCC patients. Notably, the subgroup of patients
exhibiting triple-positive p-ALK/p-FGFR2/p-EphA5 markers may be particularly respon-
sive to Hsp90 inhibitors, making them a promising target population for this therapeutic
strategy [46].

EphrinA2: Feng et al. [47] investigated the role of ephrinA2 in HCC. EphrinA2 was
found to be significantly upregulated in both HCC cell lines and clinical tissue samples,
particularly in tumors invading portal veins. The overexpression of ephrinA2 in HCC cells
increased their tumorigenicity in vivo, whereas knockdown of ephrinA2 had the opposite
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effect by inhibiting tumorigenicity. EphrinA2 was also found to confer resistance to tumor
necrosis factor alpha (TNF-α)-induced apoptosis, thus promoting cancer cell survival. The
study identified a novel EphrinA2/Rac1/Akt/NF-kB pathway that inhibited apoptosis in
HCC cells. The findings suggest that ephrinA2 may be a potential therapeutic target for
HCC [47].

EphrinA3: The study investigated the role of miR-210 in HCC chemotherapy with
cisplatin. The study revealed that the expression of miR-210 was elevated in HCC tissues
and had a positive correlation with HCC progression. Cisplatin treatment reduced the
expression of miR-210, while enhancing the expression of ephrinA3, which is a target
of miR-210, in HCC cells. Additionally, the overexpression of miR-210 countered the
impact of cisplatin, leading to an increase in HCC cell growth, whereas inhibiting miR-210
improved the sensitivity of HCC cells to cisplatin chemotherapy. The findings suggested
that miR-210-induced ephrinA3 signaling might be a potential target of cisplatin in HCC
treatment [48].

EphrinA4: Pygopus-2 (Pygo2) expression is significantly higher in cancerous tissues
and is associated with age, tumor size, metastasis, vascular invasion, and tumor differentia-
tion. Patients with normal Pygo2 protein expression have longer OS and a higher 1-year
survival rate than those with abnormal Pygo2 expression [49]. Yuan et al. [50] investigated
the role of ephrinA4 in HCC and its regulatory mechanism. EphrinA4 was found to be
highly expressed in HCC cell lines and its knockdown significantly inhibited cell prolifera-
tion, migration, and invasion in Huh7 cells. EphrinA4 was shown to interact with Pygo2
and positively regulate Pygo2 expression. In addition, the inhibition of ephrinA4 in Huh7
cells hindered the Wnt/β-catenin signaling but this effect was counteracted by PYGO2 [50].
Additionally, in vitro and in vivo studies by Lin et al. [51] showed that ephrin4 overexpres-
sion promoted HCC cell proliferation and migration, while ephrinA4 knockdown inhibited
these processes. They identified that ephrinA4 directly interacted with EPHA2, leading
to activation of the PIK3R2/GSK3b/b-catenin signaling pathway [51]. PIK3R2 expression
was further enhanced by the overexpression of b-catenin, resulting in the establishment of
a positive feedback loop. Evidence suggests that ephrinA4 is a potential therapeutic target
in HCC [51].

EphrinA5: Wang et al. [52] investigated the regulation of ephrinA5 expression in HCC
by miR-96 and miR-182. They found that the expression levels of miR-96 and miR-182 in
HCC and para-tumoral liver tissues were upregulated in HCC. A reciprocal relationship
was observed between the expression levels of miR-96 and miR-182 and ephrinA5 protein
levels. Moreover, the direct interaction between miR-96, miR-182, and the 3′UTR region of
ephrinA5 mRNA led to the inhibition of protein translation, ultimately promoting increased
proliferation and migration of HCC cells. These findings indicate that miR-96 and miR-182
function as oncomiRs in HCC by suppressing ephrinA5 expression, potentially playing
significant roles in the development of hepatocarcinogenesis [52].

EphrinB2: The expression of ephrinB2 is linked to the progression of liver cancer. Dai
et al. [53] examined the effects of HMQ-T-B10 (B10) on HCC, both in vitro and in vivo.
They showed that B10 was able to inhibit the growth of human liver cancer cells by binding
to ephrinB2 and suppressing its signaling pathway, which induced apoptosis. B10 also
showed inhibitory activity on the growth of xenograft tumors derived from Hep3B in
nude mice. These results suggest that B10 has potential as an effective antitumor agent for
HCC [53].

2.2. The EPH/Ephrin Signaling in Viral Hepatitis-Related HCC

MiR-520e is downregulated in different types of cancer cells including breast can-
cer [54] and gastric cancer [55]. The HBx protein, one of the most important oncogenic
proteins for the HBV X gene encoding, has been shown to regulate the expression of miR-
NAs at the transcriptional level, affecting the progression of HBV-related HCC [56]. Tian
et al. [57] investigated the role of miR-520e in the growth HCC cells and the replication of
HBV. They detected miR-520e and the EPHA2 in HBV-positive HCC tissues and cells. In
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HBV-positive HCC tissues and cells, miR-520e was shown to be upregulated and EPHA2
was downregulated. Moreover, the expression of miR-520e was found to be reduced in
both Huh7-X and HepG2-X cells (normal and HCC cells that carried stable expression of
HBx), but it was increased in a dose-dependent manner upon interference with HBx. The
groups treated with the miR-520e mimic and si-EphA2 exhibited a decrease in the levels
of EPHA2, p-p38MAPK/p38MAPK, ERK1/2, and p-ERK1/2, as well as a decrease in cell
apoptosis. Conversely, these groups showed an increase in HBV-DNA content, HBsAg and
HBeAg levels, and cell proliferation. Furthermore, the reversal of the promoting effect on
HBV replication and tumor cell growth by the miR-520e inhibitor was achieved through the
utilization of si-ephA2. Overall, they suggested that miR-520e plays a role in the regulation
of HBV replication by inhibiting the p38MAPK and ERK1/2 signaling pathways through
an inhibitory effect on EPHA2, ultimately reducing HBV replication and inhibiting tumor
cell growth [57].

Regarding the HCV, Colpitts et al. [58] used RNAi screening to identify a network of
kinases involved in HCV entry [59]. Although achieving sustained virological response
(SVR) after direct-acting antivirals (DAAs) therapy could significantly reduce the risk
of HCC [60], and SVR obtained after curative treatment for primary HCC suppressed
recurrence and improved OS [61], the avoidance of HCV entry could be the ultimate
preventive strategy, especially in selected high-risk populations. Lupberger et al. [59]
identified a network of kinases involved in HCV entry and discovered EGFR and EPHA2
as novel co-factors. Functional experiments demonstrated that ligand-binding and kinase
domains of EGFR and EPHA2 are required for HCV entry and that both RTKs are part of
the same entry regulatory pathway [59]. PKIs and RTK-specific antibodies targeting EGFR
and EPHA2 as HCV entry factors hold promise as a novel class of antivirals for prevention
and treatment of resistant HCV infection. In fact, a clinical study aimed to assess the safety
and antiviral activity of erlotinib, an oral EGFR inhibitor, in patients with chronic hepatitis
C (CHC). Nine non-cirrhotic HCV patients received placebo or erlotinib (50 or 100 mg/d)
for 14 days in a randomized double-blind placebo-controlled study. Erlotinib was found to
be safe. During the course of the treatment, no significant reduction in HCV-RNA levels
was observed. However, it is noteworthy that two out of the three patients in the erlotinib
100 mg/d group demonstrated a decrease of more than 0.5 log in HCV-RNA levels 14 days
after the end of treatment (EOT), providing evidence that EGFR plays a functional role as
an HCV host factor. These findings suggest that there is potential for further research on
the use of erlotinib as a chemopreventive agent for hepatocellular carcinoma in patients
with CHC [62].

2.3. The Role of EPH/Ephrin Signaling in HCC Angiogenesis

Angiogenesis is the process by which new blood vessels are formed from pre-existing
ones [63,64]. It is an essential process for the growth and development of many normal tis-
sues and organs, including the formation of blood vessels during embryonic development,
wound healing, and the female reproductive cycle. However, angiogenesis can also play
a critical role in the growth and spread of cancer [65,66]. There are several mechanisms
that contribute to cancer angiogenesis including the release of pro-angiogenic factors such
as vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF)
from cancer cells, hypoxia, tumor-associated macrophages (TAMs), extracellular matrix
remodeling, and tumor-associated endothelial cells (TECs) [65,67,68]. All of these mecha-
nisms work together to promote the growth of new blood vessels in and around tumors,
allowing them to receive the nutrients and oxygen they need to continue growing and
spreading. Inhibiting angiogenesis has thus become an important target for cancer ther-
apy [65] and mounting evidence suggests that EPH/ephrin signaling could be exploited as
therapeutic target.

EPHA1: EPHA1 is overexpressed in various human tumor types including HCC [44].
Recent research has shown that elevated EPHA1 expression in HCC can promote cell
proliferation through stimulation by exogenous ephrinA1 [69]. In order to investigate
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the role of EPHA1 in HCC angiogenesis and progression, Chen et al. [44] utilized RNA
interference (RNAi) technology to downregulate EPHA1 in an HCC-derived cell line with
high EPHA1 expression. They established a stable knockdown clone called SiEphA1/Huh-7.
In vitro studies demonstrated that the depletion of EPHA1 led to diminished proliferation,
along with decreased motility and invasion capacity of Huh-7 cells. Moreover, siRNA-
mediated ephA1 knockdown led to downregulation of VEGF, matrix metalloproteinase
(MMP)-2, and MMP-9 expression. Interestingly, suppressing EPHA1 expression in Huh-7
cells reduced their outgrowth when injected into the subcutaneous space of nude mice,
potentially due to inhibition of angiogenesis, as indicated by reduced microvessel density
(MVD) [44].

EPHA2: Wu et al. aimed to investigate the expression of hypoxia-inducible factor-2α
(HIF-2α), VEGF-A, EPHA2, and MVD in residual HCC after treatment with high-intensity
focused ultrasound (HIFU) ablation to assess their association with tumor recurrence and
growth in HepG2 xenograft mice [70]. They found that the levels of HIF-2α, VEGFA,
EPHA2, and MVD were significantly higher in residual HCC tissues than in control group
tissues. The expression levels of VEGF-A and EPHA2 were strongly correlated with MVD.
Additionally, there was a significant positive correlation between HIF-2α and EPHA2
expression, as well as between VEGFA and EPHA2 expression. These findings indicate
a potential association between the upregulation of HIF-2α, VEGFA, and EPHA2, and
angiogenesis, in the remaining HCC after HIFU ablation [70].

EphinA4: As mentioned above, ephrinA4 is highly expressed in patients with HCC
and has an impact on the proliferation of HCC cells [50]. Yuan et al. found that ephrinA4
knockdown impeded angiogenesis and Wnt/β-catenin signaling in HCC by downregulat-
ing PYGO2 [50].

EphrinB1: Sawai et al. [71] aimed to investigate the role of ephrinB1 in HCC and its
possible involvement in neovascularization. They analyzed ephrinBs (B1–B3) expression
in HCC and non-tumor liver tissues. They reported that the expression of ephrinB1
transcript was significantly higher in HCC tissues compared to non-tumor tissues. In vivo
studies showed that HCC cells overexpressing ephrinB1 developed tumors more rapidly
than control cells. The overexpressing tumors exhibited an increased number of blood
vessels. Additionally, in vitro studies demonstrated that ephrinB1 induced migration
and proliferation of HUVECs. They concluded that ephrinB1 may play a role in the
progression of HCC by promoting neovascularization in vivo, suggesting its involvement
in the development and growth of blood vessels within HCC tumors [71].

EphrinB2: Jamshidi-Parsian et al. [67] aimed to investigate the interaction between
HCC cells and endothelial progenitor cells (EPCs) and its clinical significance. They utilized
a co-culture system to mimic the initial interactions between tumor parenchyma (HepG2
cells) and stroma (EPC). They revealed that the paracrine interactions between HepG2 cells
and EPC played a crucial role in promoting endothelial cell differentiation and angiogenesis.
This effect was possibly mediated through the intercellular signaling function of exosomes
released by HepG2 cells. The interaction between tumor cells and endothelial progenitor
cells (EPCs) triggered enhanced migration and upregulated expression of ephrinB2 and
Delta-like 4 ligand (DLL4). The level of microvesicles/exosomes in HepG2 conditioned
medium (CM) was found to be inversely correlated with the levels of DLL4 and ephrinB2.
As the microvesicles/exosomes were depleted from the CM, the levels of these proteins
decreased accordingly. This indicated that these proteins might be secreted via exosomes,
highlighting the significant role of exosomes in intercellular communication. Moreover,
ephrinB2 was found to be overexpressed in HCC and cholangiocarcinoma tissue samples
from human patients [67]. The above are summarized briefly in Figure 2.
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Figure 2. Angiogenesis plays a significant role in cancer progression. Cancer angiogenesis involves
an interplay between pro-angiogenic factors, hypoxia, TAMs, ECM remodeling, and tumor-associated
endothelial cells. Several research studies have investigated the role of EPHA1, ephrinA4, ephrinB1,
and intercellular interactions in HCC angiogenesis. These have demonstrated that the downregula-
tion of EPHA1 resulted in decreased HCC cell proliferation and reduced angiogenesis. Additionally,
upregulation of HIF-2α, VEGF-A, EPHA2, and ephrinB1 correlated with angiogenesis in residual
HCC tissues after treatment. Furthermore, interactions between HCC cells and endothelial progenitor
cells promoted endothelial cell differentiation and angiogenesis through exosome-mediated signal-
ing. Collectively, inhibiting angiogenesis has become an important target for cancer therapy and
studies suggest that EPH/ephrin signaling could be a potential therapeutic target. Created with
Biorender.com.

2.4. The Role of EPH/Ephrin Signaling in Hypoxic HCC Tumor Microenvironment (TME)

In HCC, hypoxia occurs due to reduced vascularization resulting from liver injury
and cirrhosis [72,73]. This hypoxia contributes to the formation of cavitary lesions in the
liver as the tumor grows rapidly, leading to necrosis. Unlike normal cells, HCC cell lines
exhibit normal cell cycle progression under hypoxic conditions due to the upregulation
of hypoxia-inducible factor 1-alpha (HIF-1α) [74]. HIF-1α promotes the expression of
growth factors such as VEGF, which stimulates tumor proliferation and hexokinases which
support ATP production for HCC cells [75]. Studies have shown that elevated HIF-1α
expression, measured through immunohistochemical (IHC) analysis, is associated with
worse clinical outcomes in HCC patients [76]. It is closely linked to invasive characteristics
of the tumor, such as capsular infiltration and portal vein invasion. Mounting evidence
links the EPH/ephrin system with the regulation of hypoxic TME. Song et al. investigated
the relationship between hypoxia, ephrinA1, and endothelial nitric oxide synthase (eNOS)
in tumor angiogenesis [77]. Endothelial nitric oxide synthase (eNOS) is a specific type of
nitric oxide synthase (NOS) enzyme expressed in endothelial cells that plays a vital role in
vasodilation [78]. They found that ephrinA1, both in squamous carcinoma cells (SCC-9)
and in the supernatants, was upregulated in response to hypoxic conditions. Additionally,
the production of nitric oxide (NO) in HUVECs was increased during ephrinA1-induced
angiogenesis. This effect was reversed when HUVECs were co-cultured with an inhibitor
of eNOS called N-nitro-L-arginine methyl ester hydrochloride (L-NAME). Further analysis
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revealed that the phosphorylation of Akt (Ser473) and eNOS (Ser1177) was increased
in HUVECs stimulated with ephrinA1, while the total expression of eNOS remained
unchanged. They also demonstrated that the specific inhibitor of phosphatidylinositol
3-kinase (PI3K), called LY294002, significantly reduced the expression of phosphorylated
Akt (Ser473) and phosphorylated eNOS (Ser1177) induced by ephrinA1 [77]. These findings
suggest a potential mechanism by which ephrinA1 is regulated under hypoxic conditions
involving a coordinated cross-talk with PI3K/Akt-dependent eNOS activation [77].

EPHA2: As mentioned above, sorafenib inhibits the expression of HIF-2α, VEGFA,
and EPHA2 and could serve as an effective adjunct treatment for HCC following HIFU
ablation, suggesting that sorafenib may help reduce the relapse rate in residual tumors
after insufficient HIFU treatment [70]. EphrinA1 was found to be expressed in four HCC
cell lines (PLC/PRF/5, HuH7, HepG2, and Hep3B cells) and its expression gradually
increased under hypoxia in HuH7, HepG2, and Hep3B cell lines [79]. However, no increase
in ephrinA1 expression was observed in PLC/PRF/5 cells. These findings indicate a
correlation between hypoxic conditions and elevated ephrinA1 expression in HCC [79].

Husain et al. investigated the role of the EPHA2/ephrinA3/axis in the development
of HCC and its association with hypoxia [80]. They found that ephrinA3 is upregulated
by hypoxia in a HIF-1α-dependent manner and showed frequent overexpression in HCC
tumors. High ephrinA3 expression in HCC tumors is associated with poorer OS, suggesting
its involvement in driving poorer prognosis. In HCC cells, EPHA2 was identified as the
receptor responsible for inducing self-renewal and tumor-initiating ability in response
to ephrinA3 or hypoxia stimulation. The activation of the EPHA2/ephrinA3pathway
upregulated the expression of ACLY, a metabolic enzyme, via SREBP1 maturation. This
led to alterations in the metabolic profile of cells, including fatty acid and cholesterol
synthesis and changes in intracellular ROS levels. These metabolic changes are important
regulators in determining the cancer stemness of HCC cells. The presence of hypoxic niches
in solid tumors, including HCC, is associated with poorer clinical features and survival
outcomes [81]. Hypoxia is a major driver of intratumoral heterogeneity and has been linked
to cancer stemness [82]. Husain et al. [80] demonstrated that hypoxia-induced cancer
stemness in HCC is mediated by HIF-1α and involved the ephrinA3/EPHA2 axis. The
EPHA2/ephrinA3axis acts as a responder to low oxygen levels, utilizes SREBP1-mediated
ACLY transcription to promote metabolic reprogramming, and induces higher self-renewal
and tumor-initiating capacity in HCC cells (EpCam, CD13, and CD24) [83]. These processes
contribute to poorer survival outcomes in patients with HCC [84]. Targeting this pathway
may have therapeutic implications for HCC treatment [80]. The above are illustrated in
Figure 3.

2.5. The Role of EPH/Ephrin Signaling in Epigenetic Regulation of HCC

Understanding the epigenetic alterations in HCC has provided insights into the molec-
ular mechanisms underlying the disease and has the potential to identify diagnostic
biomarkers and therapeutic targets [85]. Targeting epigenetic modifications in HCC is
an active area of research and several drugs that modulate these modifications are being
explored as potential therapies for HCC treatment [86]. In HCC, epigenetic alterations have
been found to contribute significantly to the initiation and progression of the disease. Some
of the key epigenetic mechanisms involved in HCC include DNA methylation, histone
modifications, and non-coding RNA-mediated gene regulation [85]. Mounting evidence
suggests that EPH/ephrin signaling comprises a target of epigenetic modification in HCC
with therapeutic implications that are presented briefly in Table 1.
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Figure 3. The EPH/ephrin system is also involved in regulating hypoxic conditions in HCC. EphrinA1
expression increases under hypoxia in certain HCC cell lines, while ephrinA3 is upregulated by
hypoxia in a HIF-1α-dependent manner and is frequently overexpressed in HCC tumors. EphrinA3
and its receptor EPHA2 play a role in HCC development, self-renewal, and tumor initiation under
hypoxic conditions. Activation of the EPHA2/ephrinA3 pathway leads to metabolic changes in HCC
cells, including alterations in fatty acid and cholesterol synthesis and intracellular ROS levels, which
influence cancer stemness. Hypoxic niches in HCC are associated with poorer clinical outcomes.
Hypoxia-induced cancer stemness in HCC involves HIF-1α and the EPHA2/ephrinA3 axis, leading
to higher self-renewal and tumor-initiating capacity. Targeting this pathway may have therapeutic
implications for HCC treatment. Created with Biorender.com.

Table 1. Summary of the EPH/ephrin system members targeted by epigenetic modifications and
their potential therapeutic implications.

Author; Year Epigenetic
Mechanism

EPH/Ephrin
Target Mechanisms Outcomes Ref.

Niu; 2021 miR-10b-5p EPHA2

miR-10b-5p expression is
downregulated. miR-10b-5p plays a role in

reducing cell proliferation and
promoting apoptosis in HCC by
regulating EPHA2. miR-10b-5p

could be a promising clinical
target for HCC treatment.

[42]

EPHA2 expression is upregulated.

miR-10b-5p or knocking down EphA2:
decreased cellular proliferation,
facilitated apoptosis, increased

expression of Bax and Caspase-3 and
decreased Bcl-2.

Xiang; 2019 miR-520d-3p EPHA2

miR-520d-3p expression was
significantly lower in HCC tissues

and cells compared to tumor-adjacent
tissues and normal liver cells (L02)
and was associated with poor OS. MIAT is a suppressor of

miR-520d-3p and identifies
EPHA2 as a direct target of
miR-520d-3p with possible

therapeutic implications.

[43]
Long non-coding RNA myocardial

infarction associated transcript
(MIAT) was found to be upregulated

in both HCC tissues and cell lines.

EPHA2 was identified as a direct
target of miR-520d-3p and it was

confirmed that MIAT functions as a
competitive endogenous RNA acting

as a sponge for miR-520d-3p.

Biorender.com
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Table 1. Cont.

Author; Year Epigenetic
Mechanism

EPH/Ephrin
Target Mechanisms Outcomes Ref.

Yu; 2019 miRNA-210 ephrinA3

HCC patients who experienced
tumor recurrences after

chemotherapy exhibited high levels
of miR-210 expression.

Targeting the miR-210-induced
ephrinA3 signaling could be a
potential strategy to enhance
the efficacy of cisplatin-based

therapies in HCC.

[48]

Cisplatin treatment led to a decrease
in miR-210 expression and an

increase in ephrinA3 expression.

Overexpression of miR-210
counteracted the effects of cisplatin

and rescued HCC cell growth, while
inhibition of miR-210 improved the

chemosensitivity of HCC cells
to cisplatin.

Wang; 2016 miR-96,
miR-182

ephrinA5

miR-96 and miR-182 were
upregulated in HCC compared to

para-tumoral tissues.

miR-96 and miR-182 directly
targeted ephrinA5 mRNA and

suppressed its translation
resulting in reduced HCC cell

growth and migration.

[52]

miR-96 and miR-182 showed an
inverse relationship with ephrinA5.

miR-96 and miR-182 specifically bind
to the 3′UTR region of

ephrinA5 mRNA.

Inhibition of miR-96 and miR-182 led
to decreased proliferation and

migration of HCC cells by negatively
regulating ephrinA5 expression.

Li; 2023 Neddylation EPHB1

EPHB1 is neddylated by NEDD8
in HSC. Neddylation of EPHB1 in HSCs:

augmented in activated HSCs.
These findings contribute to the

understanding of the
mechanisms underlying liver

fibrosis and highlight EPHB1 as
a potential target for therapeutic

interventions.

[87]

EPHB1 neddylation was enhanced by
TGF-β1 stimulation and inhibited by

MLN4924.

Neddylation was specific to EPHB1
and not in other tested EPHB family

members.

MLN4924, an inhibitor of NAE1, an enzyme involved in neddylation.

3. The EPH/Ephrin Signaling in HCC—Clinical Importance

The EPH/ephrin system plays a significant role in HCC. Dysregulation of the EPH/ephrin
system has been implicated in the development and progression of HCC, making it an
important target for clinical research and potential therapeutic interventions [38,39].

3.1. The Role of EPH/Ephrin Signaling as Biomarkers

The expression levels of specific molecules of EPH/ephrin signaling have been shown
to be correlated with the prognosis and clinical outcomes of HCC patients [38,46,47,50,51,80].
By incorporating these markers into clinical assessments, clinicians can better evaluate the
aggressiveness of HCC and make informed treatment decisions tailored to each patient’s
individual prognosis. More detailed analysis of these data is presented in Table 2. However,
the implementation of such markers in clinical practice requires robust evidence from
well-designed studies, including prospective trials that evaluate their predictive power
and impact on treatment outcomes. Therefore, it is imperative to conduct further clinical
studies to validate the prognostic significance of specific molecules within the EPH/ephrin
signaling pathway in HCC [88].
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Table 2. Summary of the evidence about the implication of the EPH/ephrin system as a biomarker of
HCC progression.

Author; Year Molecule Method Outcome Ref.

Wang; 2021 EPHA2

IHC—Y588 phosphorylated
EPHA2 (p-EPHA2)—153 HCC
specimens and 63 non-tumor

liver tissues—The Cancer
Genome Atlas (TCGA).

Increased expression of p-EPHA2 and
total EPHA2 correlated with

poor prognosis.
[38]EPHA2 signaling is correlated with a

poor prognosis in HCC emphasizing its
potential as a prognostic marker in

this disease.

Wang; 2019 EPHA5 Frozen tissue HCC patients.

Abnormal activation of ALK, FGFR2
and EPHA5 in a subset of HCC patients.

[46]

The concurrent activation of ALK,
FGFR2 and EPHA5 could serve as a

stratifying factor to identify a subgroup
of HCC patients with an
unfavorable prognosis.

This subgroup may benefit from
targeted therapeutic interventions,

highlighting the potential for
personalized treatment approaches.

Hussain; 2022 ephrinA3 TCGA-LIHC,
HKU-QMH cohorts.

Over two-fold overexpression
of ephrinA3

[80]

Increased expression of EFNA3
(>−4-fold) was associated with a more
aggressive phenotype of HCC (venous

invasion and more advanced
TNM stage).

Higher ephrinA3 expression had poorer
OS in the TCGA-LIHC cohort.

Feng; 2010 ephrinA2 52 pairs of liver tissue: hcc vs.
non-cancerous tissue.

EphrinA2 was lowest in normal liver
tissues, relatively higher in primary
HCCs and further elevated in portal

vein tumor thrombus(PVT).
[47]

This observation suggests that ephrinA2
plays a role as prognostic biomarker

for PVT.

Lin; 2021 ephrinA4 IHC

EphrinA4 expression was significantly
higher in liver tumor tissue compared to

adjacent tissue.
[51]A correlation between EFNA4

expression and AFP, as well as the risk
of vascular invasion.

Yuan; 2022 ephrinA4 GEPIA database

Upregulation of ephrinA4 expression in
tumor samples of HCC patients
compared to normal samples.

[50]
Correlated with the TNM stages of

the patients.

High level of ephrinA4 expression was
positively associated with reduced OS

and DFS.

AFP, alpha-fetoprotein.
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3.2. The Interconnection between AFP and EPH/Ephrin Signaling in HCC

Alpha-fetoprotein (AFP) is a widely used biomarker for HCC diagnosis and mon-
itoring. Increased levels of AFP in the serum have been consistently associated with
unfavorable prognosis in HCC [89]. Elevated AFP levels have demonstrated predictive
value for various clinical outcomes, including tumor recurrence after resection [90], risk
of drop-out in patients awaiting liver transplantation [91], survival rates [89], response to
loco-regional therapies [92], and overall survival in advanced HCC [89]. Fujiwara et al. [93]
developed and validated predictive signatures based on the hepatic transcriptome and
serum secretome in cohorts of 409 NAFLD patients from various regions worldwide. The
prognostic liver signature (PLS)-NAFLD, consisting of a 133-gene signature, demonstrated
the ability to predict the incidence of HCC over a longitudinal observation period of up to
15 years. Patients classified as high-risk based on PLS-NAFLD showed an association with
IDO1+ dendritic cells, dysfunctional CD8+ T cells in fibrotic portal tracts, and impaired
metabolic regulators. The integration of PLSec-NAFLD with the previously established
etiology-agnostic PLSec-AFP led to enhanced categorization of HCC risk. The PLS-NAFLD
signature was found to be modifiable by interventions such as bariatric surgery, lipophilic
statin, and IDO1 inhibitor, suggesting its potential utility in drug discovery and as a
surrogate endpoint in clinical trials for HCC chemoprevention in NAFLD [93].

There is emerging evidence suggesting a potential connection between AFP and the
EPH/ephrin system in HCC. Iida et al. [69] investigated the significance of ephrinA1
expression in HCC, particularly in relation to AFP production. They found that ephrinA1
expression was elevated in HCC specimens and strongly correlated with AFP expression.
EphrinA1 was found to induce the expression of AFP, suggesting its involvement in the
mechanism of AFP induction in HCC. Additionally, ephrinA1 promoted hepatoma cell
proliferation and influenced the expression of genes related to the cell cycle, angiogenesis,
and cell–cell interactions. The study suggested that ephrinA1 expression contributes
to the malignant characteristics of AFP-producing HCC, influencing tumor cell growth,
angiogenesis, invasion, and metastasis [69]. In the same direction, Cui et al. observed a
positive association between ephrinA1 expression and AFP expression in hepatoma cell
lines, but an inverse association with EPHA2 expression [94]. Collectively, these findings
suggest that molecules from the EPH/ephrin system (EPHA2, ephrinA1) may play a role in
the pathogenesis and progression of AFP-associated HCC and could serve as biomarkers
for the disease. Further clinical studies are warranted to explore the exact effectiveness of
these molecules in HCC.

3.3. HCC Prognostic Models Taking into Consideration the EPH/Ephrin System

EPH/ephrin molecules could play a crucial role in the immunotherapy of HCC. By
modulating cell–cell interactions and signaling pathways, they regulate tumor growth,
invasion, and metastasis. Targeting EPH/ephrin signaling shows promise in enhancing
immune responses against HCC, offering new avenues for therapeutic intervention and
improved patient outcomes [95]. Huang et al. [95] conducted a clinical study aimed to
investigate the prognostic and immunological significance of ephrin family genes in HCC.
They investigated the association of ephrin family genes with prognosis and clinical charac-
teristics HCC patients. They found that certain ephrin genes were differentially expressed
in HCC patients. High expression of EFNA1, EFNA3, EFNA4, EFNA5, and EFNB1 was
associated with worse OS, while EFNA2, EFNB2, and EFNB3 showed no significant cor-
relation. EFNA3 and EFNA4 were linked to shorter progression-free survival (PFS) while
EFNA2 and EFNB3 were associated with longer PFS. The expression of EFNA1, EFNA3,
EFNA4, EFNA5, and EFNB1 was negatively correlated with disease-specific survival (DSS).
Multivariate analysis confirmed EFNA3, EFNA4, and EFNB1 as independent prognostic
factors for OS in HCC. Additionally, EFNA3 and EFNA4 were associated with advanced
T stages, pathological stages, and histological grades, while EFNA3 was also linked to
vascular invasion. EFNB1 was correlated with larger tumor size and advanced TNM stage.
Age, sex, N stages, M stages and Child–Pugh grades showed no significant association
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with EFNA3, EFNA4, and EFNB1 expression [95]. Furthermore, they investigated the
relationship between ephrin gene expression and immune checkpoint inhibitors (ICIs)
in HCC [95]. They examined the correlation between EFNA3, EFNA4, and EFNB1 ex-
pression and immune-related biomarkers, including immune checkpoint-related genes,
tumor mutational burden (TMB), and microsatellite instability (MSI). They found signifi-
cant associations between ephrin gene expression and immune checkpoint-related genes.
EFNA3 and EFNA4 showed positive correlations with PDCD1, CTLA4 and PDCD1, CTLA4
respectively, while EFNB1 exhibited a strong positive correlation with PDCD1, CTLA4,
CD274, and PDCD1LG2. Additionally, high TMB and MSI were associated with increased
expression of EFNA3 and EFNA4. Furthermore, the study explored the connection between
ephrin gene expression and drug sensitivity to chemotherapy and targeted therapy. HCC
patients with high EFNA3 and EFNA4 expression were found to be more responsive to
cisplatin, doxorubicin, gemcitabine, and mitomycin C, while high EFNB1 expression was
associated with better responses to doxorubicin, gemcitabine, and mitomycin C, but poorer
responses to cisplatin and sorafenib [95]. Unfortunately, they were unable to predict the
response to immune checkpoint inhibitors due to the lack of available data. These findings
suggest that ephrin gene expression may serve as a potential indicator for evaluating the
response to chemotherapy and targeted therapy in HCC patients [95].

Several prognostic models have been developed taking into consideration various
EPH/ephrin molecules [96–98]. The immunosuppressive nature of the TME poses a chal-
lenge for effective immunotherapy. Therefore, there is a need to identify TME-associated
biomarkers for HCC [96]. Mo et al. [96] investigated the relationship between hypoxia and
immunosuppression. They hypothesized that hypoxia could influence patients with im-
munosuppressive HCC. Patients with hypoxia displayed increased infiltration of immune
cells and upregulated expression of immune checkpoint molecules. These observations
suggest a potential association between hypoxia and the efficacy of immunotherapy. The
infiltration of cells with immunosuppressive effects, such as monocytic lineage cells and
cancer-associated fibroblasts, was more distinct in the hypoxia group, potentially aggra-
vating immunosuppression. Although the infiltration of cells with anti-tumor immune
response, such as T cells, was higher in the hypoxia group, their function might be weak-
ened by hypoxia. The study constructed a hypoxia-associated score based on five genes
(ephrinA3, dihydropyrimidinase like 4, solute carrier family 2 member 5, stanniocalcin 2,
and lysyl oxidase) and they identified a hypoxia-associated subtype. The latter shows
clinical potential as an independent predictive biomarker for HCC prognosis [96]. The
role of ephrin signaling in HCC was investigated in a study by Yin et al. using a gene
co-expression network analysis approach [97]. The objective of the study was to obtain a
deeper understanding of the molecular progression of HCC and to identify groups of can-
didate genes linked to the gradual development of cancer. They revealed that EPH/ephrin
signaling was deregulated at the very early stage of HCC and its activation increased
with the progression of the disease. EPHs were found to play a role in HCC development.
Specifically, EPH/ephrin signaling was associated with the suppression of apoptosis and
the facilitation of cancer cell survival. The study identified several high-degree hub genes
within the network modules. In a gene cluster which exhibited enrichment in cell cycle-
associated genes, high-degree genes such as GINS1, TOP2A, KIF11, BUB1B, and NEK2 were
identified. Within other clusters, high-degree genes including MUT, AZGP1, HBA1, HBB,
HBD, HBA2, ACADM, UQCRC2, and SUCLA2 were discovered. These genes are associated
with energy metabolism and may contribute to the observed changes in the energy source
in HCC. Furthermore, the study revealed another group, which is enriched in protein
ubiquitination and EPH signaling pathways, experiencing a decrease only at the initial
stage of HCC. Hub genes identified in this module included ARPC4, HSP90AB1, and ENO1
which are implicated in HCC development and related biological processes [97]. Finally,
epigenetic deregulation has been identified as a significant factor in the development of
human cancers. However, the specific epigenetic alterations and the potential of DNA
methylation markers as prognostic biomarkers in HCC were not well understood. The
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study utilized tumor tissue samples obtained from 304 HCC patients who underwent
surgical resection to develop a methylation-based prognostic signature [98]. The findings
revealed a strong correlation between this methylation signature and well-established
markers of unfavorable prognosis. Furthermore, the methylation signature maintained its
independent prognostic significance for survival, along with factors such as multinodularity
and platelet count. The group of patients identified by this specific pattern displayed traits
associated with the molecular subtype of proliferation characterized by progenitor cell
attributes. The study also confirmed the high prevalence of genes known to be deregulated
by abnormal methylation in HCC (e.g., RALGDS/AF-6, IGF2, APC) while also identifying
potential candidate epidrivers (e.g., SEPT9 and ephrin B2). In summary, a validated set
of 36 DNA methylation markers demonstrated the ability to accurately forecast unfavor-
able survival outcomes in individuals with HCC. Patients with this methylation profile
displayed mRNA-based signatures indicative of tumors with progenitor cell features [98].

Collectively, targeting EPH/ephrin signaling shows promise in enhancing immune
responses against HCC, potentially improving patient outcomes. Certain ephrin genes are
associated with prognosis and clinical characteristics in HCC and their expression correlates
with immune-related biomarkers and drug sensitivity. Prognostic models incorporating
EPH/ephrin molecules have been developed and the identification of TME-associated
biomarkers and epigenetic alterations further contributes to HCC treatment choices.

4. The Role of EPH/Ephrin Signaling in CCA

Molecular targeted therapy has revolutionized the treatment landscape for various
malignancies in the last two decades [99–105]. CCA, a rare tumor with a poor prognosis,
has recently seen the identification of novel molecular alterations, bringing forth the poten-
tial for targeted therapies [9,106]. In 2019, the first approved targeted therapy for locally
advanced or metastatic intrahepatic CCA was pemigatinib, an inhibitor of fibroblast growth
factor receptor 2 (FGFR2) gene fusions or rearrangements [107,108]. Subsequently, addi-
tional drugs targeting FGFR2 gene fusion/rearrangement received regulatory approvals as
second-line or subsequent treatments for advanced CCA [109,110]. Recent approvals of
tumor-agnostic therapies encompass drugs targeting mutations/rearrangements in genes
such as isocitrate dehydrogenase 1 (IDH1) [111], neurotrophic tropomyosin-receptor kinase
(NTRK) [112], the V600E mutation of the BRAF gene (BRAFV600E) [113], and tumors with
high tumor mutational burden, high microsatellite instability, and gene mismatch repair-
deficiency (TMB-H/MSI-H/dMMR) [114]. Ongoing clinical trials are exploring HER2, RET,
and non-BRAFV600E mutations in CCA, along with advancements in the efficacy and
safety of new targeted treatments [9]. The role of EPH/ephrin signaling in CCA is an area
of active research and understanding [115–118].

EPHA2: EPHA2 is of paramount importance for the pathogenesis of CCA [115,116]. In
their study, Xiang-Dan Cui et al. [115] conducted research to explore the impact of EPHA2 in
CCA progression and metastasis, as well as the downstream signaling pathways associated
with EPHA2. They revealed that EPHA2 is overexpressed in response to growth factors,
leading to the activation of the mammalian target of rapamycin complex 1 (mTORC1)
and extracellular signal-regulated kinase (ERK) pathways. Notably, EPHA2 activation
occurred independently of ligands through phosphorylation at S897. They observed that
EPHA2 overexpression promotes colony formation and facilitates tumor growth, primarily
through Akt (T308)/mTORC1 activation. Additionally, abnormal EPHA2 expression and
activation correlated with lower differentiation and increased metastatic potential [115]. In
an orthotopic tumor model and lung metastasis model, heightened metastatic capability
was observed, associated with Pyk2(Y402)/c-Src/ERK activation in addition to canonical
Raf/MEK/ERK pathway activation [115]. Notably, the mTORC1 and Raf/Pyk2 pathways
appeared to exert mutual influence. These findings suggest that growth factor-mediated
EPHA2 plays a role in tumor growth and metastasis by activating the mTORC1 and
Raf/Pyk2 pathways [115]. Towards the same direction, Yuanyuan Sheng et al. conducted a
study to identify genetic aberrations during lymph node metastasis in iCCA and explore
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potential mechanisms and clinical strategies targeting mutations [116]. The study identified
alterations in the genetic pattern associated with lymph node metastases in ICC. They
found that EPHA2 was frequently mutated in ICC. Correlation analysis revealed a close
association between EPHA2 mutations and lymph node metastasis in ICC. A series of
in vitro and in vivo experiments demonstrated that EPHA2 mutations resulted in the
phosphorylation of Ser897, independent of ligand binding, which facilitated lymphatic
metastasis in ICC. They also identified the NOTCH1 signaling pathway as a significant
contributor to this process. Further, they conducted in vitro assays and utilized patient-
derived xenografts to show that an inhibitor specifically targeting the phosphorylation
of Ser897 effectively inhibited metastasis in ICC cases with mutated EPHA2 [116]. These
results strongly suggest that EPHA2 mutants hold great potential as a therapeutic target
for effectively combating lymphatic metastasis in ICC.

EPHA3/ephrinA1: Besides EPHA2, EPHA3 and ephrinA1 have been associated with
metastasis in CCA [117]. Suksawat et al. investigated the levels of eNOS and phosphory-
lated eNOS (P-eNOS), along with their upstream regulators VEGFR3, VEGFC, EPHA3, and
ephrinA1, in the Opisthorchis viverrini (Ov)/N-nitrosodimethylamine (NDMA)-induced
hamster model of CCA and human CCA [117]. In human CCA, intense immunohisto-
chemical staining of all the proteins examined was associated with metastasis. Pairwise
analysis revealed a significant correlation between concurrent increases in eNOS/VEGFR3,
eNOS/ephrinA1, eNOS/VEGFC, and eNOS/EPHA3 with metastasis. Moreover, elevated
eNOS/VEGFR3 and eNOS/ephrinA1 were specifically associated with non-papillary type
CCA. Additionally, higher levels of eNOS and P-eNOS were significantly correlated with
increased microvessel density. These findings indicate that the upregulation of eNOS,
P-eNOS, and their regulators is involved in the development of CCA, potentially driving
angiogenesis and metastasis [117].

EPHB/ephrinB: Khansaard et al. [118] investigated the role of EPH/ephrin signaling
in CCA and their association with metastasis. Immunohistochemical staining of CCA tis-
sues from 50 patients revealed high expression of EPHB2, EPHB4, ephrinB1, and ephrinB2.
Notably, high expression of EPHB2 was significantly correlated with metastatic status.
Additionally, the co-expression of EPHB2/ephrinB1 and EPHB2/ephrinB2 was also signif-
icantly associated with metastasis. They further demonstrated that suppressing EPHB2
expression using siRNA reduced CCA cell migration by inhibiting the phosphorylation
of focal adhesion kinase (FAK) and paxillin. These findings suggest that upregulation of
EPHB2 receptors and their ligands contributes to CCA metastasis. Therefore, targeting
EPHB2 expression and its downstream signaling proteins may offer potential therapeutic
strategies for treating CCA.

5. Discussion

In patients with HCC, single-agent ICIs have been tested, resulting in objective re-
sponse rates of 15–20% but without significant OS improvement [119]. Additionally, around
30% of HCC cases show inherent resistance to ICIs [120]. While promising preclinical data
exist, there are still several stages that need to be successfully completed before these
findings can transition into clinical practice [121–123]. To expand the potential benefits of
immunotherapy to a wider range of patients, combination approaches have been inves-
tigated [124]. Basket trials and early phase studies have explored combinations of ICIs
with anti-angiogenic agents or with other ICIs [119,125]. Encouraging results from these
trials led to subsequent phase III trials evaluating the combination of anti-PD-1/PD-L1
antibodies with bevacizumab, tyrosine kinase inhibitors, or anti-CTLA-4 antibodies [126].
The IMbrave150 trial demonstrated improved survival with atezolizumab-bevacizumab,
making it the first approved regimen in the front-line setting since sorafenib [127,128]. The
HIMALAYA trial showed the superiority of durvalumab-tremelimumab (STRIDE regimen)
over sorafenib, establishing it as a new first-line option [129]. However, combinations of
ICIs and tyrosine kinase inhibitors have yielded inconsistent results, with only one phase
III trial demonstrating an OS benefit [124].
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The evolving therapeutic landscape for advanced HCC raises several unresolved
questions that require further research [126]. These include determining optimal treatment
choices and sequencing, identifying predictive biomarkers, exploring combinations with
locoregional therapies, and developing new immunotherapy agents [119]. This review
aims to provide an overview of the scientific rationale and available clinical data on how
targeting the EPH/ephrin signaling system may revolutionize HCC management. The
dysregulation of the EPH/ephrin system has been found to be involved in the development
and progression of HCC, rendering it an important target for research and potential thera-
peutic interventions. Specific molecules within the EPH/ephrin signaling pathway have
shown correlations with the prognosis and clinical outcomes of HCC patients, as shown
in Table 2. Incorporating these markers into clinical assessments can help evaluate the
aggressiveness of HCC and guide personalized treatment decisions. Additionally, there is
evidence suggesting a potential connection between the AFP and the EPH/ephrin system in
HCC [93], with certain molecules influencing AFP-associated HCC [94]. Prognostic models
incorporating EPH/ephrin molecules have been developed and targeting EPH/ephrin
signaling shows promise in enhancing immune responses against HCC [95–98]. These
findings provide insights into potential biomarkers and therapeutic approaches for HCC.

Personalized, targeted therapies show promise in treating CCA, as many cases have
druggable mutations [130]. Future research should focus on identifying and targeting
specific mutations and exploring combinations of therapies [131]. Collaboration between
researchers, funding agencies, and the pharmaceutical industry is crucial for developing
effective therapies and improving funding opportunities. Understanding the interactions
between cancer cells, cancer stem cells, and the tumor microenvironment is essential for
developing innovative treatment options, including immunotherapies [132] and ECM-
oriented treatments [131]. The EPH/ephrin signaling pathway plays a significant role in
CCA. Studies have shown that EPHA2, EPHA3, and ephrinA1 are involved in CCA pro-
gression and metastasis [115,116]. EPHA2, when overexpressed, activates the mTORC1 and
ERK pathways independently of ligands, promoting tumor growth and metastasis [115].
EPHA2 mutations have been associated with lymph node metastasis in CCA and tar-
geting the phosphorylation of EPHA2 at Ser897 has shown effectiveness in inhibiting
metastasis [116]. EPHA3 and ephrinA1 have also been linked to metastasis in CCA. The up-
regulation of eNOS and its regulators, such as VEGFR3, VEGFC, EPHA3, and ephrinA1, has
been implicated in angiogenesis and metastasis in CCA [117]. Additionally, high expression
of EPHB2 receptors and their ligands, ephrinB1 and ephrinB2, is associated with metastasis
in CCA and targeting EPHB2 expression and its downstream signaling proteins may hold
therapeutic potential [118]. Overall, understanding and targeting the EPH/ephrin signaling
pathway could provide new therapeutic strategies for CCA treatment.

While there is growing evidence supporting its implication in liver cancer, it is es-
sential to understand the potential limitations of targeting this pathway for therapeutic
purposes. Firstly, the available studies on EPH/ephrin in HCC and CCA suffer from limited
sample sizes and inherent tumor heterogeneity, making it challenging to draw definitive
conclusions. Larger and more comprehensive studies are needed to validate the observed
associations and determine the clinical significance. Secondly, some studies have reported
conflicting results regarding the prognostic or predictive value of EPH/ephrin molecules
in HCC and CCA. These discrepancies might be attributed to differences in study design,
patient cohorts, and detection methods. Further research and standardization of experimen-
tal protocols are necessary to resolve these inconsistencies. Thirdly, although preclinical
studies have demonstrated the therapeutic potential of targeting EPH/ephrin signaling, the
translation into clinical trials is limited. In fact, clinical trials testing its potential therapeutic
applications predominantly focused on other solid malignancies [133–136]. EPHA2 has
yielded controversial results. In a phase I safety and bioimaging trial, Gan et al. [133] inves-
tigated the use of DS-8895a, an afucosylated, humanized anti-EPHA2 antibody, in patients
with advanced or metastatic EPHA2 positive cancers. The results indicated that DS-8895a
had limited therapeutic efficacy and the biodistribution data led to the discontinuation of
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further development of the antibody. In contrast, Shitara et al. [134] conducted a phase I
study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of DS-
8895a in patients with advanced solid tumors. They concluded that DS-8895a was generally
well-tolerated and its exposure appeared to increase dose-dependently while inducing
activated natural killer cells [134]. Analogously, EPHA2 targeted immunoliposomes were
developed for sustained drug delivery to solid tumors. The liposomes were optimized
with high prodrug encapsulation efficiency, stability, and a gradient of sucroseoctasulfate
(SOS) for drug release. These targeted liposomes exhibited strong binding to EPHA2 and a
long circulation time and demonstrated superior antitumor activity in preclinical models.
The lead molecule entered a phase I clinical trial for patients with solid tumors [136].

The lack of well-designed clinical trials exploring EPH/ephrin-targeted therapies
hinders the assessment of their efficacy and safety in HCC and CCA patients. Future
research efforts should address these limitations to fully evaluate the potential of targeting
EPH/ephrin as a therapeutic strategy for HCC and CCA patients [137].

6. Conclusions

In conclusion, the available evidence suggests that EPH/ephrin signaling plays a
significant role in liver cancer, offering potential therapeutic targets for intervention. How-
ever, further research is necessary to fully elucidate the underlying molecular mechanisms,
validate the clinical significance, and explore the efficacy and safety of targeting this path-
way in liver cancer patients. Continued efforts in this field have the potential to pave the
way for novel therapeutic strategies and improve the outcomes for individuals affected by
liver cancer.
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