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Simple Summary: Recent advancements in AI have revolutionized cancer research, especially in
the analysis of histopathological imaging data with minimal human involvement. Early detection
of lymph node metastasis in breast cancer is vital for treatment outcomes. This paper introduces
a novel approach that combines representation learning and deep learning (DL) to detect small
tumors (STs) without neglecting larger ones. The proposed method uses representation learning
to identify STs in histopathology images, followed by DL algorithms for breast cancer detection.
Extensive evaluation shows remarkable accuracy in detecting STs without compromising larger-lesion
detection. This approach enables early detection, timely intervention, and potentially improved
treatment outcomes. The integration of representation learning and DL offers a promising solution
for ST detection in breast cancer. By reducing human involvement and leveraging AI capabilities, the
proposed method achieves impressive accuracy in identifying STs. Further research and validation
could enhance diagnostic capabilities and personalized treatment strategies, ultimately benefiting
breast cancer patients.

Abstract: The early diagnosis of lymph node metastasis in breast cancer is essential for enhancing
treatment outcomes and overall prognosis. Unfortunately, pathologists often fail to identify small
or subtle metastatic deposits, leading them to rely on cytokeratin stains for improved detection,
although this approach is not without its flaws. To address the need for early detection, multiple-
instance learning (MIL) has emerged as the preferred deep learning method for automatic tumor
detection on whole slide images (WSIs). However, existing methods often fail to identify some small
lesions due to insufficient attention to small regions. Attention-based multiple-instance learning
(ABMIL)-based methods can be particularly problematic because they may focus too much on normal
regions, leaving insufficient attention for small-tumor lesions. In this paper, we propose a new
ABMIL-based model called normal representative keyset ABMIL (NRK-ABMIL), which addresseses
this issue by adjusting the attention mechanism to give more attention to lesions. To accomplish
this, the NRK-ABMIL creates an optimal keyset of normal patch embeddings called the normal
representative keyset (NRK). The NRK roughly represents the underlying distribution of all normal
patch embeddings and is used to modify the attention mechanism of the ABMIL. We evaluated
NRK-ABMIL on the publicly available Camelyon16 and Camelyon17 datasets and found that it
outperformed existing state-of-the-art methods in accurately identifying small tumor lesions that
may spread over a few patches. Additionally, the NRK-ABMIL also performed exceptionally well in
identifying medium/large tumor lesions.
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1. Introduction

Histopathological tissue analysis is a crucial tool for diagnosing various diseases [1].
With the increasing use of digital whole slide image (WSI) scanners, histopathology analysis
has transitioned from glass slides to digital images, which has made the analysis process
more convenient [2,3]. WSIs typically have extremely high resolutions, allowing pathol-
ogists to analyze tissues at high magnification. However, due to the huge size of WSIs,
manual diagnosis and prognosis can be a tedious and time-consuming process, which
has sparked interest in exploring deep learning-based methods in digital pathology [4–6].
Despite the potential advantages of deep learning-based methods, conventional, fully
supervised deep learning methods face several challenges when applied to histopathol-
ogy analysis. For instance, the gigapixel resolution of WSIs and the inaccessibility of
pixel-level annotations, which are diagnostic labels annotated by pathologists, pose sig-
nificant challenges [7]. Due to the presence of inter-reader variability among pathologists,
it can be challenging to define the lesions in a way that is suitable for fully supervised
learning methods.

To address these challenges, recent algorithms [8,9] have employed the multiple-
instance learning (MIL) paradigm to analyze WSIs [10]. In MIL, the input of the model is
a collection of data instances, referred to as a “bag”, and the output is the prediction of
the bag. Unlike fully supervised learning methods, weak labels are assigned to the bag
rather than the individual instances [11]. In the MIL formulation, WSIs are divided into
small, often non-overlapping patches, which are analyzed separately by neural networks.
The aggregated results of the small patches are used to perform slide-level classification.
Using MIL has proven to be a promising approach for histopathology analysis, enabling the
identification of important features for classification and alleviating the need for extensive
manual annotation. By breaking down the analysis of WSIs into small patches, MIL-based
methods can achieve accurate and efficient classification without relying on fully supervised
learning methods. As such, MIL-based approaches have the potential to significantly
improve the speed and accuracy of histopathology analysis, ultimately leading to better
disease diagnosis and treatment [12,13].

Current methods for MIL in analyzing WSIs assume that all patches within a WSI are
equally important for slide-level prediction. These methods compute attention weights for
each patch and use weighted combinations of patch features to derive a meta-representation
of the WSI [8–10,14]. However, for cases with small lesions, the slide-level label may
correspond to only a few patches, making it difficult for existing approaches to identify
those important patches. Some methods attempt to train a patch-level classifier to identify
these regions and feed them into deep learning models [15–17], but this approach is not
effective when slide-level labels correspond to only a few patches.

To address this issue, we propose a new MIL model and demonstrate its effective-
ness through the problem of breast cancer metastasis classification in the lymph nodes
(BCLNM). The key idea of the proposed method is the use of normal patches that are
part of normal WSIs to learn a keyset of representative normal patches. We then design a
keyset-based approach that can guide the MIL model to select discriminative patches from
WSIs intelligently. The systematic overview of the normal representative keyset generation
module (NRKG) is presented in Figure 1. Figure 2 demonstrates the intelligent selection of
uncertain feature embeddings for a WSI-level label prediction.

The rest of the manuscript is organized as follows. We discuss related work in Section 2.
This is followed by the introduction of the proposed normal representative keyset ABMIL
(NRK-ABMIL) model. We present the results in Section 4, and discuss them in Section 5.
The proposed method offers a promising solution to the challenge of identifying important
patches in WSIs with small lesions, and we believe it has the potential to improve the
accuracy of breast cancer metastasis classification.



Cancers 2023, 15, 3428 3 of 15
Cancers 2023, 15, x FOR PEER REVIEW 3 of 15 
 

 

 

Figure 1. The schematic diagram for constructing NRK. (A) NRKG: The input is all normal WSIs 

and the output, distinct features (DF), is the set of all distinct normal patch embeddings extracted 

using it. (B) The distinct features identifier (DFI) module. popRand(.) is a function that randomly 

selects one element of its input set, i.e., br, and stores br as the distinct embedding. Sim(.) is a function 

that computes the similarity of br, with bn-1embeddings, and removes the embeddings with similar-

ity greater than 𝜎 from the bag. 

 

Figure 2. Bag generation and classification. We compare the WSI patch embeddings with NRK, com-

pute the average of TopK similarity scores to compute the normality score of each patch embedding, 

and select bottom-r% embeddings of a WSI as the input of the ABMIL model. 

The rest of the manuscript is organized as follows. We discuss related work in Section 

2. This is followed by the introduction of the proposed normal representative keyset AB-

MIL (NRK-ABMIL) model. We present the results in Section 4, and discuss them in Section 

5. The proposed method offers a promising solution to the challenge of identifying im-

portant patches in WSIs with small lesions, and we believe it has the potential to improve 

the accuracy of breast cancer metastasis classification. 

  

Figure 1. The schematic diagram for constructing NRK. (A) NRKG: The input is all normal WSIs and
the output, distinct features (DF), is the set of all distinct normal patch embeddings extracted using
it. (B) The distinct features identifier (DFI) module. popRand(.) is a function that randomly selects
one element of its input set, i.e., br, and stores br as the distinct embedding. Sim(.) is a function that
computes the similarity of br, with bn−1 embeddings, and removes the embeddings with similarity
greater than σ from the bag.
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Figure 2. Bag generation and classification. We compare the WSI patch embeddings with NRK, com-
pute the average of TopK similarity scores to compute the normality score of each patch embedding,
and select bottom-r% embeddings of a WSI as the input of the ABMIL model.

2. Related Work

Several machine learning methods that use multiple-instance learning (MIL) tech-
niques employ an attention mechanism for aggregating patch embeddings [8,10,17]. One
such method is the attention-based ML (ABMIL) proposed by Ilse et al. [5] for classi-
fying whole slide images (WSI). This method learns to weight the patch embeddings
based on their importance in predicting slide-level outcomes. Another method, proposed
by Lu et al. [8], incorporates a clustering-based constraint to the ABMIL. This approach
uses multiple attention branches to refine the feature space and improve convergence.
Shao et al. [9] introduced TransMIL, a method that explores the morphological and spatial
relationships between instances for classification using the Transformer architecture [18].
The Transformer architecture is widely used in natural language processing, but it has also
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shown promise in image-based tasks such as object detection and segmentation [10]. In
TransMIL, the Transformer is used to capture the contextual relationship between patches
within a slide to improve the accuracy of slide-level predictions.

Our experiments (see Section 4: Results) have revealed that the aforementioned
ABMIL-based methods are unable to detect and identify small lesions accurately, for
instance, in lymph node metastasis from breast cancer. To overcome this challenge, several
MIL methods have been proposed to predict slide-level outcomes based on a few important
patches (tumor patches from lymph nodes). For example, Courtiol et al. [16] proposed
selecting patches with the highest and lowest scores for slide-level prediction in an end-
to-end manner. Campanella et al. [19] stacked the patch identification model and the MIL
model into the same stream to select high-probability patches for MIL classification based
on a recurrent neural network aggregation function. Li et al. [14] proposed a dual-stream
attention mechanism to jointly learn patch classifier and slide classifier and select “critical
instance” from each WSI for classification. However, these methods may not be effective
in identifying small lesions because slide-level labels are not informative enough to guide
models to select suspicious tumor patches from small lesions, which is known as the noisy
training problem [8].

In one of our previous works, we proposed attention2majority [17], which trains the
discriminator to intelligently sample the patches from lesion regions to overcome the noisy
training issue. However, this method requires training the discriminator with WSIs whose
slide-level labels correspond to the majority of the tissue area [17]. For instance, the training
of this method necessitates whole slide images of tumors where the tumor comprises the
majority of the tissue.

These approaches highlight the challenges of identifying small lesions in MIL-based
WSI classification and the importance of addressing the noisy training problem. They
also demonstrate the potential of unsupervised learning and representation learning to
improve the selection of informative patches for MIL models. In this work, we address
the limitations of these methods and develop more effective strategies for identifying and
classifying small lesions in WSIs.

3. Materials and Methods

This section presents a novel attention-based MIL method that uses patch-level labels
from normal WSIs to improve the accuracy of WSI-level label classification. We first
introduce the dataset used in our experiments and some detail of the clinical problem that
we are aiming to solve. We then provide a brief overview of MIL and attention-based MIL
(ABMIL) methods for WSI-level label classification. Next, we describe how we leverage
known patch-level labels of normal WSIs to create an accurate representative bag for all
normal WSI patches, which we refer to as the normal representative keyset (NRK). We
explain how we use the NRK to enhance the classification of WSI-level labels. Finally, we
discuss how the proposed method identifies and separates patches with high similarity
scores to the NRK when given a WSI at inference time. The proposed method utilizes known
patch-level labels from normal WSIs to create a representative bag of normal WSI patches.
This allows for improved classification of WSI-level labels, particularly in cases where small
lesions may be present. We discuss the specific details of the approach, including how we
leverage the NRK to enhance classification accuracy and how we effectively identify and
separate patches with high similarity scores to the NRK during inference.

3.1. Dataset

We evaluate the efficiency of the proposed method on publicly available WSI datasets
of lymph node metastasis from breast cancer, namely, Camelyon16 [20] and Camelyon17 [21].
Lymph node metastasis from breast cancer is significant because it is an indication that the
cancer cells have spread beyond the breast tissue and into the lymphatic system, which is a
network of vessels and organs that help the body fight infection and disease. Lymph nodes
are small, bean-shaped structures that filter lymph fluid and are an important part of the
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immune system. The presence of cancer cells in the lymph nodes means that cancer has the
potential to spread further to other parts of the body through the bloodstream. The number
of lymph nodes involved and the extent of lymph node involvement can help determine
the stage of breast cancer and guide treatment decisions [22]. Camelyon16 consists of a
training set of 270 WSIs and an official hold-out test set of 129 WSIs that are sampled from
399 patients [20]. Camelyon17 consists of a training set of 500 WSIs and a hold-out set
of 500 WSIs [21] collected from 200 patients. To prepare the dataset for our analysis, we
first apply color thresholding to extract the tissue region of the WSI [23]. We then extract
non-overlapping patches of size 224 × 224 on 20×magnification.

3.2. MIL Method for WSI Classification

We now describe how the MIL method [10] learns to differentiate between normal
(negative) and tumor (positive) WSIs (bags). Suppose the training set contains P gigapixel-
sized WSIs (bags), X = {X1, X2, . . . , XP}, with known labels Y = {Y 1, Y2, . . . , YP}, where
Yi ∈ {0, 1} for i = 1, . . . , P, and 0, 1 corresponds to the labels of normal, and tumor
bags, respectively. Since WSIs are too large to fit on a GPU, MIL methods tile WSI Xi,
for i = 1, . . . , P, into computationally friendly patches (instances) Xi = {x i1, xi2, . . . , xini

}
,

where ni is the number of patches (instances) within the ith WSI [24]. If yij ∈ {0, 1} denotes

a patch-level label of xij ∈ Xi, for j = 1, . . . , ni, then the WSI-level label of the ith WSI can
be formulated as:

Yi =

 0, i f ∑
j

yij = 0

1 otherwise
(1)

However, for a tumor WSI (positive bag) Xt, the patch-level labels ytj, for all j = 1, . . . , nt,
are unknown. ABMIL method often predict WSI-level labels by

∼
Yi = g

(
σ
(

f (xi1), . . . , f
(

xini

)))
(2)

where
∼
Yi is a predicted WSI-level label of the ith WSI, f (·) is a patch-level embedding

encoder, σ(·) is an aggregation function, and g(·) is a bag-level prediction classifier. Min-
imizing a loss function, e.g., the cross entropy, MIL methods finally search for optimal
parameters of the classifier g.

3.3. Attention-Based MIL (ABMIL) Method for WSI Classification

Following the MIL paradigm, the attention-based MIL method [10] first utilizes a
multilayer neural network as a patch-level embedding encoder that transforms each patch
xij ∈ Xi into a patch-level embedding hij ∈ RD. Then, an attention-based aggregation
function is employed to produce a WSI-level embedding zi,

zi = σ
(
hi1, hi2, . . . , hini

)
=

ni

∑
j=1

aijhij ∈ RD (3)

where

aij =
exp
(

WT
(

tanh
(

VThij

)
� sigm

(
UThij

)))
∑ni

k=1 exp
(

WT
(

tanh
(

VThik

)
� sigm

(
UThik

))) ∈ R (4)

is the attention score corresponding to the patch xij, V ∈ RD×L, U ∈ RD×L, W ∈ RL×1 are
the learnable weights of fully connected networks, where L is the number of neurons in
the hidden layer, and � representsanelement−wisemultiplication. Finally, another fully
connected layer neural network, g(·), with sigmoid function as the last layer activation

function, is employed as a classifier to map zi to a WSI-level class label
∼
Yi.
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3.4. Normal Representative Keyset (NRK)

Since attention scores obtained via Equation (4) are always nonzero, ABMIL methods
(even well-performing ones) assign positive attention scores to normal patches within a
tumor WSI. For medium and large tumor WSIs (WSIs with medium and large lesions),
assigning positive attention scores to normal patches may not affect the overall ABMIL-
based WSI-level label prediction because there is a relatively proper balance between the
numbers of normal and tumor patch-level embeddings. However, when it comes to small
tumor WSIs (WSIs with small lesions), positive attention scores to normal patches can
lessen the impacts of a few tumor-patch-level embeddings in the WSI-level embedding
given in Equation (3). As a result, the WSI-level embedding of a small tumor WSI becomes
similar to a WSI-level embedding of a normal WSI. Therefore, fewer tumor patches (smaller
lesions) within a tumor WSI raise the likelihood of a false-negative decision.

To maintain adequate attention to tumor-patch-level embeddings within a tumor WSI,
and ensure that they have a strong effect on the WSI-level embedding given in Equation (3),
we need to assign a zero-attention score to normal-patch-level embeddings. Due to SoftMax
function properties and derived attention scores in Equation (4), we must identify normal
patches within tumor WSIs and remove them before SoftMax function is applied to them.
However, this is not directly possible because of the lack of patch-level annotation within
tumor WSIs. One way to identify normal-patch-level embeddings within a tumor WSI is
to roughly learn their underlying distribution using all normal patches cropped from all
normal WSIs. Note that we leverage known patch-level labels of normal WSIs to construct
an optimal normal representative keyset.

We now introduce a novel method for constructing the normal representative keyset
(NRK) using an NRKG module that consists of distinct normal-patch-level embeddings. In
other words, via a controlled cosine similarity-based contrastive process among normal-
patch-level embeddings of all normal WSIs, the NRK is constructed to be the smallest
distinct set representing the normal patch-level embeddings containing all distinct normal-
patch-level embeddings. Note that the NRK construction process is offline, and hence it
does not add any online computational cost. Without loss of generality, suppose there are
N normal WSIs and T = P− N tumor WSIs in the training set. For the sake of simplicity,
suppose X = {X 1, X2, . . . , XN , XN+1, . . . , XP} is sorted in a way that the first N WSIs,

XNormal = {X 1, X2, . . . , XN

}
⊂ X, are the subset containing all normal WSIs in the training

set. Moreover, let Xi = {x i1, xi2, . . . , xini

}
and Hi ={hi1, hi2, .hini }, for i = 1, . . . , N, be the

set of patches and patch-level embeddings of the ith normal WSI, respectively. Moreover,
let HNormal = {H 1, H2, . . . , HN

}
denote the set of all normal-patch-level embeddings of

all normal WSIs. Algorithm A1 (Appendix A) demonstrates how the NRK is constructed
by means of a distinct feature vector identifier (DFI) given in Algorithm A2 (Appendix A).
Figure 1 displays a schematic diagram of the NRK construction process. This process
takes the normal WSIs as an input, utilizes the DFI module to select the distinct patch
embeddings, and subsequently applies the DFI module on the aggregated distinct feature
embeddings to select an optimal set of normal representative embeddings.

3.5. Instance Retrieval for WSIs Using Normal Representative Bag

In this section, we discuss how to employ the NRK obtained in Algorithm A1 to assign
zero attention to certain normal patches, which are patches whose feature embeddings are ly-
ing in the negative (normal) subspace far from the positive (tumor) subspace. Note that at both
training and inference times, the NRK singles out certain normal patches for both normal and
tumor WSIs. Given the set of patch-level embeddings, Hq ={hq1, hq2, .hqnq}, of a WSI, namely,
Xq, we first construct the similarity matrix S ∈ Rnq×m, where m = cardinality(NRK)and the
entry in the ith row and jth column of S is

sij =
hT

qik j∣∣∣∣hqi
∣∣∣∣∣∣∣∣k j

∣∣∣∣ , (5)
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for i = 1, . . . , nq, and j = 1, . . . , m. Note that the ith row of the similarity matrix S is a
vector whose entries are the cosine similarity scores between hqi and NRK keys. To identify
certain normal patch-level embeddings, which are embeddings corresponding to certain
normal patches, we assign a normality score to each hqi, for i = 1, . . . , nq, by

αi = Avg(TopK(Si)) (6)

where Si is the ith row of the similarity matrix S, TopK(.) is an operator that returns
the top K values of an input vector, and Avg(.) is the averaging operator. We then sort
Hq ={hq1, hq2, .hqnq} based on their normality scores, αq1, αq2, .αqnq in descending order,
and construct an ordered set, namely, HSorted

q . We finally select the bottom r percentile of
HSorted

q as uncertain patch-level embeddings, which are embeddings that can correspond
to a tumor or normal patches within the WSI Xq, and are denoted by HUncertain

q . Note
that we consider top-(100-r) percentile of HSorted

q as certain normal patch-level embeddings
within WSI Xq, and denoted by HCertain

q . Figure 2 demonstrates how bottom r percentile
embeddings (uncertain patch-level embeddings) of a WSI are selected and fed into the
ABMIL model for a WSI-level label prediction.

3.6. Implementation Details

To extract the tissue region from the WSI, we apply the color thresholding method to
extract the foreground tissue patches and discard the patches with more than 25% of the
background region. Then, we crop the tissue region into 224× 224 non-overlapping patches
under 20×magnification. We used the ResNet50 model [25] (truncated after the third resid-
ual block) pretrained on the ImageNet dataset [26] that generates 1024-dimensional patch
embeddings, and used CTranspath [27] as the histopathology pretrained feature encoder
that generates 768-dimensional feature embeddings from the foreground tissue patches.
We employed the aforementioned encoders separately to assess the effectiveness of the pro-
posed method. During the training process, we used Adam Optimizer [28], 0.0002 learning
rate, 0.00001 as weight decay, and 1.20:1 as the rescaling weight for tumor, and normal
class. We use the early stopping strategy with a patience of 10 epochs after 30 warmup
epochs. For the Camelyon16 experiment, we performed fivefold cross-validation with a
90:10% random split in the training set in each fold. Then, we evaluated our method on the
official testing set of Camelyon16. The proposed method consists of three hyperparameters
with the following range of values: σ(0.92–0.96), r(0.10, 0.20, 0.30, 0.50), and K(1, 5, 10, 20,
50, 100, 150). Here, K represents the Top-K similarity scores of each patch embedding with
the NRK, and r represents the percentage of patches that are most dissimilar to NRK. We
tuned these parameters based on the validation AUC and reported the results with K = 5,
r = 0.10 (10% of the WSI patches), σ = 0.95. Furthermore, we used the AUC, accuracy,
recall, precision, and F1 score as the evaluation metrics for WSI classification.

For the experimentation involving the combined Camelyon16 and Camelyon17 [21]
datasets, we divided the training data from Camelyon17 centers and Camelyon16 into an
80–20% ratio. We further divided the training set into 90% for model training and 10% for
model validation. Subsequently, we generated keys from the newly created training data
of each center using a value of σ = 0.90. These keys were then combined, and a lower
value of σ = 0.80 was used to select a reduced number of keys that met the computation
requirements. We used the same value of K, r ensuring consistency in the experimental
setup. For training the model, we used the early stopping strategy with a patience of
20 epochs after 5 epochs.

4. Results

In this section, we evaluate the experimental results of the proposed method with
the state-of-the-art methods and conduct an ablation study, and interpretability of the
patch-selection method using NRK.
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4.1. Results on WSI Classification

We evaluated the effectiveness of the proposed method by comparing it to existing
deep learning methods [8–10] on the Camelyon16 and Camelyon17 datasets. The results
for [8–10] were computed using their official implementation. Specifically, for DSMIL [14],
we retrained the feature extractor on the official training set of Camelyon16 [29]. Table 1
presents the results obtained using the ResNet50 feature extractor [25] on the Camelyon16
dataset. The proposed method outperformed the others, with an average AUC of 0.8967,
and we observed an increase of 8.4% in AUC compared to the baseline (ABMIL) that applies
attention to every instance of the WSI (Table 1). For the remainder of experimental evalua-
tion, we conducted a comparative analysis between the proposed method and the most
effective existing methods selected from Table 1 [8,9]. Table 2 presents the results obtained
using the CTranspath feature extractor [27] on the Camelyon16 dataset. The proposed
method achieved an average AUC of 0.9540 using the CTranspath feature extractor. Since
the feature extractor trained on histopathology data surpasses the ResNet50 feature extrac-
tor [25] on the Camelyon16 dataset, we utilized the histopathology trained feature extractor
to assess the performance of the proposed method on the Camelyon16+Camelyon17 dataset.
Correspondingly, we observed an average AUC of 0.9334 on the Camelyon16+Camelyon17
dataset, and the detailed results are presented in Table 3. To evaluate the significance in
terms of small-lesion detection on the Camelyon16 dataset, we assessed the efficiency of
the proposed method by categorizing the lesions according to their size. We grouped the
positive WSIs into four groups: (i) <0.5% (slides where the tumor is less than 0.5% of the
tissue area), (ii) 0.5–1.0%, (iii) 1–10%, and (iv) >=10%. Figure 3 presents the comparison of
the MIL models that use the ABMIL as the baseline. These findings unequivocally indicate
that the proposed method exhibits sensitivity to small lesions without compromising its
effectiveness in detecting large lesions.

Table 1. Testing results on Camelyon16 dataset using ResNet50 Feature Extractor [25]. In each entry
of the table, we report averaged testing results with standard deviation (top row) and testing results
achieved by the best validation model (bottom row) across five folds (best evaluation metrics are
highlighted in bold).

Method AUC Precision Recall F1

ABMIL [10] 0.8127 ± 0.034
0.8375

0.9108 ± 0.0759
0.8684

0.6327 ± 0.0827
0.6734

0.7392 ± 0.040
0.7586

CLAM [8] 0.8580 ± 0.027
0.8319

0.9120 ± 0.009
0.8462

0.6780 ± 0.024
0.6735

0.7770 ± 0.016
0.7500

TransMIL [9] 0.8500 ± 0.028
0.8403

0.8312 ± 0.030
0.8471

0.7898 ± 0.041
0.7913

0.7990 ± 0.040
0.8182

DSMIL [14] 0.8294 ± 0.036
0.8277

0.9077 ± 0.052
0.9285

0.6485 ± 0.036
0.6533

0.7590 ± 0.032
0.7669

Ours 0.8967 ± 0.016
0.9007

0.8589 ± 0.044
0.8837

0.8000 ± 0.041
0.7755

0.8269 ± 0.0265
0.8239

4.2. Ablation Studies

The goal of an ablation study is to investigate the impact of individual hyperparam-
eters on the performance of a model, helping to determine their relative importance and
optimize their values using a validation set. We conducted an ablation study to validate the
effectiveness of key hyperparameters: K, r, and σ. To validate the impact of σ, we generated
multiple NRK bags by setting σ = 0.92, 0.93, 0.94, 0.95, and 0.96. We then evaluated the
average validation performance of our method on each NRK bag. From Figure 4a, it can
be observed that we achieved the best validation performance when σ = 0.95 was used.
Similarly, we present the mean validation AUCs of different k and r settings. As shown in
Figure 4b, we achieved the best performance when the (k = 5, r = 0.10) pair was used.
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Table 2. Testing results on Camelyon16 dataset using CTranspath Feature Extractor [27]. In each
entry of the table, we report averaged testing results with standard deviation (top row) and testing
results achieved by the best validation model (bottom row) across five folds (best evaluation metrics
are highlighted in bold).

Method AUC Precision Recall F1

CLAM [8] 0.9339 ± 0.015
0.9533

0.8913 ± 0.062
0.9756

0.8489± 0.033
0.8163

0.8673 ± 0.019
0.8888

TransMIL [9] 0.9394 ± 0.009
0.9313

0.9054 ± 0.062
0.8723

0.8286 ± 0.042
0.8367

0.8623 ± 0.013
0.8541

Ours 0.9540 ± 0.015
0.9701

0.8997 ± 0.047
0.9750

0.8489 ± 0.030
0.7959

0.8723 ± 0.019
0.8764

Table 3. Testing results on Camelyon16+17 dataset using CTranspath Feature Extractor [27]. In each
entry of the table, we report averaged testing results with standard deviation (top row) and testing
results achieved by the best validation model (bottom row) across five folds (best evaluation metrics
are highlighted in bold).

Method AUC Precision Recall F1

CLAM [8] 0.9305 ± 0.015
0.9208

0.8404 ± 0.066
0.8996

0.8101± 0.042
0.8290

0.8219 ± 0.022
0.8628

TransMIL [9] 0.9221 ± 0.012
0.9180

0.8544 ± 0.028
0.8752

0.8250±0.035
0.8146

0.8389 ± 0.025
0.8438

Ours 0.9334 ± 0.008
0.9254

0.9083 ± 0.053
0.9772

0.8372 ± 0.031
0.8333

0.8694 ± 0.012
0.8995
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4.3. Visualization and Interpretability of NRK-ABMIL

The importance of removing the normal patches is depicted in Figure 5. It presents
a tumor WSI from the Camelyon16 dataset. Here, a red circle annotates the presence of a
tumor lesion in the WSI. Green patches show the selection of the lowest similarity score
patches with the NRK. From Figure 5, it can be seen that the proposed method is capable
of selecting the small lesions and selecting the patches from the different regions of the
WSI. Figure 6 shows the comparison of attention maps between ABMIL and NRK-ABMIL,
revealing that NRK-ABMIL generates more precise attention maps than ABMIL.
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map of tumor WSI using NRK-ABMIL.

5. Discussion

In this article, we introduce NRK-ABMIL, a weakly supervised learning model de-
signed for tumor WSI classification. The proposed method uses a novel discriminative
normal representation learning approach that identifies the discriminative normal represen-
tations from each WSI using a DFI module and generates a normal representation keyset
(NRK). We then compare the NRK with WSI feature vectors for the selection of potential
tumor patches within the WSIs. The identified patch embeddings are then fed into the MIL
model for slide-level classification, enhancing the classification performance.

The proposed model achieved an average AUC of 0.8967 and 0.9540 using ResNet50
Feature Extractor [15] and histopathology-specific feature extractor [27] on the Camelyon16
dataset. Similarly, we achieved an average AUC of 0.9334 on Camelyon16+Camelyon17 for
BCLNM classification, which surpasses the current state-of-the-art MIL models. In addition,
our experimental results reveal that NRK-ABMIL outperforms other methods in terms of
recall, particularly on microlesion tumor WSIs (see Table 1 and Figure 3). To ascertain the
validity of the proposed method, we conducted an evaluation by merging the Camelyon16
and Camelyon17 datasets, and the results presented in Tables 1–3 highlight the potential
of the proposed method in detecting metastasis. These findings suggest that selecting
potential tumor patches for the MIL model is crucial for tumor WSI classification. As
illustrated in Figure 5, the patch-selection module employed in NRK-ABMIL selects tumor
patches from small tumor lesion areas, which proves the interpretability of NRK-ABMIL’s
results. The attention maps shown in Figure 6 show that the proposed model focuses
more on identifying areas with tumors, even on small lesions, and pays more attention
when making its predictions. In this case, the models assign more weight to areas with
tumors, which potentially improves the ability to detect small lesions. In comparison to
the previous instance selection-based MIL method, the proposed NRK-ABMIL achieved
better overall performance, especially in terms of recall on microlesion tumor WSIs. The
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improved performance can be attributed to NRK’s ability to learn a less redundant normal
representative keyset, resulting in more robust instance selection.

A limitation of the proposed method is that our NRK module and the subsequent
instance selection module rely on feature embeddings generated by a fixed ResNet encoder
or pretrained CTranspath encoder without fine tuning on a target dataset, which can result
in selection of patches that might not be separable in this feature space. Therefore, while our
current method provides excellent performance for the driving problem we studied in this
paper, there is room for improvement through the exploration of self-supervised learning
models [30,31]. Another possible limitation of the proposed method is its sensitivity to
tissue-stain inconsistencies. To overcome this issue, it is important to ensure that the keyset
contains the representative keys for different data sources.

Despite the limitations, the proposed NRK-ABMIL provides a powerful automatic
solution for tumor WSI classification. The proposed method can not only provide accurate
slide-level prediction but also generate sparser and more tumor-oriented attention maps
than other MIL methods.

The clinical significance of this method lies in its potential to help oncologists accu-
rately identify breast cancer metastasis to lymph nodes, which is crucial for determining
the stage of breast cancer. This method can be utilized in the development of improved
treatment plans, as the detection of lymph node metastasis of small lesions is critical for
improving the prognosis. An interesting application of the proposed method could be for
the detection in the frozen section slides. These frozen slides often pose challenges in recog-
nizing such small metastatic deposits, making their detection difficult. False-negative cases
in frozen tissue can have serious consequences for patients and complicate care planning.
This method can also lighten the burden on pathologists by offering highly precise ROI
suggestions in areas where there is a shortage of skilled pathologists.

6. Conclusions

In this study, we propose a novel approach for classifying whole slide images (WSIs)
with small lesions in a more precise and accurate manner. Specifically, we introduced a
distinct feature vector identifier module as part of our normal representative keyset-based
MIL approach, which allows for the selection of patches that are most relevant for accurately
classifying WSIs. To evaluate the effectiveness of the proposed method, we conducted
comprehensive experiments on the Camelyon16 and Camelyon17 datasets, which are
widely used as benchmark datasets for evaluating computer-aided diagnosis systems
for breast cancer metastasis. Our results demonstrated that the proposed NRK-ABMIL
approach with the DFI module achieved excellent performance for accurately identifying
small tumor regions within WSIs. The proposed method needs to be refined and validated
for multiclass classification problems and using other medical use cases. We expect that
the proposed method will generalize well, especially in accurately detecting small lesions
within WSIs. In our future studies, we plan to test our proposed method for other types
of cancer.
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Appendix A

Algorithm A1 Normal representative keyset (NRK)

Input: The set of normal WSIs, HNormal = {H1, H2, . . . , HN}, and a similarity threshold
σ ∈ (0, 1).
Step 1: for i = 1, 2, . . . , N do

• Set NRKi = DFI(Hi), where the module DFI is given in Algorithm A2.

End (for)

Step 2: Set NRK = DFI
(

N⋃
i=1

NRKi

)
= {k1, k2, ., km}.

Output: NRK = {k1, k2, ., km}.

Algorithm A2 Distinct feature vector identifier (DFI)

Input: A set of feature vectors H = {h1, h2, . . . , hnH} and a similarity threshold σ ∈ (0, 1), where
hj ∈ RD×1 for j = 1, 2, . . . , nH . Moreover, set DF = {} (empty set).

Step 1: Compute B = {b1, b2, .bnF}, where bj =
hj

‖hj‖ ∈ RD×1, for j = 1, 2, . . . , nH .

Step 2: While B 6= {} (empty set) do

• Step 2.1: Set bR = popRand(B), where popRand(.) is a function that randomly selects only
one element of its input set, i.e., H.

• Step 2.2: Compute

C =
[
c1, c2, . . . , c(R−1), c(R+1), . . . , cnH

]
∈ R1×(nH−1),

where cj = bT
Rbj for j = 1, 2, . . . , R− 1, R + 1, . . . , nH .

• Step 2.3: for j = 1, 2, . . . , R− 1, R + 1, . . . , nH , do

If (cj ≥ σ), then

B = B. remove
(

bj

)
,

where A. remove(a) is a function that removes element a from set A.
End (for).

• Step 2.4: Set

DF = DF ∪ hR,
And
B = B. remove(bR).

End (While)
Output: DF

References
1. Gurcan, M.N.; Boucheron, L.E.; Can, A.; Madabhushi, A.; Rajpoot, N.M.; Yener, B. Histopathological Image Analysis: A Review.

IEEE Rev. Biomed. Eng. 2009, 2, 147–171. [CrossRef] [PubMed]
2. Niazi, M.K.K.; Parwani, A.V.; Gurcan, M.N. Digital pathology and artificial intelligence. Lancet Oncol. 2019, 20, e253–e261.

[CrossRef]

https://camelyon16.grand-challenge.org/Data/
https://camelyon17.grand-challenge.org/Home/
https://camelyon17.grand-challenge.org/Home/
https://github.com/cialab/NRKMIL
https://doi.org/10.1109/RBME.2009.2034865
https://www.ncbi.nlm.nih.gov/pubmed/20671804
https://doi.org/10.1016/S1470-2045(19)30154-8


Cancers 2023, 15, 3428 14 of 15

3. Madabhushi, A. Digital pathology image analysis: Opportunities and challenges. Imaging Med. 2009, 1, 7–10. [CrossRef]
[PubMed]

4. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I.
A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef] [PubMed]

5. Esteva, A.; Chou, K.; Yeung, S.; Naik, N.; Madani, A.; Mottaghi, A.; Liu, Y.; Topol, E.; Dean, J.; Socher, R. Deep learning-enabled
medical computer vision. NPJ Digit. Med. 2021, 4, 5. [CrossRef]

6. Graham, S.; Vu, Q.D.; Raza, S.E.A.; Azam, A.; Tsang, Y.W.; Kwak, J.T.; Rajpoot, N. Hover-Net: Simultaneous segmentation and
classification of nuclei in multi-tissue histology images. Med. Image Anal. 2019, 58, 101563. [CrossRef]

7. Srinidhi, C.L.; Ciga, O.; Martel, A.L. Deep neural network models for computational histopathology: A survey. Med. Image Anal.
2021, 67, 101813. [CrossRef]

8. Lu, M.Y.; Williamson, D.F.K.; Chen, T.Y.; Chen, R.J.; Barbieri, M.; Mahmood, F. Data-efficient and weakly supervised computational
pathology on whole-slide images. Nat. Biomed. Eng. 2021, 5, 555–570. [CrossRef]

9. Shao, Z.; Bian, H.; Chen, Y.; Wang, Y.; Zhang, J.; Ji, X.; Zhang, Y. TransMIL: Transformer based Correlated Multiple Instance
Learning for Whole Slide Image Classication. arXiv 2021, arXiv:2106.00908.

10. Ilse, M.; Tomczak, J.; Welling, M. Attention-based Deep Multiple Instance Learning. In Proceedings of the 35th International
Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 2127–2136.

11. Carbonneau, M.-A.; Cheplygina, V.; Granger, E.; Gagnon, G. Multiple instance learning: A survey of problem characteristics and
applications. Pattern Recognit. 2018, 77, 329–353. [CrossRef]

12. Waks, A.G.; Winer, E.P. Breast cancer treatment: A review. JAMA 2019, 321, 288–300. [CrossRef]
13. Van la Parra, R.; Peer, P.; Ernst, M.; Bosscha, K. Meta-analysis of predictive factors for non-sentinel lymph node metastases in

breast cancer patients with a positive SLN. Eur. J. Surg. Oncol. 2011, 37, 290–299. [CrossRef]
14. Li, B.; Li, Y.; Eliceiri, K. Dual-stream Multiple Instance Learning Network for Whole Slide Image Classification with Self-supervised

Contrastive Learning. arXiv 2020, arXiv:2011.08939.
15. Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyö, D.; Moreira, A.L.; Razavian, N.; Tsirigos, A.

Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med.
2018, 24, 1559–1567. [CrossRef] [PubMed]

16. Courtiol, P.; Tramel, E.; Sanselme, M.; Wainrib, G. Classification and Disease Localization in Histopathology Using Only Global
Labels: A Weakly-Supervised Approach. arXiv 2018, arXiv:1802.02212.

17. Su, Z.; Tavolara, T.E.; Carreno-Galeano, G.; Lee, S.J.; Gurcan, M.N.; Niazi, M.K.K. Attention2majority: Weak multiple instance
learning for regenerative kidney grading on whole slide images. Med. Image Anal. 2022, 79, 102462. [CrossRef]

18. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv.
Neural Inf. Process. Syst. 2017, 30. [CrossRef]

19. Campanella, G.; Hanna, M.G.; Geneslaw, L.; Miraflor, A.; Werneck Krauss Silva, V.; Busam, K.J.; Brogi, E.; Reuter, V.E.; Klimstra,
D.S.; Fuchs, T.J. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med.
2019, 25, 1301–1309. [CrossRef]

20. Ehteshami Bejnordi, B.; Veta, M.; Johannes van Diest, P.; van Ginneken, B.; Karssemeijer, N.; Litjens, G.; van der Laak, J.; Hermsen,
M.; Manson, Q.F.; Balkenhol, M.; et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node
Metastases in Women With Breast Cancer. JAMA 2017, 318, 2199–2210. [CrossRef]

21. Bandi, P.; Geessink, O.; Manson, Q.; Van Dijk, M.; Balkenhol, M.; Hermsen, M.; Bejnordi, B.E.; Lee, B.; Paeng, K.; Zhong, A. From
detection of individual metastases to classification of lymph node status at the patient level: The camelyon17 challenge. IEEE
Trans. Med. Imaging 2018, 38, 550–560. [CrossRef] [PubMed]

22. Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.;
Winchester, D.P. The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more
“personalized” approach to cancer staging. CA A Cancer J. Clin. 2017, 67, 93–99. [CrossRef]

23. Tavolara, T.E.; Niazi, M.K.K.; Gurcan, M. Background detection affects downstream classification of Camelyon16 whole slide
images. In Proceedings of the Medical Imaging 2022: Digital and Computational Pathology, SPIE 2023, San Diego, CA, USA,
19–23 February 2023.

24. Wang, X.; Yan, Y.; Tang, P.; Bai, X.; Liu, W. Revisiting multiple instance neural networks. Pattern Recognit. 2018, 74, 15–24.
[CrossRef]

25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

26. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Kai, L.; Li, F.-F. ImageNet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

27. Wang, X.; Yang, S.; Zhang, J.; Wang, M.; Zhang, J.; Yang, W.; Huang, J.; Han, X. Transformer-based unsupervised contrastive
learning for histopathological image classification. Med. Image Anal 2022, 81, 102559. [CrossRef] [PubMed]

28. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
29. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In

Proceedings of the International Conference on Machine Learning, Virtual Event, 13–18 July 2020; pp. 1597–1607.

https://doi.org/10.2217/iim.09.9
https://www.ncbi.nlm.nih.gov/pubmed/30147749
https://doi.org/10.1016/j.media.2017.07.005
https://www.ncbi.nlm.nih.gov/pubmed/28778026
https://doi.org/10.1038/s41746-020-00376-2
https://doi.org/10.1016/j.media.2019.101563
https://doi.org/10.1016/j.media.2020.101813
https://doi.org/10.1038/s41551-020-00682-w
https://doi.org/10.1016/j.patcog.2017.10.009
https://doi.org/10.1001/jama.2018.19323
https://doi.org/10.1016/j.ejso.2011.01.006
https://doi.org/10.1038/s41591-018-0177-5
https://www.ncbi.nlm.nih.gov/pubmed/30224757
https://doi.org/10.1016/j.media.2022.102462
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1038/s41591-019-0508-1
https://doi.org/10.1001/jama.2017.14585
https://doi.org/10.1109/TMI.2018.2867350
https://www.ncbi.nlm.nih.gov/pubmed/30716025
https://doi.org/10.3322/caac.21388
https://doi.org/10.1016/j.patcog.2017.08.026
https://doi.org/10.1016/j.media.2022.102559
https://www.ncbi.nlm.nih.gov/pubmed/35952419


Cancers 2023, 15, 3428 15 of 15

30. Wang, X.; Du, Y.; Yang, S.; Zhang, J.; Wang, M.; Zhang, J.; Yang, W.; Huang, J.; Han, X. RetCCL: Clustering-guided contrastive
learning for whole-slide image retrieval. Med. Image Anal. 2023, 83, 102645. [CrossRef] [PubMed]

31. Vuong, T.T.L.; Vu, Q.D.; Jahanifar, M.; Graham, S.; Kwak, J.T.; Rajpoot, N. IMPaSh: A Novel Domain-Shift Resistant Representation
for Colorectal Cancer Tissue Classification. In Proceedings of the Computer Vision—ECCV 2022 Workshops, Tel Aviv, Israel,
23–27 October 2022; pp. 543–555.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.media.2022.102645
https://www.ncbi.nlm.nih.gov/pubmed/36270093

	Introduction 
	Related Work 
	Materials and Methods 
	Dataset 
	MIL Method for WSI Classification 
	Attention-Based MIL (ABMIL) Method for WSI Classification 
	Normal Representative Keyset (NRK) 
	Instance Retrieval for WSIs Using Normal Representative Bag 
	Implementation Details 

	Results 
	Results on WSI Classification 
	Ablation Studies 
	Visualization and Interpretability of NRK-ABMIL 

	Discussion 
	Conclusions 
	Appendix A
	References

